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Abstract

In sequential hermaphrodites, intersexuality occurs naturally, usually as a transition state during sexual re-differentiation
processes. In crustaceans, male sexual differentiation is controlled by the male-specific androgenic gland (AG). An AG-
specific insulin-like gene, previously identified in the red-claw crayfish Cherax quadricarinatus (designated Cq-IAG), was
found in this study to be the prominent transcript in an AG cDNA subtractive library. In C. quadricarinatus, sexual plasticity is
exhibited by intersex individuals in the form of an active male reproductive system and male secondary sex characters,
along with a constantly arrested ovary. This intersexuality was exploited to follow changes caused by single gene silencing,
accomplished via dsRNA injection. Cq-IAG silencing induced dramatic sex-related alterations, including male feature
feminization, a reduction in sperm production, extensive testicular degeneration, expression of the vitellogenin gene, and
accumulation of yolk proteins in the developing oocytes. Upon silencing of the gene, AG cells hypertrophied, possibly to
compensate for low hormone levels, as reflected in the poor production of the insulin-like hormone (and revealed by
immunohistochemistry). These results demonstrate both the functionality of Cq-IAG as an androgenic hormone-encoding
gene and the dependence of male gonad viability on the Cq-IAG product. This study is the first to provide evidence that
silencing an insulin-like gene in intersex C. quadricarinatus feminizes male-related phenotypes. These findings, moreover,
contribute to the understanding of the regulation of sexual shifts, whether naturally occurring in sequential hermaphrodites
or abnormally induced by endocrine disruptors found in the environment, and offer insight into an unusual gender-related
link to the evolution of insulins.
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Introduction

Understanding sexual shifts and differentiation in both verte-

brates and invertebrates is of major interest, particularly given our

changing environment. In vertebrates, such as fish, the regulation

of such processes can be attributed not only to genetics but also to

the effects of hormones and/or environmental factors [1,2]. In

invertebrates, too, diverse factors are involved in the regulation of

sexual differentiation. For example, in arthropods, such as

Drosophila melanogaster, gender-biased alternative splicing constitutes

an important component of sexual differentiation [3]. Although

crustaceans are also considered to be Arthropoda and even

believed to be potential ancestors of insects [4], these ancient

marine organisms demonstrate regulation of sexual differentiation

that is significantly different from that of insects. In Crustacea, the

process is governed by the androgenic gland (AG) [5], an

endocrine gland restricted to males that secretes male sex

hormone(s) [6]. It is believed that female sexual development

and secondary characteristics are exhibited only in the absence of

the AG, thereby establishing femaleness as a matter of default,

negatively regulated by the AG [7]. In crustaceans, AG

involvement in inducing masculinity has been thoroughly

investigated in several species [8,9]. In the Australian red-claw

crayfish, Cherax quadricarinatus, the implantation of AGs into

immature females led to the replacement of female characteristics

with male traits, as well as to the cessation of vitellogenesis [10–

12].

The vast array of observed AG-associated effects has been

attributed to an AG-borne hormone. Three orthologs of this

putative AG hormone have been isolated from three species of

isopods [13,14]. Recently, two uniquely AG-expressed genes were

revealed using AG cDNA libraries prepared from the decapods, C.

quadricarinatus (Cq-IAG) and the freshwater prawn, Macrobrachium

rosenbergii (Mr-IAG) [15,16]. Structurally, both sequences resemble

genes of the insulin-like superfamily [15]. Although evidence

supporting a role for insulin in sexual differentiation has been

previously documented [17], the unique instance of a gender-

specific insulin-like gene has thus far been reported exclusively in
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crustaceans. Thus, it is possible that insulins may have evolved in

the context of regulation of sexual differentiation and not

exclusively on the background of metabolism and growth.

AG hormone ineffectiveness, whether induced by AG ablation

or resulting naturally from insufficient levels of secreted hor-

mone(s), can account for hermaphroditism, as was suggested

previously to explain part of a sexual shift in a protandric

amphipod [18]. Generally, intersexuality in sequential hermaph-

rodites involves a short transition state in which an individual

exhibits sex characteristics of both genders. Such sexual interme-

diacy may also be abnormally induced by chemicals, collectively

termed endocrine disruptors. In contrast to the above-described

transient intersexuality, C. quadricarinatus, a gonochoristic species

demonstrating distinct males and females, experiences non-

transient intersexuality [19]. This phenomenon has been found

in both wild and cultured populations at frequencies ranging from

2–14% [20].The intersex individuals are genetic females but

functional males [21], bearing an active male reproductive system

and male secondary sex characters, along with a constantly

arrested ovary [22], possibly due to the presence of the AG. It has

been shown that upon AG ablation, intersex C. quadricarinatus

undergo a dramatic morphological and physiological sex shift in

which male reproductive organs regress, accompanied by ovarian

activation and the onset of vitellogenesis [11,23,24]. Thus,

monitoring vitellogenin, an egg yolk precursor protein, in this

intersex species could serve as an accurate physiological indicator

of sexual shifts [12,24].

Although sexual shifts have been documented in invertebrates

[25–28], the physiological mechanisms controlling these events are

not fully understood. In these complicated processes, the production

of gametes according to the primary gender is stopped, while the

ability to produce germ cells of the opposite sex is acquired. Hence,

it is probable that in such sexual shifts, the cell population of the

gonad is replaced through repopulation with ‘new’ gonia, following

the programmed degradation of the ‘old’ gonia via apoptosis.

Indeed, apoptosis is responsible for the differentiation of the

primordial gonad en route to the testis in zebrafish [29], and several

anti-apoptotic factors have already been identified as being crucial

for the survival of male rat germ cells [30].

The discovery of the first decapod AG-specific gene in C.

quadricarinatus, Cq-IAG [15], provided a new route for studying

crayfish sexuality. Still, the functionality and presumed involve-

ment of Cq-IAG in sexual differentiation has yet to be determined.

Gene silencing using RNAi offers one strategy to address such

questions. This approach has been successful in several crusta-

ceans [16,31]. In the current study, we employ a functional

genomics assay that relies on dsRNA silencing of Cq-IAG in an

intersex model to demonstrate an inducible sex shift. Specifically,

male external sex characters were transformed to generate animals

that exhibited female maternal care-related traits, along with

testicular degeneration and AG hypertrophy (hAG). In parallel,

ovarian activation was observed as the result of the onset of

vitellogenesis. These findings confirm the pivotal role of Cq-IAG in

the regulation of sexual differentiation in C. quadricarinatus.

Significantly, elucidation of the role of this gene in C. quadricarinatus

might contribute to understanding of the evolution of the control

of processes regulating sexual shifts in protandrous crustaceans

and may provide unique insight into the gender-related evolution

of members of the insulin superfamily.

Results

The isolation of Cq-IAG, accomplished via the construction of

an AG cDNA library, has been described previously [15]. In the

present study, a further screening was conducted. A colony

hybridization, which was used to eliminate Cq-IAG ESTs from

subsequent sequencing, showed that 115 out of 508 colonies were

positive for Cq-IAG. This result, showing that Cq-IAG comprises

approximately 25% of the ESTs, is with accordance with the

previous screening of the library. Out of the non-Cq-IAG ESTs,

177 were randomly picked and sequenced. However, no new

genes were identified and thus no further screening was

conducted.

A prerequisite for a long in-vivo assay demonstrating the

functionality of Cq-IAG was to evaluate the effectiveness of gene

knock-down via RNAi. For this purpose, 3 experimental groups

were injected with either double stranded RNA (dsRNA) of the

targeted gene, exogenous-based dsRNA or carrier only [doubly

distilled water (DDW)]. The efficiency of injected Cq-IAG dsRNA

in reducing Cq-IAG expression was revealed by real-time RT-PCR

(Fig. 1). Specifically, the relative quantification (RQ) values noted

in the experimental group injected with dsCq-IAG (0.24*1056

0.16*105) were at least 30-fold lower (Kruskal-Wallis statist: H

(df = 2, N = 18) = 7.450, p = 0.0241 followed by multiple pair-wise

comparison, p,0.05) than those of the control group, which was

Figure 1. Levels of Cq-IAG transcripts following in vivo dsRNA
injections in male crayfish. Relative Cq-IAG transcript levels were
quantified in crayfish males by real-time RT-PCR following short-term
silencing. Three different groups were injected with either dsCq-IAG
(n = 6), dsMr-IAG (n = 6) or DDW (n = 6). The groups were found to be
statistically different (Kruskal-Wallis statist: H (df = 2, N = 18) = 7.450,
p = 0.0241). Followed by a multiple pair-wise comparison dsCq-IAG
group was found significantly different from the DDW (P = 0.0386) and
showed a difference that turned out to be non-significant (P = 0.0798)
from the dsMr-IAG group. Different letters represent significant
difference and error bars represent SEM.
doi:10.1371/journal.pone.0015281.g001

Single Gene Silencing Induces Sex Shift
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injected with DDW (8*10562*105). The exogenous Mr-IAG

dsRNA (4*10561*105) showed a difference that turned out to be

non-significant (p = 0.079) from that of the dsCq-IAG group,

although a difference of at least one order of magnitude was

observed in the raw data. This result showed that this silencing of

Cq-IAG expression was specifically induced by Cq-IAG dsRNA

injection, in a sequence-dependent manner.

Once the silencing effect of Cq-IAG dsRNA injections had been

established, a long-term silencing experiment addressing Cq-IAG

functionality was performed, with two experimental young

intersex groups- dsRNA-injected and DDW-injected. Silencing

of the gene in young intersex animals induced the appearance of

maternal care-related secondary sex characteristics. Comparing

control intersex crayfish (Fig. 2A) with dsRNA-injected animals

revealed increases in the width and length of the endopodite (i.e.,

the internal branch of the swimming leg) [22] (Fig. 2B). The

calculated endopod width index (EWI) of the dsRNA-injected

group (1.4460.130) was similar to that of characterized females,

while DDW-injected intersex animals showed a significantly lower

EWI (1.0160.04, Mann Whitney U test, Z = 2.551, p,0.05),

typical of males. Moreover, the male-typical plumose setae, which

naturally line the inner side of the endopod of masculine intersex

animals (Fig 2D) were clearly transformed in the dsRNA-injected

group, which displayed the maternal-care ovigerous simple setae

(Fig. 2E) normally exhibited by mature vitellogenic females

(Fig. 2F).

After it was shown that the pleopods of Cq-IAG dsRNA-injected

intersex animals presented feminized characteristics, the ovaries

were dissected and compared for size and coloration. The ovaries

obtained from Cq-IAG dsRNA-injected intersex animals were

larger than those of control intersex individuals (Fig. 3). Oocytes in

the ovaries of Cq-IAG dsRNA-injected intersex animals were

yellowish due to the accumulation of yolk (Fig. 3A), as normally

would be observed in mature females (Fig. 3B). These oocytes were

significantly larger (8996139 mm, Mann Whitney U test,

Z = 2.082, p,0.05) than the whitish oocytes of control animals

(Fig. 3C), with an average diameter of 305677 mm.

Examination of histological sections of the male reproductive

system from a dsRNA-injected intersex animal showed an empty

sperm duct (Fig. 4A) and degenerating testicular lobules (Fig. 4B).

In these animals, there were no lobules at early spermatogenesis

stages; the lobules that were present showed arrested spermato-

genesis, with only few spermatozoa. In the same animals, these

observations were made alongside a mature ovary (Fig. 4C)

containing large oocytes, which contained yolk granules (Fig. 4C,

D). In contrast, control intersex showed a sperm duct filled with a

spermatophore (Fig. 4E) and large active testicular lobules at

different stages of spermatogenesis, with highly abundant sperma-

tozoa (Fig. 4F). The ovaries of the control specimens were arrested

and contained small primary vitellogenic oocytes (Fig. 4G, H).

Histological examination of the morphology of the AG in the

Cq-IAG dsRNA-injected group showed arrest of the male

reproductive system and activation of female sexual morphology

(Fig. 4), accompanied by hypertrophy of AG cells, with

significantly larger nuclei (7.5860.16 mm, Mann Whitney U test,

Z = 4.438, p,0.001) (Fig. 5D), than in the control group

(5.6760.22 mm) (Fig. 5C). The AG cells in the treatment group

also appeared to be lager in their total size. AG hypertrophy in the

dsRNA-injected group differed markedly from that induced by

ablation of the X-organ sinus-gland complex in the eyestalk

[10,32], in which massive production of the Cq-IAG hormone

takes place within the AG cells (Fig. 6B, C), possibly due to the

Figure 2. Effects of dsCq-IAG injections on maternal care-related characteristics in intersex crayfish. Pleopods were collected from
intersex animals injected with DDW (A) or dsCq-IAG (B) and from mature females (C). Length:width ratios between endopods and exopods of DDW-
injected intersex were identical (A), while those of dsRNA-injected animals (B) showed female-like biometrics. Whereas the inner side of the endopod
of DDW-injected intersex bore only plumose setae (D), as in males, the inner side of the endopod of dsRNA-injected animals was lined with ovigerous
simple setae (E) as is the case of mature females (F). Bottom row (bar = 100 mm) represents an enlargement of the areas defined in squares in the top
row (bar = 500 mm).
doi:10.1371/journal.pone.0015281.g002

Single Gene Silencing Induces Sex Shift
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Figure 3. Comparison of whole ovaries obtained from dsRNA and DDW-injected intersex crayfish. The whole ovary from a dsRNA-
injected intersex animal (A) contained yellowish oocytes, as in a mature female ovary (B), with an average diameter of approximately 900 mm. The
ovary of a DDW-injected intersex animal (C) contained whitish oocytes, approximately 300 mm in diameter (bar = 2 mm).
doi:10.1371/journal.pone.0015281.g003

Figure 4. Effects of dsCq-IAG injection on the reproductive system of intersex individuals. Hematoxylin- and eosin-stained cross-sections
used for structure description. Components of the reproductive system of Cq-IAG dsRNA-injected intersex animals showed an empty sperm duct
(black arrowhead, A) and inactive testicular lobules (black arrowheads, B), along with an activated ovary containing enlarged yolk-accumulating
oocytes (C). A filled sperm duct (E), spermatogenic testis (F) and an arrested ovary (G) were observed in the control intersex animal. Enlarged areas
within the ovaries of both groups are shown in the right hand side (D and H). Bar = 500 mm in ovarian sections, 50 mm in sperm duct, testis and ovary,
high magnification sections.
doi:10.1371/journal.pone.0015281.g004

Single Gene Silencing Induces Sex Shift
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removal of a specific inhibiting agent. On the contrary, AG cells of

the hypertrophied Cq-IAG-dsRNA-injected intersex were charac-

terized by low levels of the Cq-IAG hormone (Fig. 6E, F), a

possible consequence of the RNAi application.

During vitellogenesis in mature female C. quadricarinatus, the

vitellogenin (Cq-Vg) gene is transcribed in the hepatopancreas, and its

translated product is mobilized through the hemolymph to the

ovaries, where it accumulates. Cq-IAG dsRNA injection induced

both Cq-Vg transcription and expression of its encoded yolk protein

(Fig. 7). Cq-Vg expression was demonstrated by RT-PCR (Fig. 7A)

as a single band when amplified cDNA from the hepatopancreas

of dsRNA-injected intersex individuals served as the template.

Hepatopancreatic cDNA samples of vitellogenic females and

mature males served as positive and negative controls, respectively.

The presence of cDNA was ensured by amplifying the C.

quadricarinatus 18S rRNA (Cq-18S) housekeeping gene, which served

as control for RNA extraction and the RT reaction. The 106-kDa

vitellogenin polypeptide, indicative of secondary vitellogenesis, was

detected and quantified in the hemolymph by using ELISA

(Fig. 7B), showing similar levels in males (761 mg/ml) and control

intersex animals (961 mg/ml) (Fig. 7B). In contrast, hemolymph

samples obtained from dsRNA-injected intersex animals showed a

significant increase in the level of yolk proteins (886065629 mg/

ml, Kruskal-Wallis statist: H (df = 3, N = 22) = 16.137, p = 0.001

followed by multiple pair-wise comparison, p,0.05) reaching a

concentration even higher than that seen in vitellogenic females

(13156308 mg/ml) (Fig. 7B).

Discussion

While previous studies have demonstrated the influence of the

AG on a wide array of characteristics related to sexual

development and growth of C. quadricarinatus [10,12], only recently

a specific AG factor accounting for the male phenotype in this

species has been suggested with the identification of Cq-IAG, the

first insulin-like AG specific gene to be revealed in decapods [15].

Screening of an AG-derived cDNA library revealed that Cq-IAG

comprises about 26% of the ESTs in the library, possibly hinting at

the importance of this gene in AG function.

Cq-IAG belongs to the insulin-like superfamily of genes, which

are generally assigned to processes of metabolism and growth.

However, some insulin growth factors are also linked to

differentiation and apoptosis [33]. The rare case of Cq-IAG and

several other AG-specific insulin-like genes, which are expressed in

a gender-specific manner restricted to males, has been thus far

recorded exclusively in Crustacea [13–16]. Sequence conservation

among crustacean AG-specific insulin-like peptides is relatively low

(approximately 16–29%), considering their putative central role as

male sex hormones. However, their predicted structures are quite

similar and conserved, comprising heterodimeric peptide chains,

resulting from the proteolysis of the pro-hormone. Moreover, the

various versions of the peptide share the exact same positions of

cysteine residues, which govern folding via the formation of

disulfide bonds. Our results regarding the induction of femaleness,

combined with the demasculinization of male prawn M. rosenbergii

Figure 5. Effects of dsCq-IAG injection on the androgenic gland. Sections from the base of the fifth pereiopod of DDW- (A) and Cq-IAG dsRNA-
injected (B) intersex animals were hematoxylin- and eosin-stained. High magnification of the androgenic gland (AG) of control intersex animal (C)
apparently shows smaller cells than those observed in the silenced intersex animals (D), where a hypertrophied gland comprising of apparently larger
cells with highly significant larger nuclei (Mann Whitney U test, Z = 4.438, P,0.001). Top row, bar = 500 mm; Bottom row, bar = 50 mm. SD = sperm
duct.
doi:10.1371/journal.pone.0015281.g005

Single Gene Silencing Induces Sex Shift
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[16], both achieved by the silencing of AG-specific insulin-like

genes, indicate that insulin-like genes have evolved not only in the

context of metabolism and growth but also in the context of male

sex differentiation. However, in substantial difference from the

prawn, the present study, addressing an intersex crayfish, suggests

that in addition to the induction of maleness, the AG-specific

insulin-like factor serves as a gender switcher that controls the

maleness/femaleness balance in an intersex organism. This

concept gives rise to a hypothesis linking AG-specific insulin-like

factors to the regulation of sexual shifts in crustacean sequential

hermaphrodites. Although insulin-like genes have been document-

ed in the context of insect sexuality [34], proliferation and growth

[35,36], no evidence of a gender-specific insulin-like gene has

previously been recorded in this taxonomic group. The fact that

such a gender-specific insulin-like gene, playing a pivotal role in

crustacean sexual differentiation, does not exist in insects is

somewhat puzzling, since crustaceans are considered to be

evolutionarily older than insects [4].

An important observation of the present study is the extensive

AG hypertrophy seen following Cq-IAG silencing, a procedure that

led to low transcription and poor production of the proteinaceous

hormone encoded by the Cq-IAG gene. It is thus suggested that the

AG-specific insulin-like factor Cq-IAG may, therefore, regulate its

own production and secretion by means of feedback inhibition.

Thus, the hybridization of Cq-IAG mRNA with the exogenous Cq-

IAG dsRNA, which led to the degradation of the corresponding

mRNA, permitted only basal levels of protein production and

possibly induced compensation, leading to hypertrophy. We

cannot rule out the possibility that higher hierarchy levels of

regulation (e.g. paracrine and/or endocrine) could possibly also

regulate AG activity, thereby inducing the observed hypertrophy,

since hypertrophy of a gland in compensation for low levels of

secreted product is well documented in cases of endocrine

deficiencies [37].

This study rests on the sexual plastic model of intersexuality as the

basis for elucidating the role of the AG-specific insulin-like gene in

C. quadricarinatus and its involvement in sexual regulation. Cq-IAG

silencing in the intersex crayfish clearly revealed the involvement of

this gene in maintaining maleness, as reflected in the empty vas

deference and arrest of spermatogenesis that resulted from knock-

down of Cq-IAG levels. Moreover, the extensive degeneration of the

testicular lobules observed indicates that Cq-IAG is essential for

male germ cell survival. Such involvement of an insulin-like peptide

in testicular germ cell survival has also been documented in rats

[30]. Moreover, the effect of Cq-IAG in extending the viability of

male germ cells is similar to that seen with the mammalian male sex

hormone, testosterone [38], under similar circumstances. Such

resemblance implies that Cq-IAG acts in an androgenic way, being

required for male gonad differentiation and ongoing spermatogen-

esis. Importantly, in silenced intersex C. quadricarinatus individuals,

male regression occurred simultaneously with ovarian activation

and the onset of vitellogenesis, suggesting that a prerequisite for the

activation of femaleness is a lack of sufficient levels of the AG factor,

which in turn leads to apoptosis and degeneration of the male gonad

and sexual shift. The results of this study, which are in accordance

with previous ones [16] and which demonstrate the effect of an

Figure 6. Presence of Cq-IAG in hAGs from endocrinologically-induced versus dsCq-IAG-injected crayfish. Immunohistochemistry was
performed on sections from the base of the fifth pereiopod of induced (top) and Cq-IAG dsRNA-injected (bottom) intersex animals. Large quantities of
Cq-IAG, demonstrated by the green fluorescence of bound goat anti-rabbit FITC conjugated antibodies, were observed in the cytoplasm of induced
AG cells (B, C). Reduced levels of the Cq-IAG hormone were observed in the cytoplasm of AG cells of dsCq-IAG -injected intersex animals (F). DAPI
counterstain was used to identify nuclei in both induced (A, C) and silenced (D, F) intersex animals. Bar = 20 mm.
doi:10.1371/journal.pone.0015281.g006

Single Gene Silencing Induces Sex Shift
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insulin-like gene on male sexuality, are based on loss of function

experimentation. Moreover, in a gain of function study using a

recombinant protein based on the orthologous AG-specific insulin-

like gene in females of the isopod A. vulgare [39], the induction of

masculinity was documented, thus suggesting a direct role for this

AG family of genes in governing masculinity. Such a direct effect of

an AG-specific insulin-like peptide using recombinant proteins has

not been shown in decapods as yet. Due to the lack of such direct

evidence, secondary/indirect regulation of masculine differentiation

by an AG-specific insulin-like peptide cannot be ruled out.

The sexual shift induced in this study upon manipulation of a single

AG gene may provide, for the first time, insight into the mechanisms

underlying sexual shifts that occur naturally in many sequential

hermaphrodites in the animal kingdom [40], particularly in protandric

hermaphrodite crustaceans. While the endocrine mechanism under-

lying this phenomenon is not yet known, our results suggest that in

protandric hermaphrodite crustaceans, a single insulin-like gene is

involved in the regulation of the sexual shift. Our findings also allow us

to posit that such an insulin-like gene sustains maleness in early life,

followed by intrinsic silencing later on, which triggers sex inversion

towards femaleness via an intersexual transition state.

The building of a comprehensive picture of the processes of

natural sexual shift opens the window for study of abnormal

processes of sexuality. Such cases can be induced by man-made

environmental pollutants that act as endocrine disruptors [41]. How

these substances induce sex abnormalities remains to be elucidated.

Thus, addressing mechanisms in naturally occurring sequential

hermaphroditism, such as the AG and the secreted insulin-like

peptide studied here, could serve to elucidate pathways inducing sex

abnormalities in crustaceans, with possible extrapolation to other

arthropods. Such insight carries significant applied implications,

such as in the possibility of creating non-breeding, all-male

crustacean populations [42] via AG-specific insulin-like gene

manipulation. Given that males grow larger than females in some

commercialized species, the implications of this possibility are clear.

Materials and Methods

AG cDNA library screening
The previously constructed C. quadricarinatus AG cDNA SSH

library [15] was further screened. To avoid Cq-IAG-repeated

sequencing, four plates containing 127 colonies each (each cloned

Figure 7. Levels of vitellogenin and expression of its encoding gene following Cq-IAG silencing in intersex crayfish. (A) Cq-Vg
transcription in the hepatopancreas was demonstrated by RT-PCR. A single band was observed in the dsCq-IAG-injected intersex animal sample but
not in the control intersex sample. Samples of a vitellogenic female and a male served as controls. (B) Detection of the vitellogenin protein in the
hemolymph was conducted by ELISA using anti-Cq-Vg antibodies. Hemolymph samples were collected from DDW-injected intersex (INX) animals
(n = 7), dsCq-IAG-injected INX (n = 3), vitellogenic females (n = 6) and mature males (n = 6). Egg high density lipoprotein (HDL) equivalent levels in
dsRNA-injected INX were similar to those of vitellogenic females (Kruskal-Wallis statist: H (df = 3, N = 22) = 16.137, p = 0.001 followed by multiple pair-
wise comparison). Negligible levels of egg HDL equivalents were detected in control intersex and mature males. Different letters represent significant
differences (p,0.056SEM).
doi:10.1371/journal.pone.0015281.g007

Single Gene Silencing Induces Sex Shift
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with a single EST from the described library) were screened, using

a colony hybridization method [43] with a radio-labeled probe.

Briefly, a Cq-IAG cDNA probe was synthesized using a random

priming labeling mix (Biological Industries). The probe was

hydrolyzed to reduce its length to ,200 b, as described in the

DIG Application Manual (Roche Applied Science). The hydro-

lyzed probe mix was then hybridized to clones that had been fixed

to nitrocellulose membranes. The membranes were hybridized

over night, washed, sealed and exposed to BioMax MS Kodak film

as described [43]. The films were then developed according to

supplier’s instructions. Subsequently, 177 colonies that were

considered as non-Cq-IAG were picked to liquid LB, grown over

night (Qiagen DirectPrep 96 Miniprep) and sequenced as

previously described [15].

Animals
Intersex C. quadricarinatus animals (each weighing 1–5 g and

having a single male genital opening and two female genital

openings [21,22]) were grown and maintained in circular cages

10 cm in diameter, floating in 40640650 cm3 aquaria situated at

Ben-Gurion University of the Negev. Young males (15–17 g),

mature males and females (40–70 g) of that species were also

maintained in aquaria of the same size. The mature males had

been subjected to surgical removal of the X-organ sinus-gland, an

endocrine manipulation causing hypertrophy of the AG, as

previously described [10,32]. The water temperature was kept at

28uC62, and water quality was assured by circulating the system’s

total volume through a biofilter. A photoperiod of 14L: 10D was

applied. Food, comprising shrimp pellets (Rangen Inc., 30%

protein), was supplied ad libitum three times a week. Animals’

weights were measured using analytical scales with a 60.01 g

error.

dsRNA preparation
The pGEM-T easy vector (Promega Corp., Madison, WI)

including the Cq-IAG open reading frame (ORF) (accession

no. DQ851163) was digested alternatively by NdeI and XbaI

restriction enzymes (New England Biolabs Inc. Ipswich, MA),

thereby yielding linear templates for sense and antisense Cq-IAG,

respectively. Upon digestion, a small aliquot of each template was

examined for digestion efficiency on a 1.3% agarose gel; linearized

vectors were purified by the standard phenol:chloroform protocol

and ethanol precipitation. Single-stranded RNAs were synthesized

based on the above-mentioned linearized plasmids with a

MEGAscript T7 kit (Ambion, Inc., Austin, TX) according to the

manufacturer’s instructions. Sense and antisense RNA were

purified and hybridized as described previously [44]. Control

dsRNA for a short-time in-vivo assay was synthesized based on the

ORF of Mr-IAG, as previously described [16]. Although Mr-IAG

encodes an orthologous peptide, its nucleotide sequence shows no

significant similarity to Cq-IAG (BLAST algorithm-‘‘align two

sequences’’); thus, it was chosen as a negative dsRNA control.

In-vivo injection of dsRNA
For a preliminary short-term silencing experiment, young male

crayfish (15–17 g) were divided into three treatment groups, as

follows: Cq-IAG dsRNA-injected (n = 6), Mr-IAG dsRNA-injected

(n = 6) and DDW-injected (n = 6). The dsRNA-injected animals

were injected with 2 mg of dsRNA/g animal into the sinus of the

fifth walking leg [44], and the DDW-injected group received an

equivalent volume of DDW. Injections were given once a day on

two consecutive days followed on the third day by dissection of the

animals, to isolate the AGs.

For the long-term silencing experiment, a group of 15 intersex

individuals (each weighing 1–5 g) were selected and assigned into

two groups: dsCq-IAG-injected (n = 8) and DDW-injected (n = 7).

The same procedure as the preliminary experiment was applied

for the long-term assay, with the exception that the injections were

given biweekly over a period of 25–30 weeks (2–5 molts from the

beginning of the in-vivo assay).

RNA extraction and real-time RT-PCR
RNA was extracted from the AGs of males used in the short-

term preliminary in-vivo experiment. Total RNA was isolated with

the EZ-RNA Total RNA Isolation Kit, used according to the

manufacturer’s instructions (Biological Industries, Beit Haemek,

Israel). First-strand cDNA was synthesized by means of reverse

transcriptase reaction using the VersoTM cDNA Kit (Thermo

Fisher Scientific Inc.) with 1 mg of total RNA. RQ of Cq-IAG

transcript levels were obtained using the following primers: IAG

qPCR_F: 59-GGCCTCCTCCCCTATCTGT-39 and IAG

qPCR_R: 59-CCAGCCAGCAGCAGAATAGT-39 with the Fas-

tStart Universal Probe Master (Rox) (Roche Diagnostics GmbH)

and Universal ProbeLibrary Probe #144 (Roche). Cq-18S

(accession no. AF235966), which was used as a normalizing gene,

was also quantified by means of real-time RT-PCR using the

primers: qCq-18S_F: 59- CTGAGAAACGGCTACCACATC-39

and qCq-18S_R: 59-GCCGGGAGTGGGTAATTT-39 with the

above-mentioned mix and Universal ProbeLibrary Probe #74

(Roche). Reactions were performed with the ABI Prism 7000

Sequence Detection System (Applied Biosystems, Foster city, CA,

USA).

RT-PCR
RNA was extracted from samples of hepatopancreas and AG

from mature males, from samples of hepatopancreas from mature

females, and from the hepatopancreas and AG of the long-term in

vivo experimental animals, as mentioned above. The RT reaction

was performed using M-MLV H minus reverse transcriptase

(Promega), with 1 mg of total RNA from each sample according to

the manufacturer’s instructions. Cq-Vg (accession no. AF306784)

was amplified by means of PCR with REDTaq ReadyMixTM

PCR Reaction Mix (Sigma; one cycle at 94uC–3 min; 37 cycles at

94uC–30 s, 58uC–30 s, 72uC–1 min; one cycle at 72uC–10 min)

with the forward primer Cq-Vg F: 59- AACGAGAGC-

CAGTCTTTGTGGCTG -39 and the reverse primer Cq-Vg R:

59- CAGCTTGTAGCTGTATGGACTACCAAG -39 using

cDNA obtained from hepatopancreas. Cq-18S served as the

internal control for the RNA extraction and RT reaction. PCR

products were separated on 1.3% agarose gel with Tris-acetate

EDTA buffer, and bands were documented. AG cDNA was used

to amplify Cq-IAG by PCR (one cycle at 94uC–3 min; 35 cycles at

94uC–1 min, 55uC–45 s, 72uC–50 s; one cycle at 72uC–10 min)

with the reaction mix described above, using adaptor primers

containing a gene-specific sequence flanked by a restriction

recognition site and a T7 RNA polymerase sequence. The pri-

mers used were the forward T7-NdeI- F IAG: 59- TAATACGACT-

CACTATAGGGTCTAGACTGATTGACTTCGACTGTGG -39

and reverse T7-XbaI- R IAG: 59-TAATACGACTCACTATAGGG-

CATATGAACTGACGTAGATTCCGTCC-39. PCR products

were separated as mentioned above. A fragment was excised,

purified (Invisorb Spin DNA Extraction, Invitek, Berlin, Germany)

and cloned into the pGEM-T easy vector (Promega). Clones

containing the insert were isolated, and plasmid DNA was

purified using HiYield Plasmid Mini Kit (RBC Bioscience,

Taiwan).
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Histological preparations
The reproductive systems of the dsRNA-injected and DDW-

injected intersex animals were dissected for morphological

observation. Sperm ducts, testes, ovaries and AGs were fixed,

dehydrated, embedded in paraffin and sectioned as previously

described [16]. Sections were stained hematoxylin and eosin and

observed under a light microscope.

Immunohistochemistry
For the immunodetection of Cq-IAG, a specific antibody was

generated as follows: Briefly, a recombinant Cq-IAG peptide was

expressed in Escherichia coli cells, purified using a nickel column (Ni-

NTA Superflow Cartridge, Qiagen) and validated by MALDI-

TOF. The confirmed recombinant Cq-IAG peptide was injected

into a rabbit. The specificity of the antiserum was demonstrated by

crossreactivity with the recombinant Cq-IAG by means of

Western-blot. For the immunohistochemistry, paraffin sections of

AGs obtained from endocrinologically induced [10] and dsRNA-

injected intersex animals were deparaffinized and rehydrated.

Sections were then incubated in citrate buffer (0.5 M, pH 6,

30 min in 95uC) for antigen retrieval and washed in phosphate-

buffered saline (PBS) (10 mM, pH 7.4). Blocking (2% normal goat

serum, 0.1% Triton X 100, 0.05% Tween 20 in PBS) lasted for

1 h at room temperature, followed by incubation with the primary

Cq-IAG antibody (1:10,000). Slides were washed in PBS and

incubated with a secondary goat anti-rabbit FITC conjugate

antibody (1:500 in PBS with 0.2% fish skin gelatin) for 1 h at room

temperature. After PBS washes, slides were mounted (DAPI

1:1000 in PBS and 50% glycerol) and imaged using a confocal

microscope.

Anatomical, morphological and physiological
measurements

The first left pleopod was removed from all intersex individuals

at the beginning of the experiment, and the newly regenerated

pleopod was removed at the end of the experiment. The widths of

the endopod and the exopod were measured to calculate the EWI

[22]. The type of setation on the inner side of the endopod was

observed by using a light microscope with an objective

micrometer. The average diameter of 15 randomly selected

oocytes from each ovary was determined under a light microscope

with an objective micrometer (x40, 625 mm). Similarly, the

average diameter of 15 randomly selected nuclei of cross-sectioned

silenced and control AGs were also determined (x1000, 61 mm).

Vitellogenesis levels were quantified by ELISA [23] using an anti

secondary-vitellogenic-specific 106-kDa polypeptide antibody on

hemolymph samples collected from dsRNA-injected intersex

animals (n = 3), DDW-injected intersex animals (n = 7), mature

females (n = 6) and mature males (n = 6).

Statistical analyses
Data are expressed as means 6 SEM. Due to the nature of the

experiment the analyzed groups were relatively small and not

normally distributed. Thus, non-parametric tests had to be used.

All statistical analyses of a single parameter compared between 2

groups (e.g. EWI, oocytes diameter and AG nuclei diameter) were

analyzed using the Mann Whitney U Test. The three and four

groups analyzed in the real time RT-PCR and ELISA exper-

imentation, respectively, were analyzed using the Kruskal Wallis

Test followed by the correction of a multiple pair-wise comparison

(built-in within the STATISTICA software) as accepted. We took

into account that some groups might differ only in a marginally

significant manner due to the usage of a multiple non-parametric

test, which relies on a ranking principle.
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