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Abstract: We present evidence from a variety of physical and biological proxies for a severe drought that

affected the mid-continent of North America between 4.1 and 4.3 ka. Rapid climate changes associated

with the event had large and widespread ecological effects, including dune reactivation, forest fires and

long-term changes in forest composition, highlighting a clear ecological vulnerability to similar future

changes. Drought is also documented in the Middle East and portions of Africa and Asia, where it was

similar in timing, duration and magnitude to that recorded in the central North American records. Some

regions at high latitudes, including northern Europe and Siberia, experienced cooler and/or wetter

conditions. Widespread mid-latitude and subtropical drought, associated with increased moisture at some

high latitudes, has been linked in the instrumental record to an unusually steep sea surface temperature

(SST) gradient between the tropical eastern and western Pacific Ocean (La Niña) and increased warmth in

other equatorial oceans. Similar SST patterns may have occurred at 4.2 ka, possibly associated with

external forcing or amplification of these spatial modes by variations in solar irradiance or volcanism.

However, changes in SST distribution bracketing the 4.2 ka event are poorly known in most regions and

data are insufficient to estimate magnitude of changes in solar and volcanic forcing at this time. Further

research is needed to delineate geographical patterns of moisture changes, ecological responses, possible

forcing mechanisms and climatology of this severe climatic event.
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Introduction

Palaeoclimate records show that Earth’s climatic system is

subject to abrupt, severe and widespread changes, with large

and sometimes devastating effects on ecosystems and civiliza-

tions (Alley et al., 2003). Abrupt climate changes are particu-

larly well documented during the last deglaciation;

temperature changes associated with the Younger Dryas

(12.9�/11.6 ka) and 8.2 ka events occurred in less than a

decade (Alley et al., 2003). These events had large and long-

lasting effects on terrestrial ecosystems (Yu, 2000; Ammann, B.

et al., 2000; Tinner and Lotter, 2001; Shuman et al., 2002;

Williams et al., 2002). Abrupt climate changes during the

middle and late Holocene have been less severe, and many

appear to represent hydroclimatic changes that are still poorly

understood. Droughts spanning several years to several

decades are documented throughout the late Holocene, and

many of these had substantial ecological and socioeconomic

effects (Hodell et al., 1995; Woodhouse and Overpeck, 1998;

Stahle et al., 2000; DeMenocal, 2001). Abrupt changes are*Author for correspondence (e-mail: rkbooth@wisc.edu)
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clearly part of the natural variability of Earth’s climate, but

human activities may alter their probability (Alley et al., 2003),

lending urgency to understanding abrupt changes of the past.

Knowledge of patterns, mechanisms and impacts of abrupt

climate change, particularly during non-glacial time periods, is

needed as context for considering possible future abrupt

climate changes and possible ways to mitigate their effects

(Overpeck and Webb, 2000). We present evidence from mid-

continental North America for a widespread drought that

occurred between 4.3 and 4.1 ka, evaluate some of the

ecological responses and discuss larger Northern Hemispheric

patterns and mechanisms.

Temporal and spatial dimensions of the
4.2 ka drought

Abrupt climate changes centred on 4.2 ka have been docu-

mented from various regions of the world, ranging from the

North Atlantic to northern Africa and southern Asia, and it

has been suggested that these changes may have been global in

extent (Bond et al., 2001; Thompson et al., 2002). However,

climate changes in North America at 4.2 ka have not been well

established, and global patterns have not been well delineated.

A recently developed high-resolution record of moisture

variability from South Rhody Peatland, a closed-basin peat-

land in the Upper Peninsula of Michigan (Figure 1), clearly

documents severe drought at 4.2 ka (Booth et al., 2004). The

palaeohydrological record was inferred from testate amoebae

(Protozoa: Rhizopoda), which are sensitive indicators of

moisture conditions, and assemblage composition is strongly

correlated with water-table depth (Woodland et al., 1998).

Testate amoebae have provided reconstructions of past climate

variability at subcentennial timescales in Europe and North

America (Charman and Hendon, 2000; Booth and Jackson,

2003a). Water-table depths at South Rhody Peatland were

reconstructed using a transfer function developed from a

modern calibration dataset (Booth, 2002). The inferred

water-table in the peatland reached its lowest levels of the

last 5000 years between 4.2 and 4.0 ka (Figure 2). Hyalosphenia

subflava and Bullinularia indica, which are reliable indicators of

very dry peatland conditions (Woodland et al., 1998, Booth,

2002), are abundant during this time period (Booth et al.,

2004). Seven radiocarbon dates constrain the last 5000 years of

record at South Rhody, and one of these dates was obtained

from Pinus (pine) needles that were deposited immediately

after the drought interval (Booth et al., 2004). Dry conditions

at South Rhody persisted for at least two centuries, and the

drought occurred between relatively wet periods, indicating

that it was a discrete event and not part of a long-term gradual

change.

Severe multiyear droughts (e.g., 1930s) and multidecadal

droughts (e.g., late sixteenth century) affected much of the mid-

continental USA (Woodhouse and Overpeck, 1998; Stahle

et al., 2000; Fye et al., 2003). The 4.2 ka drought had similarly

broad impacts from the Great Lakes to the Central Plains. In

Minnesota, a sharp increase in clastic sediments from aeolian

sources, associated with pronounced drying, is registered in the

sediments of Elk Lake at c. 4.3�/4.1 ka (Dean, 1993, 1997).

Diatom influx reaches its highest levels at 4.2 ka, suggesting

high lake productivity. The diatom flora alternates between

species characteristic of clear and turbid water, the latter

probably resulting from regional aeolian episodes (Bradbury

and Dieterich-Rurup, 1993). Sediment bulk density at Elk Lake

peaks at 4.2 ka, and a prominent spike in magnetic suscept-

ibility occurs between 4.4 and 4.2 ka, consistent with high lake

productivity and increased clastic sediments (Figure 2). Varve

thickness at Elk Lake increases at 3.9 ka, which corresponds

temporally with the rapid increase in moisture documented at

South Rhody Peatland after the drought (Figure 2).

Drought-induced aeolian activity in many currently stabi-

lized dune systems across the mid-continent (Forman et al.,

2001) provides additional information on the magnitude and

extent of the 4.2 ka drought. The Ferris Dune Field in eastern

Wyoming shows widespread reactivation c. 4.3�/4.0 ka ago

(Stokes and Gaylord, 1993), as do parabolic dune systems in

eastern Colorado (Forman et al., 1995) (Figure 2). Persistent

and pervasive aridity in Nebraska at c. 4.3 ka is indicated by

dune movements that spanned tens of kilometres, altering

surface hydrology (Loope et al., 1995; Stokes and Swinehart,

1997; Mason et al., 1997). Regional aridity extended at least as

far east as west-central Illinois, where a sand sheet dated at 4.2

ka is banked against parabolic dune forms from the last glacial

maximum (Figure 2). This Holocene sand sheet deposit is

unique for the region, indicating a drop in mean annual

precipitation sufficient to decrease vegetation cover for aeolian

entrainment (Forman et al., 2001).

Other high-resolution palaeoclimate records provide addi-

tional evidence for widespread drought in the Midwest at this

time. A speleothem record from northeastern Iowa documents

a brief negative spike in d18O at 4.1 ka (Denniston et al., 1999)

suggesting a shift in seasonality of precipitation and a change

to more distal sources of moisture, consistent with drought

climatology (Woodhouse and Overpeck, 1998). A pollen

record from alluvial sediments in the same region shows a

brief spike in Ambrosia (ragweed) and corresponding decrease

in Quercus (oak) (Baker et al., 2002), indicating transient

drought. Another record of moisture balance, which provides a

more regional perspective on climate variability, is the sedi-

mentologically derived water-level history of Lake Michigan,

which integrates the net water budget of Lakes Superior,

Michigan and Huron, a watershed encompassing more than

575 000 km2 (Baedke and Thompson, 2000; Booth and

Jackson, 2003a). Lake Michigan water levels fell between 4.5

and 4.0 ka, at a rate at least five times that attributable to

isostatic rebound (Baedke and Thompson, 2000). Although the

water-level drop may be related to non-climatic factors (e.g.,

erosion of the Port Huron outlet), the timing of the rapidly

decreasing water levels coincides with a decrease in flood

magnitudes in the upper Mississippi River catchment (Knox

and Kundzewicz, 1997).

Drought at 4.2 ka is not evident in all palaeoclimate records

from the North American mid-continent. Sites and proxies

differ in their sensitivity, response time and temporal resolu-

tion, and the short duration of the 4.2 ka event makes it likely

that it has been overlooked in some records. For example, the

drought spans only 5 cm of sediment at South Rhody Peatland

(Booth et al., 2004), and most studies of lake and peatland

sediments in the region have been carried out at coarser

sampling intervals. This may account for the paucity of records

of this event from other parts of North America. Palaeoclimate

studies of potentially sensitive sites with high temporal

resolution should be directed at this time period to delineate

the spatial extent, nature and magnitude of the event in North

America.

Ecological impacts of the drought

High-resolution pollen and charcoal analyses at South Rhody

peatland and other sites indicate the drought was of sufficient

magnitude to cause widespread ecological change in northern

322 The Holocene 15 (2005)



Michigan (Figure 2) (Booth et al., 2004). Wildfires increased in

frequency and/or intensity, and transient increases in Pteridium

(bracken fern) populations indicate widespread disturbance of

forest vegetation (Figure 2). Similar changes in charcoal and

Pteridium occurred at Ackerman Lake, located 60 km south-

west of South Rhody peatland (Booth and Jackson, 2003b).

Transient increases in charcoal and/or Pteridium spores, along

with a brief decrease in Betula (birch) pollen, are also recorded

in small hollows in western Upper Michigan (Davis et al.,

1998). During the rapid onset of wetter conditions after the

drought, Betula alleghaniensis (yellow birch) and Tsuga cana-

densis (hemlock) populations expanded in Upper Michigan

(Booth and Jackson, 2003b; Booth et al., 2004). Drought-

induced disturbance of incumbent forest vegetation may have

facilitated the expansion of these species. Mesic tree popula-

tions persisted on the landscape after their post-drought rapid

expansion, suggesting that the abrupt climate shifts associated

with the drought event led to the establishment of a new

equilibrium state in forest ecosystems. High-resolution

palaeoecological records are needed from other regions within

the continental interior to assess the response of different

ecosystem types to the drought and associated climate changes.

A megadrought 4200 years ago?

Widespread, persistent drought events spanning several years

are well documented in the instrumental record of the past

century, and these droughts can span several continents

(Hoerling and Kumar, 2003). High-resolution palaeoclimate

records indicate that widespread, multidecadal megadroughts

have occurred at various times in the late Holocene, spanning

large portions of North America (Woodhouse and Overpeck,

1998; Stahle et al., 2000, Gray et al., 2003). Lower-resolution

palaeoclimate records indicate that the mid-continent of North

America experienced an abrupt, severe and persistent drought

within 100�/200 years of 4.2 ka (Figure 2). This drought

persisted for at least several decades, perhaps centuries, and its

magnitude is unmatched in the last 5000 years. Although the

spatial extent of drought within North America has not been

adequately delimited, severe droughts at or near 4.2 ka are

recorded at multiple mid-latitude and subtropical sites on all

other continents of the Northern Hemisphere (Figure 1). The

records from Africa, Europe and Asia, together with the

records from the North American mid-continent, suggest that

much of the Northern Hemisphere may have experienced

persistent drought at low to middle latitudes at 4.2 ka. Severe

drought is clearly recorded at c. 4.2 ka in the Middle East

and northern Africa (e.g., Gasse, 2000; Cullen et al., 2000;

Thompson et al., 2002). For example, a 200�/300 year drought

centred on 4.2 ka has been inferred from dust in marine

sediments of the Gulf of Oman (Figure 2) (Cullen et al., 2000),

and this drought has been linked to the collapse of the

Akkadian Empire and early civilizations in Greece, Egypt

and the Indus Valley of Pakistan (Weiss et al., 1993; Dalfes

et al., 1997; Cullen et al., 2000; Staubwasser et al., 2003).

Sediment and speleothem records from Israel, Turkey and

Yemen also document drought during this time period (Bar-

Matthews et al., 1997; Dalfes et al., 1997; Frumkin et al.,

2001).

Pronounced drought also occurred in other areas of Africa,

Asia and the Mediterranean (e.g., Gasse and Van Campo,

1994; Gasse, 2000; Thompson et al., 2002; Wenxiang and

Tungsheng, 2004). Drying at 4.2 ka is associated with abrupt

deforestation in the western Mediterranean region, and an

increased influx of Cedrus pollen of African origin reaching

central Italy suggests that extraregional air masses coming

from the south were associated with the drought (Magri and

Parra, 2002). This drying was widespread, reactivating dune

systems on the margin of the Saharan Desert in North Africa

(Swezey, 2001) and causing increases in Saharan-derived

aeolian particle flux to lakes in central Italy (Narcisi, 2000).

Increased dust content in glacier ice on the summit of Mount

Kilimanjaro (Thompson et al., 2002) and widespread lowered

lake levels c. 4.2 ka (Gasse and Van Campo, 1994; Damnati,

2000; Gasse, 2000) indicate pervasive and severe drought

extended across central and east Africa. A large increase

in sediment flux from new sources into the lower Nile River

4.0�/4.5 ka, is attributable to a decrease in vegetation cover in

contributing catchments (Stanley et al., 2003). Drought

conditions extended to the Mediterranean and southern

Europe, where dessication of lakes and vegetation changes

indicate drying at c. 4.2 ka (Jalut et al., 2000; Carrion, 2002;

Pantaleon-Cano, 2003).

Figure 1 Map showing sites mentioned in text where climatic
changes centring on 4.2 ka (4.4�/4.0 ka) have been documented,
with inset showing location of sites in the continental USA. Solid
circles indicate severe drought and open circles indicate increased
moisture. Sites in the USA include: (1) South Rhody Peatland,
Michigan (Booth et al., 2004); (2) Sylvania Wilderness, Michigan
(Davis et al., 1998); (3) Western Illinois sand sheet; (4) Coldwater
Cave Speleothem (Denniston et al., 1999); (5) Elk Lake, Minnesota
(Dean, 1993; Dean, 1997); (6) Sand Hills, Nebraska (Mason et al.,
1997); (7) Eastern Colorado dunes (Forman et al., 1995); (8)
Ferris/Seminoe dune field, Wyoming (Stokes and Gaylord, 1993).
In Africa, Asia and Europe, dots represent generalized locations of
studies cited in the text. The maps do not represent comprehensive
surveys of all available palaeoclimate records, but rather portray
sites where clear anomalies centring on 4.2 ka have been
documented. The spatial pattern of wet and dry anomalies
resembles that of the mid-latitudinal drought that occurred June
1998�/May 2002 (see Hoerling and Kumar, 2003).
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The palaeoclimate records indicate that low to mid-latitudes

of much of the Northern Hemisphere experienced severe

drought conditions centring on 4.2 ka (Figures 1 and 2). A

similar pattern of multiyear, mid-latitude drought occurred in

1998�/2002 and was described by Hoerling and Kumar (2003);

however, Hoerling and Kumar do not show results equator-

ward of 208N, so the records from tropical Africa cannot be

compared with their results. The 1998�/2002 drought was

accompanied by positive moisture anomalies at high latitudes

in North America and Eurasia (Hoerling and Kumar, 2003), a

pattern matched by the palaeoclimate records at 4.2 ka (Figure

1). For example, in northwestern Canada a prominent increase

in peat accumulation rate occurred at 4.2 ka, suggesting a brief

(�/200 year) wet event (Yu et al., 2003) (Figure 2). Moister

and/or cooler conditions at 4.2 ka are also indicated by proxy-

climate records in northern England (Hughes et al., 2000),

Ireland (Barber et al., 2003; Plunkett et al., 2004), northern

Scandinavia (Korhola et al., 2000, 2002; Rosen et al., 2001),

central Europe (Magny, 2004), northwest Siberia (Laing and

Smol, 2003) and possibly northeast Siberia (Porinchu and

Cwynar, 2002) (Figure 1). Therefore, the 1998�/2002 event is

worth exploring as a potential model to help assess mechan-

isms underlying the event of 4.2 ka.

Possible causal mechanisms

Abrupt climate changes during the early Holocene and last

glacial period were driven by ice-sheet dynamics and their

effects on ocean circulation (Alley et al., 2003). The 4.2 ka

anomaly occurred when continental glaciers were absent from

most of the Northern Hemisphere, similar to the situation

today, so other mechanisms must be sought. Potential mechan-

isms include non-linear responses to Milankovitch forcing,

solar variation, volcanic events and variability in the ocean�/

atmosphere system.

Milankovitch orbital parameters were changing at a very

slow rate during the mid- to late Holocene; nevertheless,

changes in the base-state climate associated with altered orbital

forcing may have played a role in this event. However, except

for models of intermediate complexity (e.g., Claussen et al.,

1999), climate models have not been run for several millennia

of Holocene climate to assess the likely magnitude and

frequency of abrupt decadal- and centennial-scale changes.

Some evidence exists for changed solar forcing at 4.2 ka.

Bond et al. (2001) document a cold event in the North Atlantic

at 4.2 ka, one of several such Holocene events, and a

corresponding increase in cosmogenic isotopes suggests re-

duced solar radiation at this time. A possible link between late

Holocene drought cycles in south Asia and cosmogenic 14C

production rates has also been documented (Staubwasser et al.,

2003). However, although climate models are being used to

investigate the climatic response to solar variability, particu-

larly the period of reduced insolation during the Maunder

Minimum (Shindell et al., 2003; Rind et al., 2004), they have

primarily focused on simulating temperature and circulation

changes rather than changes in precipitation or drought.

Discussion of precipitation responses to changes in solar

forcing has been limited to the tropics (Meehl et al., 2003).

Volcanic forcing may have changed at 4.2 ka, and a record of

volcanic activity compiled from radiocarbon-dated volcanic

eruptions shows a peak in volcanic activity at this time

(Bryson, 1988). However, ice-core records have not yet shown

a significant global-scale volcanic signal at 4.2 ka (Zielinski,

2000), and most detailed observational studies of ice cores

have been limited to the past millennium (Crowley, 2000;

Ammann and Naveau, 2003). Potential impacts of volcanism

on large-scale drought have also not been evaluated fully in

general circulation models and, similar to models assessing the

climatic response to solar forcing, most have focused on

simulating temperature and circulation changes (Amman,

C.M. et al., 2003; Shindell et al., 2003; Rind et al., 2004).

Many severe drought events of the past century have been

linked to internal variability in the ocean�/atmosphere system

(Enfield et al., 2001, McCabe et al., 2004, Schubert et al.,

2004a, b), raising the question of whether such intrinsic

variability in the Earth system is capable of inducing the event

of 4.2 ka. Recent research has demonstrated linkages between

SST patterns and drought, particularly widespread droughts

such as those of 1998�/2002 (Hoerling and Kumar, 2003), the

1950s and 1930s (e.g., Enfield et al., 2001; McCabe et al., 2004,

Schubert et al., 2004a, b) and the sixteenth century (Stahle

et al., 2000; Gray et al., 2003). Widespread occurrence of mid-

latitude, Northern Hemisphere drought in 1998�/2002 has been

connected with an enhanced thermal gradient between the

tropical eastern and western Pacific Ocean and warm SSTs in

the other equatorial oceans (Hoerling and Kumar, 2003).

Increasing SSTs in equatorial basins may be related in part

to greenhouse gas forcing (Hoerling and Kumar, 2003). The

1998�/2002 SST pattern resulted in a persistent belt of higher

pressure aloft at Northern Hemisphere middle latitudes,

providing a scenario for widespread, synchronous drought

(Hoerling and Kumar, 2003). Some regions at mid to high

latitudes received more moisture under this SST forcing

(Hoerling and Kumar, 2003), similar to the pattern at 4.2 ka

(Figure 1). SST anomalies may also have played a role in the

drought over the Great Plains during the Dust Bowl period

(1932�/38) (Schubert et al., 2004b), and bear some resemblance

to the SST patterns of 1998�/2002. Both periods had colder

SSTs in the central and eastern equatorial Pacific and warmer

SSTs in the equatorial Atlantic. However, there were also some

differences: the 1998�/2002 interval had warmer SSTs in the

western equatorial Pacific and the Indian Ocean relative to the

1932�/1938 period, and the 1932�/1938 period had large warm

SST anomalies in the northern North Atlantic. The strong

association between SST patterns and drought during the

instrumental record suggests that SST patterns at 4.2 ka should

be investigated.

Although records of past SST patterns are limited in spatial

coverage, we can infer SST patterns at 4.2 ka in some regions.

For example, lake sediments of southern Ecuador suggest less

frequent warm ENSO events c. 4.0�/4.3 ka ago (Moy et al.,

2002). Weaker ENSO variability may have been associated with

more persistent La Niña conditions, and persistent or en-

hanced La Niña conditions (i.e., colder SSTs in the central/

eastern equatorial Pacific) have been linked to other times of

prolonged North American drought in the Holocene (Forman

et al., 2001; Menking and Anderson, 2003), as well as the

1998�/2002 drought (Hoerling and Kumar, 2003) and the Dust

Bowl drought (Schubert et al., 2004b). Northern North

Atlantic SST was probably cold, compared with the present,

at 4.2 ka (Bond et al., 2001). Simulations suggest that cooling

of the northern North Atlantic might also contribute to

drought in continental North America (Benson et al., 1997;

Peteet et al., 1997), and some arid time periods during the late

Holocene of the Great Plains have been correlated with cold

conditions in the North Atlantic region (Yu et al., 2002).

However, correlations observed during the historical time

period have linked continental droughts with warm phases of

the Atlantic Multidecadal Oscillation (AMO) (Enfield et al.,

2001; McCabe et al., 2004), an index averaged for the entire

North Atlantic (0�/708N), and the Dust Bowl drought was
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associated with an anomalously warm northern North Atlan-

tic. Because Holocene SST patterns are poorly known across

the entire North Atlantic, direct comparison with the historical

record is difficult. There is also evidence for changes in the

tropics or subtropics at 4.2 ka that could be linked to SST

changes in the Indian Ocean. For example, a reduction in the

Indian Ocean Summer Monsoon has been inferred at approxi-

mately 4.2 ka from Arabian Sea sediments (Gupta et al., 2003),

and a similar but larger reduction in monsoon strength has

been inferred from a peatland-derived d13C cellulose record on

the Tibetan Plateau (Hong et al., 2003). High-resolution proxy

records of past SST variability are needed before firm

conclusions can be reached.

In summary, our knowledge of changes in external forcing at

4.2 ka is still limited and, although the response of temperature

and circulation patterns to changes in solar or volcanic forcing

during recent centuries is now being studied, the response of

precipitation has not been documented, especially outside the

tropics. The role of SST changes, either caused by external

forcing changes and feedbacks or as part of an internal mode,

cannot be fully assessed until more SST data are available for

the period bracketing the 4.2 ka event. Nevertheless, several

modelling studies indicate that tropical SST anomalies are an

important component of the climate anomalies that accom-

pany drought. Although we cannot yet isolate the causal

mechanisms of the 4.2 ka event, the likelihood that ice sheet

dynamics did not play a role makes the event a prime target for

modelling studies once base-state changes, solar or volcanic

forcing changes or internal dynamical modes can be simulated

for this period.

Conclusions

Temporal resolution of the available paleoclimate records is

insufficient to assess whether drought was experienced syn-

chronously within and among continents, but it is clear that

extraordinary and persistent drought occurred on all Northern

Hemisphere continents within a century or two of 4.2 ka,

amounting to a hemisphere-wide megadrought far surpassing

the droughts of the past millennium in severity and/or

duration. In mid-continental North America, rapid climate

changes associated with the event had large and widespread

ecological effects, including dune reactivation, forest fires, and

long-term changes in forest composition. Emergence of a

persistent climate anomaly similar to that of 4.2 ka would have

devastating societal and ecological impacts. The mechanisms

forcing the event, whether externally caused and/or related to

an internal mode involving SST changes, are unclear.

The spatial extent, forcing mechanisms and ecological

responses to the abrupt climatic changes at 4.2 ka need to be

further characterized. The causes of the event, why it persisted

with such intensity for so long, and what caused it to end, still

need to be investigated. More continuous records of hydrocli-

matic changes are needed across 4.2 ka, particularly to better

delineate the spatial pattern of drought throughout the North

American continent, and these records should be coupled with

records of ecological response. Studies of proxies with annual

to decadal precision are needed to determine spatiotemporal

patterns of drought, particularly whether it was synchronous

across the Northern Hemisphere or displayed temporal and

spatial heterogeneity. We also need high-resolution proxy

records of SST from various regions of the world, and

modelling efforts aimed at developing and testing hypotheses

regarding the climatic response to possible changes in external

forcing mechanisms or internal dynamical models.
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