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Robbins JL, Duscha BD, Bensimhon DR, Wasserman K,
Hansen JE, Houmard JA, Annex BH, Kraus WE. A sex-specific
relationship between capillary density and anaerobic threshold.
J Appl Physiol 106: 1181–1186, 2009. First published January 22,
2009; doi:10.1152/japplphysiol.90947.2008.—Although both cap-
illary density and peak oxygen consumption (V̇O2) improve with
exercise training, it is difficult to find a relationship between these
two measures. It has been suggested that peak V̇O2 may be more
related to central hemodynamics than to the oxidative potential of
skeletal muscle, which may account for this observation. We
hypothesized that change in a measure of submaximal perfor-
mance, anaerobic threshold, might be related to change in skeletal
muscle capillary density, a marker of oxidative potential in muscle,
with training. Due to baseline differences among these variables,
we also hypothesized that relationships might be sex specific. A
group of 21 subjects completed an inactive control period, whereas
28 subjects (17 men and 11 women) participated in a 6-mo
high-intensity exercise program. All subjects were sedentary, over-
weight, and dyslipidemic. Potential relationships were assessed
between change in capillary density with both change in V̇O2 at
peak and at anaerobic threshold with exercise training. All vari-
ables and relationships were assessed for sex-specific effects.
Change in peak V̇O2 was not related to change in capillary density
after exercise training in either sex. Men had a positive correlation
between change in V̇O2 at anaerobic threshold and change in
capillary density with exercise training (r � 0.635; P � 0.01),
whereas women had an inverse relationship (r � �0.636; P �
0.05) between the change in these variables. These findings suggest
that, although enhanced capillary density is associated with train-
ing-induced improvements in submaximal performance in men,
this relationship is different in women.

skeletal muscle; exercise; studies of a targeted risk reduction inter-
vention through defined exercise; peak oxygen consumption

IT IS WIDELY ACCEPTED THAT the oxidative capacity of skeletal
muscle can be increased with aerobic exercise training.
Reported changes include increases in oxidative enzyme
activity, mitochondrial volume and number, and transitions
in muscle fiber type (1, 8, 12, 15, 18). Capillary supply is
different between trained and untrained subjects (19) and
has the adaptive ability to increase after moderate to vigor-
ous aerobic training (2, 20, 24). A larger capillary network
provides for a longer mean transit time and greater surface

area for optimal exchange of gases, substrates, and metab-
olites (32).

Although many studies show an increase in both skeletal
muscle capillary supply and peak oxygen consumption (V̇O2)
after exercise training, very few of these studies have sug-
gested a significant relationship between capillarity and peak
V̇O2 (17, 31). This may be explained by the body of work that
suggests the central pump and lungs, rather than skeletal
muscle, limit maximal V̇O2 (14, 30, 33). Thus, although
central hemodynamics are more responsible for determining
maximal measurements (peak V̇O2), it has been suggested
that peripheral metabolic indexes may relate more to sub-
maximal measures (anaerobic threshold) (3, 4, 13, 21).

Numerous studies have reported on the physiological differ-
ences among genders. However, there is sparse literature com-
paring skeletal muscle characteristics of men and women, and
fewer studies examining the potential for differential exercise
training effects on skeletal muscle among men and women.
Therefore, the purpose of this study was twofold: 1) to deter-
mine whether change in skeletal muscle capillary density is
more related to change in V̇O2 at anaerobic threshold than peak
V̇O2 with exercise training and 2) to explore sex-specific changes
in capillary density and its relationship to improvements in mea-
sures of maximal and submaximal exercise capacity.

METHODS

Subject population. The inactive control group consisted of 21
subjects (9 men and 12 women), and the exercise training group
included 28 subjects (17 men and 11 women). These subjects were a
cohort from the studies of a targeted risk reduction intervention
through defined exercise (STRRIDE) trial (26). Subjects were ran-
domly assigned into groups. All subjects were overweight (body mass
index of 25–35 kg/m2), sedentary adults between 40 and 65 yr of age
with no known history of or clinical evidence for cardiovascular
disease, diabetes, or hypertension. All women were postmenopausal.
Inclusion criteria required an elevated LDL-cholesterol concentration
(�130 and �190 mg/dl) or a decreased HDL-cholesterol concentra-
tion (�40 mg/dl for men and �45 mg/dl for women). Subjects were
nonsmokers and were not taking any lipid-lowering medications.
Subjects were asked not to alter their diet and were excluded if they
gained or lost �2.5% of their body weight during the study period.
The research protocol was approved by all relevant institutional
review boards, and each subject provided written, informed consent
before participation.
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Exercise training. The exercise group was assigned to a program
calorically equivalent to �20 miles (32.0 km) of jogging per week at
65–80% of individual peak V̇O2. The specific exercise prescription
was to expend 23 kcal �kg body wt�1 �wk�1 (26). There was an initial
ramp period of 2–3 mo in which exercise duration and exercise
intensity were gradually increased until the appropriate exercise
prescription was obtained. The initial ramp was followed by an
additional 6 mo of training at the appropriate exercise prescription.
The control group did not participate in an exercise program but
completed all testing again at the end of a 6-mo inactive period.

Exercise testing. All subjects underwent a maximal cardiopulmo-
nary exercise test (CPET) with a 12-lead electrocardiogram and
expired gas analysis on a treadmill. These tests were performed twice
at baseline and once postintervention. The protocol consisted of 2-min
stages, increasing in workload by �1 metabolic equivalent per stage.
Expired gases were analyzed continuously using a Sensormedics 2900
unit (Yorba Linda, CA) or Parvo Medics unit (Sandy, UT). The same
metabolic cart was used for all tests for each subject. The last 40 s
were averaged to determine peak V̇O2.

Anaerobic threshold readings. Anaerobic threshold was deter-
mined using the V-slope method (5). Twenty-second averages of V̇O2

and V̇CO2 were obtained via the mixing chamber from the metabolic
cart. Three separate experienced readers were given, unidentified and
in random order, the 20-s averaged plots of V̇O2 vs. carbon dioxide
production for each completed CPET (pre- and postintervention) and
asked to mark the point of anaerobic threshold. The V̇O2 (l/min) at the
point of anaerobic threshold was identified and recorded. For a value
to be considered valid, two of three readers had to agree within a
variance of 5%. If two or all three readers were in agreement, the
values were averaged. If no two readers were within 5%, the V̇O2 at
anaerobic threshold was considered indeterminate, and the subject’s
data were not included in the analysis.

Muscle biopsies. Biopsy samples were obtained from the vastus
lateralis muscle using a modified Bergstrom needle technique (Berg-
strom). Biopsy sites were anesthetized with a 2% lidocaine solution,
and 0.5-cm incisions were made through the skin and facia lata. The
needle was consistently inserted to a depth of 40–60 mm. Samples
were then mounted in cross section in optimal cutting temperature
(OCT) compound (Miles Pharmaceutical, West Haven, CT) beds and
snap frozen at �80°C.

Histological analysis. The capillary density of each section was
determined in two ways: 1) the ratio of endothelial cells to muscle
fibers, calculated by dividing the total number of CD31-positive cells
by the total number of muscle fibers; and 2) the number of endothelial
cells per square millimeter, calculated by dividing the total number of
CD31-positive cells by the area (mm2) of tissue, which was measured
with a standard hemocytometer and NIH Image J software. A mini-
mum of 100 muscle fibers were counted per sample for both endo-
thelial cell-to-fiber ratio and capillary density per square millimeter.
Endothelial cells were identified in histological sections using immu-
nohistological techniques with an established endothelial cell-specific
monoclonal antibody in methods previously described (10).

Statistical analysis. Subjects without pre and post values for peak
V̇O2 (n � 0), anaerobic threshold (n � 6), and capillary density (n �
5) were not included in the analysis. Data were considered unusable
if exercise training compliance was below 74% (n � 4), peak RER for
any CPET was below 1.05 (n � 2), or the CPET was terminated due
to reasons other than volitional fatigue (i.e., orthopedic limitation).
The remaining subjects were included in the study analysis. Due to
baseline differences in peak V̇O2, capillary density, and anaerobic
threshold between men and women, separate analyses were performed
based on sex.

Independent t-tests were used to determine any demographic and
physiological differences between groups (control vs. exercise) and
between the sexes at baseline. Baseline to postintervention differences
for each variable were determined using paired t-tests for control
women, control men, exercise women, and exercise men. ANOVA
testing was used to test for baseline to postintervention differences
(relative percent change scores) between groups. In addition, a two-
way ANOVA using both sex and training group as factors was
conducted to evaluate whether men and women responded differently
to training. Pearson correlations were used to analyze the relationships
between the changes in capillary density and both anaerobic threshold
and peak V̇O2. All tabular means are presented as mean � SD. A P
value of �0.05 was considered significant for all tests.

RESULTS

Baseline. There were no significant differences between the
control and exercise groups at baseline. However, men had a
greater baseline peak V̇O2 and a higher V̇O2 at anaerobic
threshold than did women. Men also had a greater capillary-
to-fiber ratio than women. However, capillary density per
square millimeter was not significantly greater in men. Base-
line characteristics are shown in Table 1.

Effects of exercise training. The effects of exercise training
are presented in Table 2. Men and women in the control group
had no changes in peak V̇O2, capillary density, or anaerobic
threshold over the testing period. Exercise-trained men and
women significantly increased their peak V̇O2 with training,
and men improved more than women (P � 0.05). Exercise-
trained women had a significant increase in capillary density
(capillary-to-fiber ratio as well as capillary density per square
millimeter) with training, whereas the men did not. Although
the men trended toward having a greater improvement (not
significant difference), both men and women had a significant
absolute increase in V̇O2 at anaerobic threshold. However,
anaerobic threshold expressed as a percentage of peak V̇O2 was
unchanged from baseline (58.3 � 5.3 and 69.0 � 8.4%) to
posttraining (58.6 � 5.8 and 68.0 � 6.1%) for both men and
women, respectively. There were significant interaction effects
(sex � training group) for change in peak V̇O2, V̇O2 at anaer-

Table 1. Baseline characteristics divided by both group and sex

Control (n � 21) Exercise (n � 28) Men (n � 26) Women (n � 23)

Age, yr 52.2�6.6 52.1�6.6 51.0�7.8 53.5�4.6
Race, % Caucasian 76% 89% 92% 74%
BMI, kg/m2 29.9�3.9 30.1�3.2 30.5�3.5 29.4�3.4
Peak V̇O2, ml �kg�1 �min�1 27.2�5.6 28.4�5.4 31.4�4.4 23.9�3.4*
Peak V̇O2, l/min 2.3�0.7 2.6�0.7 3.0�0.5 1.8�0.2*
V̇O2 at AT, l/min 1.5�0.4 1.6�0.3 1.8�0.3 1.2�0.1*
Capillary density, endothelial cell-to-fiber ratio 1.5�0.3 1.6�0.4 1.6�0.4 1.4�0.3*
Capillary density, endothelial cells/mm2 307.4�63.5 348.3�92.5 347.9�95.5 309.8�60.9

Values are means � SD. V̇O2, oxygen consumption; BMI, body mass index; AT, anaerobic threshold. *Men were significantly different (P � 0.05) from
women.
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obic threshold, and capillary density (both capillary-to-fiber
ratio and endothelial cells per square millimeter) (P � 0.05).
There were no differences in exercise adherence (89 � 7.2 vs.
91 � 6.8%), frequency (3.8 � 0.5 vs. 4.0 � 0.5 average
days/wk), training intensity (74 � 4.9 vs. 72 � 5.2% of peak
V̇O2), or time (210 � 38.0 vs. 218 � 28.2 min/wk) between
men and women, respectively.

Relationship between capillary density and peak V̇O2 and
anaerobic threshold. No relationships were observed between
peak V̇O2 and capillary density at baseline or between change
in peak V̇O2 and capillary density in response to training for
men or women. Men displayed a significant positive relation-
ship between percent change in V̇O2 at anaerobic threshold and
percent change in capillary density with exercise training (r �
0.635, P � 0.01 for capillary-to-fiber ratio; and r � 0.62, P �
0.01 for endothelial cells per square millimeter), whereas
women displayed a significant inverse relationship (r �
�0.636, P � 0.05 for capillary-to-fiber ratio; and r � �0.64,
P � 0.05 for endothelial cells per square millimeter). Although
the relationship between the exercise-induced change in cap-
illary density and V̇O2 at anaerobic threshold was negative for
women, the changes were both positive. These relationships
are illustrated in Fig. 1.

DISCUSSION

There has been a long-standing debate concerning whether
central hemodynamics or oxidative properties of skeletal mus-
cle play a major role in limiting peak V̇O2 (30, 39). Our
findings confirm that, over a period of exercise training, cap-
illary density is not related to peak V̇O2 but rather is related to
change in a measure of submaximal performance, anaerobic
threshold. Examination of gender-specific relationships be-
tween capillarity and anaerobic threshold with training indi-
cates that women may respond differently than men. This
finding suggests that, although capillary density may be an
integral player in the response of anaerobic threshold in men,
something other than capillary density likely contributes to
training-induced improvements in anaerobic threshold in
women.

To the best of our knowledge, no one has reported on the
relationship between capillary density and anaerobic threshold
with or without training. However, limited literature does link
anaerobic threshold to other measures of skeletal muscle oxi-
dative capacity. Several investigators have observed that skel-
etal muscle oxidative enzymes correlate with anaerobic thresh-
old (3, 16, 29). The percentage of slow-twitch muscle fibers,
which are high in mitochondrial enzyme activity, has also been
positively related to anaerobic threshold (4, 21). Such data
suggest that the accumulation of lactate may be dependent on
the oxidative machinery of skeletal muscle. This research also
implies that muscle metabolic profile is more closely connected
to measurements of submaximal endurance than to maximal
aerobic power. Although many have come to this conclusion
(3, 4, 14), these findings have been based on research involving
primarily or exclusively men. Consequently, less is known
about these relationships in women and how they may respond
to exercise training. Although our data examining muscle
capillarity endorse the previous theory that metabolic markers
of skeletal muscle are related to anaerobic threshold in men, weT
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add the novel finding that this relationship is opposite in
women (Fig. 1).

Men and women tend to increase peak V̇O2 in a similar
fashion in response to exercise training (11, 25). It has been
suggested, however, that the mechanism responsible for the
increase in peak V̇O2 may differ between men and women.
Spina et al. (34) reported that, in men, two-thirds of the
increase in peak V̇O2 after exercise training appears to be
accounted for by improved stroke volume and one-third via
arteriovenous O2 differences. In contrast, women rely on in-
creases in differences to improve peak V̇O2 (34). Coggan et al.
(8) have also reported that the improved aerobic capacity in
older women with exercise training is mediated entirely by
skeletal muscle adaptations. Although in our study we cannot
report on the central cardiovascular contribution, if any, to the
improvements observed in peak V̇O2, our data do not demon-
strate a positive relationship between skeletal muscle capillary
density and peak or submaximal functional capacity in women,
as may have been expected from these previously quoted
studies. It is possible that alternate peripheral measures of
oxygen extraction and utilization are responsible for these prior
findings.

As previously reported (7, 8), we observed baseline capillary
density to be lower in women than in men (Table 1). Although
this might predict that the skeletal muscle of untrained women
is less oxidative than men, fiber typing and substrate utilization
research has consistently proven otherwise. Consistent with
this research, we observed that women reach anaerobic thresh-
old at a higher percentage of peak V̇O2 than did men (58.6 vs.
68.0%; P � 0.05). As noted, the adaptive response of capillary
density to exercise training appears to be different between
men and women. Even though men increased their peak V̇O2

and tended to increase their anaerobic threshold more than
women in this study, women increased their capillary den-
sity fourfold compared with men with training (31.2 vs.
7.7%). In a slightly older population, using a similar exer-
cise stimulus, Coggan et al. (8) also showed that women
increased their capillary density (expressed per fiber) with
training more than men, but the difference between the
sexes was not as great (38 vs. 21%). The less robust
response in men compared with that of Coggan et al. and some
others may be due to differences in staining methodology, the
muscle bed sampled relative to the exercise stimulus, or the mode
of exercise training (2, 24). Taken together, these findings

Fig. 1. The relationship of the percent change in capillary density (endothelial cells/mm2) and the percent change in functional measures with exercise training.
Men had a significant positive correlation between the percent change in oxygen consumption (V̇O2) at anaerobic threshold and the percent change in capillary
density with exercise training (r � 0.62; P � 0.01), whereas women had a significant inverse relationship (r � �0.64; P � 0.05). The relationship of the percent
change in capillary density (endothelial cells/mm2) and the percent change in peak V̇O2 with exercise training was not significant for men or women.
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support that the capillarity of skeletal muscle in women is more
sensitive to change with exercise training than is that of men.
However, the functional significance of these changes remains
unclear.

Despite a profound increase in capillarity with exercise
training, women, unlike men, do not appear to depend on this
adaptation for the improvement in anaerobic threshold. Quite
interestingly, the relationship between the changes in these two
variables is negative in women. That is, those with the largest
increase in capillarity with exercise training tend to have the
smallest increase in anaerobic threshold. Although the mech-
anism for this response is unknown, there are many potential
areas worthy of investigation. It has been consistently demon-
strated that women oxidize proportionately more lipid and less
carbohydrate during endurance exercise than men (6, 36, 37).
Although controversial, several studies have observed that
women have an enhanced use of intramyocellular lipid during
endurance exercise (27, 28, 35). Although studies in men have
shown that a dense capillary network is critical for the uptake
of lipids by the skeletal muscle (23, 32), it is possible that, with
training, women rely more on an enhanced supply of intramus-
cular lipid and less on their capillary network to oxidize fat
during submaximal exercise. This might provide a potential
explanation for our finding that larger improvements in
anaerobic threshold correspond with smaller increases in
capillary density in women with endurance training.

Our findings contribute to the current literature regarding the
impact of skeletal muscle capillarity on peak and submaximal
exercise performance. These data support the theory that skel-
etal muscle capillary density is not integral to changes in peak
V̇O2 with training. However, skeletal muscle capillary density
is significantly related to changes in anaerobic threshold with
endurance training. We also observed that, in women, a pre-
viously understudied population, this relationship is opposite
from that of men. This finding is preliminary and requires
further study and confirmation in a larger group of women.
Although the precise mechanism remains unclear, the sex-
specific relationship between capillary density and anaerobic
threshold could have important influences on innovative ap-
proaches to exercise training. Future studies should be powered
to further explore these differences.
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