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A Shadowing Mitigation Approach for Sea State
Parameters Estimation Using X-Band Remotely

Sensing Radar Data in Coastal Areas
Wendy Navarro , Juan C. Velez, Alejandro Orfila, and Serguei Lonin

Abstract— A novel procedure based on filtering and interpola-1

tion approaches is proposed to estimate the sea state parameters,2

including significant wave height, peak wave direction, peak3

period, peak wavenumber, and peak wavelength in shallow waters4

using the X-band marine radars. The method compensates the5

distortions introduced by the radar acquisition process and the6

power decay of the radar signal along the distance applying7

image-enhancement techniques instead of empirical and semi-8

empirical calibration methods that use signal-to-noise ratio and9

in situ measurements as external references. To determine the10

threshold value for the interpolation approach, the influence of11

the antenna height on shadowing modulation effects is examined12

through performing an analysis of variance (ANOVA) that uses13

data from two X-band radars deployed at 10 and 20 m above14

MSL. ANOVA results reveal that it is possible to explain the15

increment of intensities affected by shadowing throughout the16

distance using an adaptive threshold retrieved from a third-17

order polynomial function of the mean radar cross section (RCS).18

Finally, an X-band radar is installed at 13 m above MSL to test19

the proposed technique. During measurements, the wind and20

wave conditions varied, and the antenna-look direction remained21

constant. Errors for Hs, θ p, and Tp calculated as the difference22

between estimated and true data show a mean bias and a relative
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23

value of 0.05 m (2.72%), 1.52◦ (5.94%), and 0.15 s (1.67%),24

respectively. The directional and wave energy spectra derived25
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from radar estimates, acoustic wave and current, ADVs record, 26

as well as JONSWAP formulation are presented to illustrate 27

the improvement resulting from the proposed method over the 28

frequency domain. 29

Index Terms— Acoustic Doppler current profiler (ADCP), 30

acoustic Doppler velocimeter (ADV) sensor, acoustic wave and 31

current (AWAC) sensor, analysis of variance (ANOVA), backscat- 32

tering, radar cross section (RCS), remote sensing, sea clutter, sea 33

state monitoring, X-band radar images. 34

I. INTRODUCTION 35

SHALLOW water environments are dynamic areas that 36

play an important role for commercial activities, pro- 37

viding high-value ecosystems and economic benefits, which 38

makes them one of the most attractive and populated land 39

zones in the world [1]. In these areas, ocean waves interact 40

with the bottom, modifying their properties and conditioning 41

its complex coastal morphology. In particular, beaches and 42

nonconsolidated coasts dissipate the energy from incoming 43

waves, being the first natural coastal defenses against flooding. 44

Furthermore, extreme morphological changes in coastal areas 45

can cause negative impacts on the quality life of human set- 46

tlements, affecting also the civil structures. Therefore, access 47

to continuous and real-time wave measurements is crucial 48

for coastal studies, and the assessment of global change 49

impacts on coasts. However, acquisition of sea surface data 50

is a complex, expensive, and labor-intensive task [2]. In situ 51

monitoring systems (e.g., buoys and bottom-mounted pressure 52

gauges) have a high cost of installation and maintenance, being 53

the main drawback to use them massively in nearshore areas. 54

In contrast, nearshore remote sensing technologies provide an 55

attractive alternative, being fixed optical video cameras and 56

X-band marine radars the best-developed approaches [1]. 57

With regard to nearshore remote sensing, video-based 58

monitoring systems can estimate bathymetry, shoreline, and, 59

in some ways, wave parameters at nearshore and swash 60

zones. Zarruk et al. [3] present a detailed comparison of 61

some commercial and automated coastal video monitoring 62

systems, such as ARGUS, SIRENA, and HORUS. ARGUS 63

coastal stations developed by the Coastal Imaging Labora- 64

tory, Oregon State University, Corvallis, OR, USA, were 65

pioneering in video-based monitoring. However, users cannot 66

personalize their applications [4]. The Mediterranean Institute 67

for Advanced Studies (IMEDEA), Esporles, Spain, developed 68
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SIRENA and ULISES [3], [5], [6], two open-source software69

conceived with the objective of video monitoring dynamical70

systems. HORUS, developed by the University of Cantabria,71

Santander, Spain, and the National University of Colombia,72

Bogotá, Colombia, is able to estimate waves, shoreline evolu-73

tion, and the number of beach users employing snapshots from74

high-resolution video cameras [7], [8]. Despite its undoubted75

potential, video-based monitoring systems are unable to scan76

sea state during the night. Hostil weather conditions during77

measurements (e.g., fog, low wind, or rain) also contribute78

to degrading their performance. Besides, it is nearly impos-79

sible to estimate significant wave height (Hs) due to optical80

limitations. Therefore, the X-band radars are becoming widely81

used in coastal monitoring because of their flexibility and their82

fine spatial and temporal resolution in comparison with in situ83

sensors and other remote sensing techniques, such as video-84

based monitoring, satellites, synthetic aperture radar (SAR)85

imagery, and high-frequency (HF) coastal radars [9], [10].86

A. Sea State Estimation Techniques Using X-Band Radar87

Data88

X-band marine radars employ frequencies between 8 and89

12 GHz, recognizing the sea surface signature, usually named90

sea clutter, through backscattering and Bragg’s scattering91

laws. Although commercial X-band radars filter the sea clutter92

for navigation and surveillance onboard ships, i.e., for the93

detection and tracking of targets in the surrounding area, these94

electromagnetic signals have relevant information to describe95

the sea state during the measurement period [9], [11], [12].96

The electromagnetic signal transmitted by an X-band radar is97

reflected from short capillary waves, whose wavenumber is98

comparable to the wavelength of the transmitted signal (λ ≈99

3 cm). Thus, the roughness of the sea surface caused by wind100

can be geometrically defined, considering the echo intensities101

and the time differences between radar-emitted waves and102

received signal [13], [14]. The mathematical description of103

sea clutter, modulation transfer function (MTF), describes the104

modulation of centimetrics surface waves on water by longerAQ:6 105

waves, considering the diverse modulations of the incident106

radar signal that is affected by the statistical properties of107

the ocean dynamic [15], [16]. MTF takes into account the108

aerodynamic, hydrodynamic, tilt, and shadowing modulation.109

Aerodynamic modulation defines the capillary waves through110

wind-sea interaction. Hydrodynamic modulation of short sea111

surface ripples determines the amplitude and phase of the112

modulated longer waves, making them visible on sea clutter113

radar images. Besides, tilt modulation considers that the wave114

slope variations lead to changes on the effective incident angle115

of the radiated electromagnetic signal. Finally, shadowing116

occurs when higher waves obstruct microwave backscatter117

from smaller one, mainly during low-grazing angle radar118

measurements [11], [17]–[21].119

Inversion schemes have been broadly used for estimating120

sea state parameters using the time sequence of sea clutter121

images analyzed over the frequency domain. A number of122

researchers used this method to obtain the directional wave123

spectrum starting from the 3-D fast Fourier transform124

(3-D-FFT) of raw radar images in a test region. 125

Nieto-Borge [9], Izquierdo and Nieto-Borge [13], and 126

Nieto-Borge et al. [22] estimate Hs and θp , considering the 127

dispersion relation of linear waves to filter the 3-D-FFT 128

from the radar images. Although this approach estimates the AQ:7129

wavenumber vector, peak frequency, and peak wave direction 130

[
−→
k = (kx , ky), f p , and θp , respectively], for finding the 131

directional wave spectrum and the wave frequency spectrum, 132

the approach requires a previous empirical calibration using 133

the square root of measured signal-to-noise ratio (SNR) 134

derived from in situ sensors (e.g., from buoys) to estimate 135

specifically Hs . Besides, the calibration procedure depends 136

on radar antenna location [22], [23]. Dankert et al. [24]–[27] 137

consider tilt modulation to estimate Hs without calibration. 138

However, in this paper, the antenna is installed on oil rigs 139

at deep waters, avoiding the shadowing modulation and the 140

nonlinear behavior in shallow waters [25]. 141

Regarding coastal monitoring, Nieto-Borge et al. [28] pro- 142

posed an empirical MTF correction as an extension of 143

the traditional inverse modeling technique applied in shal- 144

low waters [9], [13], [22]. This mathematical approximation 145

describes radar backscattering at horizontal polarization (HH) 146

using a constant MTF of |M(k)|2 = kβ , where β = −1.2 [28]. 147

However, this function was determined through offshore radar 148

data collected at deep waters (600-m depth [28]). Additionally, 149

the sea clutter radar images were obtained by a permanent 150

WaMoS II station (Wave and Current Monitoring System, 151

a commercial wave measuring device that digitalizes and saves 152

sea clutter images collected by the X-band radar systems) 153

of 100 m above the mean sea level (MSL), where shadowing 154

has a minor impact on radar imaging and grazing incidence 155

angles are not extreme [25]. This system was deployed at 156

oil rigs, such as Ekofisk [25] and Glas Dowr [29], whose 157

heights are beyond 50 m above the sea level [25], [30]. 158

Vogelzang et al. [31] used the WaMoS II device to estimate 159

Hs , θp , and Tp , installing the radar system at 10 m above 160

the ground. Results show that Hs , Tp , and θp were retrieved 161

with 20% (about 30 cm), 0.6 s, and 9◦ of error, respectively. 162

However, WaMoS II data need to be calibrated using a 163

reference directional Waverider buoy located at about 600-m 164

offshore. Recently, Salcedo-Sanz et al. [32] carried out sea 165

state measurements, installing this system on a Fino 1 plat- 166

form, where shadowing cannot be neglected. A support vector 167

regression (SVR) computer-aided algorithm was trained to 168

remove calibration and to estimate Hs using simulation-based 169

data [32]. However, SVR neglects diffraction effects, and the 170

estimates of Hs are only accurate up to 1.5 m. According to 171

this paper, the X-band radar antennas installed in low-grazing 172

incidence conditions cannot detect sea state when local wind 173

speed is lower than 3 m/s because it does not induce enough 174

roughness on the sea surface [32]. Punzo et al. [10], Serafino 175

et al. [33], [34], and Ludeno et al. [35], [36] proposed the nor- 176

malized scalar product (NSP) that is based on spectral analysis 177

and filtering of overlapping sea clutter regions, considering the 178

dispersion relation to estimate wave parameters, bathymetry, 179

shoreline, and surface currents in harbors. A novel commercial 180

coastal monitoring device, REMOCEAN [37]–[39], uses this 181

approach to survey coastal areas. Although NSP has been 182



IE
E
E
 P

ro
o

f

NAVARRO et al.: SHADOWING MITIGATION APPROACH FOR SEA STATE PARAMETERS ESTIMATION 3

tested in coastal and harbor areas, it follows the empirical183

MTF proposed by Nieto-Borge et al. [28], which was obtained184

using the offshore measurements [34]. On a general basis,185

processing techniques based on empirical MTF approaches186

show good agreement between the estimated and ground187

truth wave data. However, they depend on several factors188

and assumptions, which make them only approximate and189

likely need to be calibrated when they are applied on different190

locations [1].191

B. Potential of a Shadowing Mitigation Technique in X-Band192

Radars Estimations193

Shadowing effects on radar images are gaining increasing194

interest in recent years, mainly to estimate Hs from shad-195

owed radar images. Plant and Farquharson [40] investigated196

two types of shadowing: geometric and partial shadowing197

at deep waters. They suggest that geometric shadowing is198

a poor description of backscatter from low-grazing angles.199

However, it is difficult to distinguish between these two types200

of shadowing because the SNR differences are very small [41].201

The geometric optics theory and constant threshold have been202

used for estimating Hs through the probability of illumination.203

However, a constant threshold value cannot be applied for204

different sea states [42]. In this regard, spectral analysis and205

image shadow statistical methods have been broadly used to206

estimate Hs [41], [42]. The spectral analysis approach con-207

siders the SNR and the 3-D discrete Fourier transform that208

demands calibration by using an external reference sensor. The209

image shadow statistical method is based on the principles210

of geometric shadowing and bandpass (BP) filtering. This211

technique has shown to have good performance. However,212

it considers infinite deep water conditions [42]. An improved213

method is proposed by Wei et al. [41], which includes the214

water depth (h) for the estimation of Hs . However, they use215

the peak period derived from an external reference instead216

of the estimated from the radar data, still relying on in217

situ measurements. Lund et al. [43] examine the wave data218

dependence on range and azimuth. They remove the azimuth219

dependence in Hs estimates using the least-squares fitting220

and the Fourier series but still using deep water radar data.221

They suggest that the azimuth dependence could be neglected222

in coastal areas since waves approach the shoreline, unlike223

offshore stations [43].224

Considering the above-mentioned contributions, this paper225

presents a novel procedure to estimate the wave parameters226

in coastal areas, considering extreme grazing incidence angles227

without external calibration, neither the definition of an empir-228

ical MTF. Our method employs the filtering and interpolation229

approaches to mitigate the shadowing effects so as to enhance230

the sea clutter raw radar data (beam by beam). We study the231

shadowing effects that have not been studied yet in detail,232

considering its influences on sea clutter intensities along range233

(i.e., the distance from the detected target to the transmitter234

antenna) [44].235

The proposed methodology uses the data sets acquired236

from a FURUNO FR-8252 X-band marine pulse radar, whose237

acquisition system was developed by the Telecommunication238

and Signals Group (GT&S), Universidad del Norte, Barran- 239

quilla, Colombia [11]. The radar system was deployed at 240

onshore locations during different field campaigns that took 241

place in beaches from the Caribbean Colombian coast (Salgar 242

beach, Colombia, on February 2014 and June 2015) and 243

the Western Mediterranean coast (Castelldefels beach, Spain, 244

on March 2018). Five different preprocessing approaches were 245

tested in order to determine the most appropriate technique 246

to estimate the coastal sea state parameters with high res- 247

olution and accurate mitigating shadowing. Results derived 248

from each proposed technique were compared with in situ 249

data obtained by a Nortek acoustic wave and current (AWAC) 250

sensor. Section IV gives more details about the methodology. 251

In summary, the main contributions of this paper are as 252

follows. 253

1) Unlike previous studies that use offshore empirical MTF 254

to correct the estimation of coastal wave parameters, 255

the proposed methodology considers intensity data of 256

each beam along range, taking advantage of the high 257

spatial resolution of radar systems (6 m, in this case). 258

2) To the best of our knowledge, this is the first method 259

that identifies the intensities affected by shadowing 260

modulation along range and corrects them using the 261

filtering and interpolation approaches to fill in the shaded 262

areas. 263

3) The system was designed using the data acquired by 264

coastal radar stations in nearshore applications, con- 265

sidering extreme grazing incidence angles from the 266

electromagnetic signal over the sea surface without 267

calibration. 268

4) The procedure is able to reconstruct the wave frequency 269

spectrum at each pixel with a spatial resolution of 6 m, 270

covering an area of more than 5 km2. As a result, 271

the estimation of coastal wave parameters derived from 272

the X-band radar systems can be compared with hun- 273

dreds of in situ sensors monitoring the total coverage 274

area of the radar system at the same time. However, 275

spatial resolution improvements involve restrictions 276

in the temporal sampling domain [1]. Although the AQ:8277

X-band marine radars map hundreds of meters, cov- 278

ering large areas during short timescales, their bene- 279

fits often compensate with lower accuracy, and higher 280

computational needs to be compared with the in situ 281

measurements. 282

This paper is outlined as follows. Section II gives a brief 283

description of the field sites and all the data sets used for the 284

analysis. Section III provides the details of the X-band marine 285

radar system used for the sea clutter acquisition. Section IV 286

is devoted to presenting an empirical characterization of shad- 287

owing effects in coastal areas, defining the methodology to 288

adjust the threshold value for the interpolation approach. The 289

methodology to estimate wave parameters, such as f p , Tp, θp, 290

k p, λp , and Hs , is presented in Section V. Section VI deals 291

with the comparison of the sea state parameters estimation 292

and the measurement provided by an acoustic Doppler current 293

profiler (ADCP) sensor: Nortek AWAC system, which was 294

installed at a depth level of 8 m in the coverage area. 295
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TABLE I

SUMMARY OF THE DATA SETS CONSIDERED FOR THE STUDY

Fig. 1. Salgar beach location and equipment setup in the Salgar Castle (20 m
above the MSL: LAT = 11◦105.77200 N, LON = 74◦56029.79600 W).

A discussion is presented in Section VII. Finally, Section VIII296

concludes this paper.297

II. DATA SETS AND FIELD SITES DESCRIPTION298

This paper considers three data sets acquired from two299

different beaches: Salgar beach in Colombia and Castelldefels300

beach in Spain. Table I summarizes the dates and the number301

of sea states (n) considered. It also includes the code used302

hereinafter to refer to each set. The sea state conditions303

detailed in Table I are the average peak values of Tp and304

Hs derived from AWAC sensors, as will be explained in305

Section III.306

In this paper, we use S1 and S2 data sets (see Table I) for307

the characterization of shadowing modulation throughout the308

distance away from the radar antenna location. S3 data set309

runs from the Salgar field campaign on June 2015 are used310

to illustrate the technique and to explain the initial results.311

The technique is then further tested using the data collected312

in the MUSAFELS experiment, conducted from March 14 to313

19, 2018, at the Castelldefels beach (C1–C6 data sets) over a314

wide range of wind and wave conditions.315

A. Salgar Beach316

Salgar beach is one of the beaches of Puerto Salgar, a village317

in the municipality of Puerto Colombia seven miles from318

Barranquilla, in the Colombian Caribbean region. The wide319

belt of beaches begins on the province of Sabanilla and320

ends on the rocky cliff of Salgar Castle, a National Historic321

Landmark. Salgar is located on the Northwestern coast of the322

Caribbean Sea, as shown in Fig. 1. From a morphodynamic323

point of view, Salgar is an intermediated transverse bar and324

rip beach (TBR) with high wave energy dissipating along325

its coastline. It is discontinuous along the shore, because of326

Fig. 2. Castelldefels beach location and equipment setup in the
Marítimo restaurant (13 m above the MSL: LAT = 41◦15054.44000 N,
LON = 1◦59050.62800 E).

alternation of shallow bars and deeper rip channel. Typically, 327

Hs is below 2 m from the northeast, according to in situ data 328

from the directional wave buoy located at Bocas de Ceniza, 329

Colombia [45], [46]. As depicted in Fig. 1, the field site is 330

located at 11◦105.77200 N, 74◦56029.79600 W, on the terrace 331

floor of the Salgar Castle. 332

Salgar beach is a shocking case of coastal erosion 333

[47], [48]. Some civil coastal defense structures, such as 334

groynes, have been constructed in the Salgar beach for damage 335

mitigation and protection of this vulnerable zone. Regard- 336

ing the hazard rating (i.e., the qualitative ranking proposed 337

in [49]–[52] to measure the beach hazard levels, considering 338

extreme influence of breaking waves, turbulence, waves set- 339

up/set-down, rip currents, and extreme beach morphology 340

changes [45]), Salgar beach corresponds to a moderately haz- 341

ardous area, with a hazard rate of 6/10 due to the groynes 342

that generate topographic rips [45]. It is one of the highest 343

rates in the Colombian Caribbean coast. Besides, Salgar beach 344

has a C public risk level, mainly because of human overuse 345

and touristic exploitation [45]. Therefore, sea state needs to 346

be continuously monitored to manage the timely preventive 347

actions against these issues. 348

B. Castelldefels Beach 349

Castelldefels is an open, tideless, and dissipative beach, 350

located approximately 20 km southwest of Barcelona, 351

Spain, facing southward at the Western Mediterranean Sea, 352

as depicted in Fig. 2. Castelldefels beach is about 4.5-km 353

long, and it belongs to the stretch of the Llobregat river delta. 354

The study site is located at 41◦15054.44000 N, 1◦59050.62800
355

E, scanning 5 km2 with the radar signal. This beach is 356
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Fig. 3. General layout of the marine radar and the in situ sensors in (a) Salgar campaign (S1–S3 data sets) and (b) MUSAFELS campaign (C1–C6 data
sets). Here, hant and h correspond to the antenna height above MSL and the water depth, respectively.

mainly comprised of sand with a uniform sediment size of357

0.3 mm. Generally, waves come from both East-Southeast358

and the Southwest, but the highest waves come from the359

East (mainly between September and March) because of the360

strongest influence of winds that are presented from this361

direction [53], [54].362

III. EXPERIMENTAL SETUP363

Sea clutter data and the true values of wave parameters are364

obtained through the X-band radar images and a set of in situ365

measurements, respectively. S1 and S2 data sets were derived366

from two radar antennas installed on the first and terrace floors367

in Salgar Castle at 10 and 20 m above the MSL, respectively.368

For S3 experiment, a single X-band marine radar was deployedAQ:9 369

on the same location than S2. Radar antenna was oriented 27◦
370

NW. An ADCP was installed at 8-m water depth to evaluate371

the X-band radar performance.372

For MUSAFELS campaign (C1–C6 data sets), an X-band373

radar was deployed on the roof of a building at 13 m above374

MSL with a field view of 180◦. The antenna was oriented375

193◦ SW. Wave data were obtained from an array of three376

wave gauges (ADV 1–3) located at 3.8-, 5-, and 7-m water377

depths, respectively. Besides, an ADCP sensor was deployed378

at 21-m water depth inside the footprint of the radar antenna.379

Fig. 3 gives a general layout of the marine radar and in situ380

sensors that were deployed in the Salgar beach [see Fig. 3(a)]381

and the Castelldefels beach [see Fig. 3(b)].382

A. X-Band Radar Remote Sensing System383

In this paper, a commercial X-band marine radar FURUNO384

8252 was used for scanning the coastal area. In particular,385

the pulse nautical radar was equipped with a 6-ft-long X-band 386

antenna (9.41 GHz) that rotates in the horizontal plane (HH 387

polarization) with a rotation rate of 48 rpm, which results in 388

a temporal resolution of 1.25 s. The output peak power of 389

the system is 25 kW, and the radar field of view was 180◦
390

for the measurement campaigns, thereby the coverage area 391

corresponds to 5 km2. The radar system transmits the short 392

pulses whose length is 80 ns with a horizontal beamwidth 393

of 1.35◦. 394

The nominal range resolution 1rRADAR relies on the length 395

of the electromagnetic transmitted pulses τ , as shown in the 396

following equation: 397

1rRADAR =
cτ

2
(1) 398

where c is the speed of light. Thus, a τ = 80 ns pulse 399

length corresponds to a range resolution (1rRADAR) of 12 m. 400

However, the sample frequency of the acquisition system could 401

be selected in order to obtain a desired range resolution for 402

the digitized images [21]. 403

The range resolution designed for the system is obtained by 404

1r =
c

2 fADC
(2) 405

being 1r = 6 m, where the azimuthal resolution is 0.1◦ and 406

the sampling frequency fADC = 25 MHz for the analog- 407

to-digital converter (ADC) [21]. Table II summarizes some 408

configuration parameters of the radar system [55]. 409

Fig. 4 shows the block diagram of the X-band radar system. 410

It employs an FPGA Cyclone I core that incorporates a 411

clock signal of 50 MHz, a 10-bit ADC acquisition card 412

that allows mapping the digitized echo intensity from 0 to 413

1023, and a LAN controller to send the sea clutter data 414
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Fig. 4. Block diagram of the radar acquisition system and settings.

TABLE II

PARAMETERS OF THE RADAR ACQUISITION SYSTEM FURUNO FR-8252

to a computer via Ethernet port connection [11], [21]. Echo415

signals received from the sea surface are visualized in the416

Radar Display Unit. Then, the acquisition system discretizes417

the sea clutter data using Trigger, Heading, and Bearing418

signals for synchronization. Thereby, the time sequence of419

raw radar images is acquired and transmitted [11], [21]. The420

radar system measures the sea surface through off-line spectral421

analysis. Sea state parameters as θp, Tp , and Hs and temporal–422

spatial images of the sea surface elevation can be obtained.423

B. In Situ Measurements424

Wave data from the three bottom-mounted pressure gauges425

(ADV 1–3) are obtained, considering the pressure field asso-426

ciated with a progressive wave and the unsteady Bernoulli427

equation. Basically, the acoustic Doppler velocimeter (ADV)428

gauges sense the pressure fluctuations, and then, we calculate429

the associated water surface elevation by least-square fitting430

pressure data to a Fourier series and applying (3) and (4) [56].431

These expressions consider that the pressure measured by the 432

gauge is comprised by a hydrostatic term, which does not rely 433

on the presence of waves, and an oscillating dynamic pressure 434

as a result of the presence of wave motion. Considering the 435

following equations: 436

η =
pD

ρgK p(−h)
(3) 437

K p(−h) =
1

cosh(kh)
(4) 438

where pD is the dynamic pressure that is isolated by subtract- 439

ing the mean hydrodynamic pressure, ρ is the ocean water 440

density, g is the acceleration due to gravity, and K p(−h) the 441

pressure response factor, the free sea surface displacement η 442

is estimated, knowing the wavenumber values k. The linear 443

dispersion relation could be used for determining k, as shown 444

in the following equation: 445

ω2 = gk tanh(kh) (5) 446

being h the water depth of the installed gauge and ω the 447

angular frequency of the reconstructed waves. 448

On the other hand, the X-band radar scanned the sea 449

surface every 5 min during the Salgar beach campaign, but the 450

deployed ADCP provides currents and wave data only 20 min 451

every hour. Therefore, the outputs of the X-band radar are 452

averaged every hour, and the resulting sea state parameters are 453

compared with the in situ data in order to minimize the error 454

produced by no-matching output time between the X-band 455

radar data set and the in situ measurements. 456

Although the three bottom-mounted pressure gauges (ADV 457

1–3) operated during 210 s every 30 min and the AWAC 458

sensor worked twice each hour, collecting sea state data 459

during 20 min on each run for the MUSAFELS experiment, 460

the X-band radar worked continuously. Therefore, the time 461
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Fig. 5. Polynomial approximation from the mean RCS collected by the radar antennas located at (a) 10 m and (b) 20 m above MSL. Red line represents
the best third-order polynomial function fit to the average RCS (black dots) of each antenna height.

exposure radar images were truncated until the measurement462

period is limited by the in situ sensors.463

IV. SHADOWING CHARACTERIZATION464

In order to characterize the sea clutter intensities affected465

by shadowing modulation, each radar antenna height of the466

S1 and S2 data sets corresponds to a stochastic process that467

has its own realizations along range. The sample space (�) of468

these two stochastic processes is made from 200 realizations469

corresponding to the intensities of the highest variance beam470

along range from the sea clutter images. A prefiltering is471

first applied in order to identify the highest variance beam472

in the sea clutter image, eliminating echo signals received473

from buildings, vessels, land, and other objects. If it is not474

done, the highest variance beam may correspond to nonclutter475

signals distorting the analysis [11], [12].476

The variation of shadowing along range has a key role477

in estimating wave parameters, such as Hs [57]. Con-478

sidering that the geometric shadowing occurs when any479

echo signal is received from the smallest and obstructed480

waves forming hidden and noisy areas in the sea clutter481

images [40], [42], [43], [58], two methods for counting the482

amount of intensities affected by shadowing are proposed. As a483

first step, the mean radar cross section (RCS) of each antenna484

height is fit to a third-order polynomial function since the485

radar equation explains that the power decay along range is486

cubic [43]. Fig. 5(a) and (b) presents the polynomial function487

fit to the mean RCS at 10 and 20 m above the MSL, respec-488

tively. The proposed methods for shadowing characterization489

are as follows.490

Method 1: It considers that the intensities affected by491

shadowing are those below the polynomial approxima-492

tion at each range. The red line in Fig. 5 corresponds493

to the adjusted threshold considered in this method,494

which changes for each distance from the radar antenna.495

Likewise, the black dots correspond to the mean RCS.496

Method 2: It takes into account that shadowing can497

be identified, counting all the echo intensities that are498

below the smallest value of the polynomial approxima-499

tion, which is usually reached at 2 km away from the500

radar antenna, as shown in Fig. 5. After that distance,501

Fig. 6. Descriptive statistical measures of the stochastic processes with
respect to the range: (a) mean, (b) median, (c) mode, (d) standard deviation,
(e) maximum, and (f) minimum of the echo intensities along range in gray
levels (0–255), and (g) kurtosis coefficient (i.e., the fourth standardized
moment, κ) along range considering the mean amplitude values. Red and
black dots represent the measured radar data at 10 and 20 m above MSL,
respectively. Each distance considers 200 intensity points at both heights.

there are no significant differences between the averaged 502

intensities. Unlike the previous method, the threshold 503

value does not change along range, but it may vary for 504

different sea state conditions. 505

The proposed methods consider principles of geometric 506

shadowing along the surrounding azimuth area of the highest 507

variance beam. However, they can be applied to partial shad- 508

owing processes because the echo signal from shadowed areas 509

is always weaker than the backscatter signal from illuminated 510

facets [42]. This assumption makes sense since radar SNR is 511

directly derived from wave intensity and variance [11], [12]. 512

Due to the azimuth direction of the highest variance beam 513

matches properly with the wave direction, it provides the most 514

accurate description of the current coastal wave conditions 515

and allows searching an appropriate threshold to explain 516

shadowing. Besides, we focus on range dependence instead 517

of azimuth dependence since waves approach the shoreline in 518
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Fig. 7. Scatter plots of the probability of shadowing along range, considering (a) method 1 and (b) method 2. Square markers and black dots represent the
percentage of intensities affected by shadowing at 10 and 20 m above MSL, respectively. Each distance considers 200 intensity points at both heights.

coastal areas due to bottom refraction (unlike offshore stations)519

and the azimuth dependence could be neglected [43].520

Basic statistical measures are computed for the two sto-521

chastic processes of interest. Fig. 6 depicts the mean, median,522

mode, standard deviation, and maximum and minimum values523

of the echo intensities along range in gray levels (0–255).524

According to Fig. 6, a more stable variance is observed from525

the intensities captured at 20 m (black dots) than the echo526

signals obtained at 10 m above MSL (red dots). Variance peaks527

arise due to the radar antenna delay and the original operation528

of a pulse X-band radar [25], [59].529

Fig. 6(g) depicts the kurtosis (κ) behavior using the mean530

RCS from 200 intensity points at each distance. Since kurtosis531

is a measure of how outlier-prone a distribution is, we found532

the mean kurtosis value (κ̄) to characterize the entire data533

set along range. As it can be seen, majority of points are534

concentrated around κ ≈ 3 for both heights. Indeed, κ̄ is535

2.97±0.38 and 3.04±0.40 for data set collected at 10 and 20 m536

above MSL, respectively. Hence, data behave as a Gaussian537

distribution at both heights. Besides, 11.8% and 15.4% of total538

kurtosis data (416 distances) are higher than 3 ± σκ̄ at 10 and539

20 m above MSL, respectively. Hence, it can be concluded540

that the intensity data at both heights are normally distributed,541

and they can be described as a mesokurtic distribution with a542

great concentration around the mean values. It is worth to note543

that the maximum κ is obtained in the most remote distance,544

mainly more than 2 km away from the radar antenna, taking545

into account the data set at 10-m height. Higher κ values546

are presented for nearshore distances (less than 300 m from547

the antenna). Considering Fig. 6, these irregular areas have548

been eliminated from the analysis to avoid including greater549

variability in the process.550

Fig. 7(a) and (b) depicts the scatter plots from the probabil-551

ity of shadowing along range, considering methods 1 and 2,552

respectively. According to Fig. 7(b), the number of intensities553

affected by shadowing increases when the distance from radar554

antenna also increases, being affected up to 60% of the total555

intensities in the most remote areas. It is in agreement with556

the hypothesis proposed in [57] for synthetic radar images.557

However, it does not occur for method 1, considering the558

irregular behavior along range depicted in Fig. 7(a).559

TABLE III

TOTAL NUMBER OF INTENSITIES AFFECTED BY SHADOWING ALONG

RANGE AND CHANGE PERCENTAGES

Table III shows the percentages of change from the total 560

number of intensities affected by shadowing at 10 and 20 m 561

above MSL for methods 1 and 2. These data are the measure of 562

average change from the total shadowing effect. Considering 563

method 2, the percentage of change between the radar antenna 564

heights at 10 and 20 m exceeds 5%, unlike the results from 565

method 1 are below 5%. In general, this result allows inferring 566

that if the radar antenna height decreases, the shadowing 567

effects increase, as expected. However, an analysis of vari- 568

ance (ANOVA) test is carried out to validate that method 2 is 569

the most appropriate to explain shadowing. 570

Table IV summarizes the ANOVA results for method 2 using 571

the decomposition of squares sum [60]. The radar antenna 572

height considers two levels (10 and 20 m above MSL) 573

with 200 repetitions per range. The entire process considers 574

284 ranges from 300 to 2000 m with a spatial resolution 575

of 6 m, resulting in 568 surveyed data. The critical F- 576

value of the Fisher test is lower than the observed F-value. 577

Thereby, it indicates with a confidence level of 95% that the 578

radar antenna height is a significant factor for explaining the 579

shadowing modulation effects in sea clutter images. Similarly, 580

because P-value (0.0006) is lower than α = 0.05, there is a 581

statistically significant difference between the means of the 582

radar antenna heights considered. 583

To validate the ANOVA results, the assessment of normality, 584

homoscedasticity, and independence of residuals assumptions 585

is performed [60]. Fig. 8(a) illustrates the normal probability 586

plot of the residuals obtained from the ANOVA test. Residuals 587

comply with the normality assumption. Fig. 8(b) depicts 588

a scatter plot of the probability of shadowing against the 589

radar antenna height above MSL. It can be seen that both 590

heights present a similar variance, indicating that ANOVA 591
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TABLE IV

SIMPLE ANOVA RESULTS FROM THE DATA OF THE RADAR ANTENNA HEIGHTS (10 AND 20 m ABOVE MSL) CONSIDERING METHOD 2

Fig. 8. Validation of the ANOVA assumptions. (a) Normal probability plot
to validate the normality of residuals. (b) Scatter plot of radar antenna heights
and the probability of shadowing to evaluate the homoscedasticity. (c) Esti-
mated autocorrelations for ANOVA residuals to examine the independence
assumption. Dashed line depicts the confidence interval limits of 95% from
the first 24 autocorrelation coefficients whose values are shown as gray bars.

residuals comply with the homoscedasticity assumption.592

Besides, the homoscedasticity assumption is examined running593

a Bartlett test. The P-value is 0.227 (greater than α = 0.05).594

Thereby, it can be concluded with a confidence level of 95%595

that there is no statistical difference between the variances by596

height. Considering this behavior, it is not possible to reject597

the homoscedasticity assumption. In addition, the confidence598

interval of Lag 1 (i.e., the first delay of the autocorrelation599

function) is [−0.065, 0.082] that contains zero value. This fact600

analytically validates the independence of residuals. Fig. 8(c)601

shows 24 estimated autocorrelations coefficients from the602

ANOVA residuals and the confidence interval of 95% around603

zero. Since all the probability limits contain the estimated604

coefficient, the autocorrelation coefficients do not have a sta-605

tistically significant correlation, implying that the time series606

are completely random.607

An LSD test (Fisher’s Least Significant Difference between608

means) is performed to determine if the radar antenna heights609

lead to a different shadowing behavior [60]. Table V summa-610

TABLE V

RESULTS FROM FISHER’S LEAST SIGNIFICANT DIFFERENCE (LSD) TEST

rizes the LSD results. There are two homogeneous zones of 611

operation, considering the LSD value of 0.031. Thus, when 612

the radar antenna height decreases, the amount of intensities 613

with shadowing effects increases, being in good agreement 614

with the range dependence of shadowing. We conclude that 615

method 2 allows a better characterization of the shadowing 616

effects throughout range. 617

V. PROPOSED APPROACH FOR SEA STATE 618

MONITORING IN COASTAL AREAS 619

Considering the shadowing characterization described ear- 620

lier, it is possible to remove the shadowing effects on 621

sea clutter images, applying image-enhancement techniques 622

based on the filtering and interpolation approaches. The 623

proposed method can be described following the steps pre- 624

sented in Fig. 9. The procedure considers two main stages: 625

a preprocessing approach and an inversion technique, which 626

are described in detail in this section. The preprocessing 627

approach aims to compensate the distortions introduced by the 628

radar acquisition process and shadowing effects. The inversion 629

technique applies the Gauss and Gabor filters on the image 630

spectrum instead of an empirical MTF adjust to estimate the 631

sea state parameters from the directional wave spectrum. 632

A. Preprocessing Approaches 633

To determine the most appropriate image-enhancement tech- 634

nique for improving the estimation of sea state parameters 635

in coastal areas, five different approaches based on filter- 636

ing and interpolation are examined. The proposed methods 637

are: 1) filtering; 2) interpolation with the adjusted threshold; 638

3) interpolation with the fixed threshold; 4) filtering and 639

interpolation with the adjusted threshold (in this order); and 640

5) interpolation with the adjusted threshold and filtering (in 641

this order). The assessment of each technique considers the 642

recognition of clear wave patterns, the stability of the sea 643

clutter intensities along range, and the mitigation of shadowing 644

effects in the sea clutter images. It is worth to note that the 645

preprocessing approaches are applied on each intensity beam 646

of the entire raw sea clutter images collected by the X-band 647

radar system in the coverage area. 648

1) Filtering: The filtering approach considers the design of 649

a zero-phase Butterworth low-pass (LP) selective filter with 650

order n = 44 and cutoff frequency of 0.5 Hz. The wind 651
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Fig. 9. Flow diagram of the data processing approach for sea state monitoring in coastal areas.

wave frequencies are considered to be between 0.033 and652

0.485 Hz [61]. Fig. 10(a) illustrates the raw and filtered RCS653

from the highest variance beam of the sea clutter image654

obtained by the X-band radar from S3 data set at 11:08 UTC.655

It can be seen that the LP filter intensifies lower intensities and656

reduces higher sea clutter data at the most remote distances657

from the radar antenna.658

2) Interpolation: The interpolation approach considers that659

the shadowing modulation and the power decay of the660

radar signal along range can be compensated, interpolating661

the lowest intensities using at least two neighboring pixels.662

The threshold value from the interpolation procedure defines663

whether an RCS is affected by shadowing modulation. Con-664

sidering method 2 of the empirical shadowing characteri-665

zation described earlier, pixels from the sea clutter images666

whose intensities are lower than the proposed threshold are667

considered to be affected by shadowing. In this regard, two668

linear interpolation approaches are proposed. The first one669

considers a fixed threshold of 350 units of intensity quantized670

to 10 bits (which corresponds to a gray level of 87), taking671

into account the methodology proposed in [62]. The second672

approach proposes an adjusted threshold that has the value of673

the smallest intensity obtained from the third-order polynomial674

approximation that is fit to the mean RCS along range.675

Fig. 10(b) presents the raw and interpolated RCS from the676

highest variance beam of a sea clutter image (S3 data set at677

11:08 UTC). Both interpolation approaches with fixed (dark 678

blue dotted line) and adjusted threshold (light blue dotted 679

line) are considered. As depicted in Fig. 10(b), the adjusted 680

threshold value remains constant along range for the beam of 681

interest. However, it can vary with time and wave conditions, 682

whereby the interpolation approach considers a threshold value 683

that is adjusted for each radar image. In addition, the overlaid 684

plot in Fig. 10(b) shows that the interpolation with fixed 685

threshold causes a significant distortion on the sea clutter 686

signal along range, changing the sea state information obtained 687

from the X-band radar images. 688

3) Combination of Filtering and Interpolation With Adjusted 689

Threshold Approaches: Considering the advantages obtained 690

by using the filtering and interpolation approaches on raw 691

radar images, the improvement resulting from the combination 692

of these both techniques is evaluated. As already stated, 693

the interpolation approach with adjusted threshold significantly 694

reduces the shadowing effects causing irregular areas in the 695

most remote ranges, and the LP filter intensifies lower RCS 696

and reduces higher sea clutter data. The a priori results suggest 697

that the combination of both approaches can improve the 698

estimation of sea state parameters. The combinations consider 699

the filtering and interpolation as well as the interpolation and 700

filtering techniques that are applied on the raw radar image in 701

this order. 702
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Fig. 10. Preprocessing techniques in comparison to raw RSC: (a) filtering (red line), (b) interpolation with the adjusted threshold (light blue line) and fixed
threshold (dark blue line), and (c) using the combination of filtering and interpolation approaches from the highest variance beam intensities of S3 data set
at 11:08 UTC. Black and orange dotted lines represent the raw and the interpolated and filtered RCS, respectively. Green line corresponds to the filtered and
interpolated sea clutter data.

The overlaid plot in Fig. 10(c) depicts the sea clutter data703

along range from the highest variance beam of the raw radar704

and the processed image using the combinations of filtering705

and interpolation approaches. According to Fig. 10(c), when706

the radar images are interpolated after applying the LP filter,707

the RCS of the shaded areas is filled with information of the708

surrounding pixels, whereby sea state data are intensified in709

these regions.710

Fig. 11 shows the differences between gray level intensities711

obtained from each preprocessing approach and the raw radar712

amplitudes, which are normalized by the maximum gray level713

value (255). According to Fig. 11(a), wave patterns imaged714

by the radar system are clearer than those observed in the raw715

radar data, reducing higher sea clutter data at the most remote716

distances using the LP filter. It can be seen that the adjusted717

interpolation reconstructs the wave fields and enhances the718

raw radar data in Fig. 11(b). However, in some areas, mainly719

more than 2 km away from the radar antenna, the interpolation720

technique cannot be properly applied since there are not721

sufficient neighboring pixels whose intensities are higher than722

the threshold resulting in irregular sea clutter areas [25], [59].723

As shown in Fig. 11(c), the wave patterns imaged by the724

radar are more distinguishable using the LP filter and the725

interpolation approach, providing clearer wave field informa-726

tion. Section VI examines the improvement resulting from727

each preprocessing technique to estimate sea state parameters728

through the spectral analysis.729

Afterward, time-sequence regions of 128 × 128 pixels are730

built centered at in situ sensor coordinates (r0) or at a range731

of interest from the highest variance beam. Then, processed732

regions are turned on gray scale, and intensities at r0 are saved733

for all ti .734

B. Inversion Technique735

The 3-D-FFT from the processed radar time sequence is736

computed, and the Gauss and Gabor spatial filters are applied.737

Fig. 11. Normalized differences between the raw radar image and processing
images acquired in the Salgar beach from S3 data set at 11:08 UTC using
(a) filtering, (b) interpolation, (c) filtering and interpolation, and (d) interpo-
lation and filtering approaches.

The effect of the 2-D Gaussian smoothing is to blur the 738

radar image, eliminating the dependence on modulation effects 739

along range. As depicted in Figs. 12(a) and 13(a), the Gauss 740

high-pass (HP) filter eliminates the peak spectral intensity that 741

appears around f = 0 Hz due to the mean RCS decay along 742

range direction that can be defined as a function of the antenna 743

height above the mean MSL. The Gabor BP filter intensifies 744

the swell peaks that appear in the directional (kx , ky) spectrum, 745

as shown in Figs. 12(b) and 13(b). The spectral peaks are 746

identified convolving a square window of ones (3 × 3 pixels) 747

with the 2-D wave spectrum filtered through the Gaussian 748

smoothing. This window moves around the overlapping region 749

of equal size inside the 2-D spectrum. The 2-D-FFT is 750

obtained from the sum of the magnitudes derived from 3-D 751

Fourier coefficients in the third dimension (i.e., time). The 752

maximum values of this convolution correspond to the swell 753

peaks (kxmax, kymax). It is worth to note that the kmax vector 754

has two maximum values due to the symmetrical form of the 755

directional wave spectrum. Considering these spectral peaks, 756
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Fig. 12. (a) HP Gauss filter. (b) BP Gabor filter.

Fig. 13. (a) Raw and (b) processed directional wave spectra using the Gauss
and Gabor filters to suppress the spectral noise components.

the peak wavenumber, k p = k2
xmax

+ k2
ymax

(1/2)
, and the peak757

wavelength, λp = 2π/k p , are estimated.758

Analytically, the Gauss 9̂(kx , ky) and Gabor �̂(kx , ky)759

filters are760

9̂(kx , ky) = exp

(

−|k|2

2σ 2
kx

)

− exp

(

−|k|2

2σ 2
ky

)

(6)761

�̂(kx , ky) = exp

(

−|(kx − kxmax) + (ky − kymax)|
2

2σ 2
k

)

+762

exp

(

−|(kx + kxmax) + (ky + kymax)|
2

2σ 2
k

)

(7)763

where |k| corresponds to the magnitude of the wavenumber764

vector defined as k2
x + k2

y
(1/2)

. Besides, σkx , σky , and σk are765

the standard deviations that define the filter bandwidth in the766

corresponding dimensions. The spatial filters are multiplied767

with the complex Fourier coefficients of the directional wave768

spectrum in order to remove the Fourier coefficients with769

nonrelevant information about sea state.770

Fig. 13(b) depicts the processed directional spectrum771

obtained by S3 data set at 11:08 UTC using both the Gauss772

and Gabor filters, in this order. The directional spectrum has773

one dominant spectral wave direction around 25.6◦ (northeast).774

Sea surface elevation η̃(r, t) is reconstructed by the inverse775

Fourier transform (3-D-IFFT) using the filtered directional776

spectrum [see Fig. 13(b)]. It is worth to note that η̃(r, t)777

corresponds to not properly scaled values in gray levels of778

the true sea surface elevation η(r, t) because sea clutter data779

directly depict the electromagnetic echo intensities, rather than780

the sea surface displacement [22]. Here, η̃(r0, t) represents the781

sea surface elevation at range r0 that is scaled as η(r0, t) = 782

cZ η̃(r0,t), being c defined as 783

c =
4r × r0 tan(4ϕ) × tan(8)

2 max(η̃(r0, t) − η̃(r0, t))
(8) 784

and Z η̃(r0,t), the normalization of the η̃(r0, t) values with 785

respect to the noise level using its standard deviation, is given 786

by 787

Z η̃(r0,t) =
η̃(r0, t) − η̃(r0, t)

ση̃(r0,t)
(9) 788

where 4r and 4ϕ are the spatial resolution and the horizontal 789

beam resolution of the radar system (6 m and 1.35◦, respec- 790

tively). In addition, the maximum value of η̃(r0, t) is used 791

for normalizing the area computed in the numerator of the 792

relation. Besides, the grazing incidence angle 8 is defined 793

as arctan(hant/r0), being hant the radar antenna height [40]. 794

Finally, ση̃(r0,t) and η̃(r0, t) represent the standard deviation 795

and the mean value of η̃(r0, t), respectively. 796

Wave energy spectral density is obtained, considering the 797

temporal sequence of scaled η(r0, t) by using the Welch PSD 798

methodology. The Welch method divides each set of 128 sam- 799

ples into 16 overlapping Hamming windows of equal size to 800

compute periodograms. These periodograms are averaged to 801

obtain an adequate estimation of the wave spectral density. Hs , 802

Tp , and f p are estimated by means of the frequency spectrum 803

derived from the computed wave elevation map, taking into 804

account that Hs = 4E (1/2), where E is the energy of the 805

frequency spectrum and Tp = 1/ f p , where f p is the peak 806

frequency of the wave spectral density S( f ). 807

Wave energy spectra derived from radar data are compared 808

against the spectrum recorded by the in situ system as well as 809

the semiempirical JONSWAP spectrum proposed by Hassel- 810

mann et al. [63]. The JONSWAP formulation describes local 811

wind-generated seas with limited fecth defined as 812

S(ω) =
αg2

ω5
exp

[

−5

4

(ωp

ω

)4
]

γ r , r = exp

[

−

(

ω − ωp
)2

2σ 2ω2
p

]

813

(10) 814

where ω = 2π f is the wave angular frequency in radians, ωp 815

is the peak ω that is computed with the peak frequency f p 816

in Hz of the wave frequency spectrum, γ is the peak-shape 817

parameter that is usually chosen as 3.30, and σ is 0.07 for ω ≤ 818

ωp and 0.09 for ω > ωp . The values of γ vary approximately 819

from 1 to 6 even for a constant wind speed since γ is actually 820

a random variable normally distributed with mean 3.30 and 821

variance 0.62. However, γ is obtained from the analysis of 822

the measured data [64]. 823

In this case, γ is adjusted to 3.49 according to radar 824

measurements, and the constant αg2 is obtained from the 825

peak value of the wave frequency spectra S(ωp). In addition, 826

the mean value of the scale parameter, α, is 0.0267 with 827

a standard deviation of 0.0145. The values of these para- 828

meters are in good agreement with the analysis presented 829

in [65] for the Colombian Caribbean coast. The JONSWAP 830

formulation is used for the validation of sea clutter data 831

obtained from the radar system through the assessment of good 832
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TABLE VI

PERCENTAGE RELATIVE ERROR AND ABSOLUTE ERROR BETWEEN THE RADAR

ESTIMATION AND THE AWAC In Situ DATA

agreement between the radar wave frequency spectrum and the833

JONSWAP semiempirical spectrum.834

VI. RESULTS835

A. Salgar Beach Data Set836

The proposed algorithm uses regions of 128 × 128 pix-837

els from the digitized radar image. The sea state informa-838

tion derived from nine 128 time-sequence radar images sets839

(S3 data set) is analyzed in detail. According to hourly AWAC840

record, Hs was 1.92 and 1.93 m, Tp was 8.75 and 8.47 s,841

f p was 0.1142 and 0.1181 Hz, and θp corresponds to 21.61◦
842

and 25.65◦ from 09:29:17 and 10:29:17 UTC, respectively.843

Table VI presents the percentage relative error, R(r0), and the844

corresponding bias error, D(r0), between the X-band radar845

estimates χ̂(r0) of the ground truth values χtrue(r0) from846

the sea state parameters Hs and θp derived from the AWAC847

data, which are computed to measure the performance of the848

proposed techniques.849

Results show that Tp is estimated with the same accuracy850

using the different preprocessing approaches. This fact sug-851

gests that the enhancement procedure of the raw radar images852

does not affect the estimation of this sea state parameter that853

has been retrieved with high accuracy. From 09:29:17 and854

10:29:17 UTC, the estimation errors are 1.67% (−0.15 s) and855

1.59% (0.14 s) for Tp and 1.70% (1.88 mHz) and 1.56%856

(−1.79 mHz) for fp , respectively. In addition, k p and λp857

are estimated from the radar data using the directional wave858

spectrum, being retrieved as 0.0818 rad/m and 76.778 m,859

respectively.860

Analyzing the measurements in Table VI, the best perfor-861

mance is obtained from the filtered and interpolated radar862

images with an adjusted threshold. In this regard, the sig-863

nificant wave height was retrieved with a maximum error864

of 2.72% (about 0.05 m). The estimation errors of the peak865

period and the peak wave direction were below 0.15 s and866

2◦, respectively. As shown in Table VI, the significant wave867

height is overestimated by the interpolation with the adjusted868

threshold and by using the interpolation and filtering proce-869

dure. Besides, Hs is underestimated by the raw radar and870

the filtering method mainly because the shaded areas are still871

present. However, the assessment of the statistical difference872

among the estimation of the sea state parameters derived from873

each preprocessing method needs to be examined in order to874

Fig. 14. Comparison of the wave frequency spectra derived from the AWAC
record (black line), the X-band radar wave elevation maps (gray dashed line),
and the JONSWAP adjust (red line) from S3 data set using (a) raw, (b) filtered,
(c) interpolated with adjusted threshold, (d) filtered and interpolated, and
(e) interpolated and filtered time-sequence radar images.

identify whether the percentage of relative error is significant 875

and to determine a single preprocessing approach with the 876

highest resulting improvement. 877

Fig. 14 illustrates the comparison of the average frequency 878

spectra derived from the estimated wave elevation map using 879

different preprocessing approaches described earlier (dashed 880

gray line), the semiempirical JONSWAP spectrum adjusted 881

with the peak amplitude and frequency of the radar S( f ) 882

(red line), and the AWAC record (black line) at 8-m depth 883

at r0 = 1.4 km away from the radar antenna. Note that the 884
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Fig. 15. Scatter plots of Hs , Tp , and θp between the radar-retrieved data and
the AWAC record using all the preprocessing techniques. Circles depict the
estimates from the raw radar images. Triangles are the results from the filtering
approach. Triangles toward right markers represent the interpolation technique.
The filtering and interpolation are the square markers. Finally, the results from
the interpolation and filtering approaches are presented using the diamond
markers.

three spectra present the best agreement for the filtered and885

interpolated radar images. Besides, a good agreement between886

the spectra derived from the AWAC record and radar data887

is obtained. It is of interest to note that the shape of the888

JONSWAP spectrum does not completely coincide with the889

radar data because it considers older waves (i.e., waves whose890

ratio between their speed of propagation and the wind speed891

tends to infinity), but the measured waves are not necessarily892

saturated.893

B. Castelldefels Beach Data Set894

The proposed techniques are tested using the regions of 128895

× 128 pixels from the MUSAFELS data sets C2, C3, and C5,896

whose peak periods are higher than five times the temporal897

resolution of the radar system (54t = 6.25 s). The other three898

data sets (C1, C4, and C6) will be used for discussing the899

strengths and weaknesses of the system in Section VII.900

Fig. 15 presents the scatter plot between the radar-retrieved901

data Hs , Tp , and θp and the AWAC-retrieved data for all the902

preprocessing techniques. From Fig. 15, it can be observed903

that the combination of filtering and interpolation approaches904

(square markers) has a better performance than the other pre-905

processing techniques. In this case, the correlation coefficients,906

r, between the radar estimates and the external reference are907

0.8, 0.91, and 0.46 for Hs , Tp, and θp , respectively. Besides,908

the root mean square error (RMSE) of the raw images is909

0.16 for Hs , but the RMSE of the best performance tech-910

nique is 0.12. Additionally, the scattered distribution is more911

concentrated when applying the combination of filtering and912

Fig. 16. Scatter plots of Hs between the radar-retrieved data and the ADVs
record using all the preprocessing techniques. Circles depict the estimates
from the raw radar images. Triangles are the results from the filtering
approach. Triangles toward right markers represent the interpolation technique.
The filtering and interpolation are the square markers. Finally, the results from
the interpolation and filtering approaches are presented using the diamond
markers. Red, blue, and green markers correspond to ADV-1 (h = 3.8 m),
ADV-2 (h = 5 m), and ADV-3 (h = 7 m) data, respectively.

interpolation approaches than the other techniques. In general, 913

it can be seen that Tp estimates are in good agreement with in 914

situ measurements for all the analyzed approaches. Therefore, 915

the preprocessing techniques do not significantly affect the 916

performance of this sea state parameter, as mentioned earlier 917

for the Salgar analysis. 918

To further verify the effectiveness of the filtering and inter- 919

polation approaches, Figs. 16 and 17 depict the scatter plots 920

for Hs and Tp , respectively, from March 16 to March 18 at 921

the ADV locations. According to these scatter plots, the best 922

performance preprocessing technique is the combination of 923

filtering and interpolation approaches with a correlation coeffi- 924

cient of 0.9, 0.85, and 0.86 for Hs radar estimates derived from 925

ADV-1 (h = 3.8 m), ADV-2 (h = 5 m), and ADV-3 (h = 7 m) 926

data, respectively. As mentioned earlier, Tp is estimated with 927

high accuracy for all the preprocessing approaches. However, 928

the performance for Hs radar estimates is gradually improved 929

when the distance from the radar antenna decreases. It could be 930

explained considering the shoaling theory and the morphology 931

of the Castelldefels beach that causes better-defined waves 932

with stronger echo intensities and higher wave heights in the 933

nearshore area than at the AWAC location (21-m depth). 934

Fig. 18(a) illustrates the comparison of the average fre- 935

quency spectra derived from the estimated wave elevation map 936

using the preprocessing approaches and the AWAC record 937

(black line). Fig. 18(b)–(d) considers the ADV 1, 2, and 938

3 records, respectively. Note that the four spectra present 939

the best agreement for the filtered and interpolated radar 940



IE
E
E
 P

ro
o

f

NAVARRO et al.: SHADOWING MITIGATION APPROACH FOR SEA STATE PARAMETERS ESTIMATION 15

Fig. 17. Scatter plots of Tp between the radar-retrieved data and the ADVs
record using all the preprocessing techniques. Circles depict the estimates
from the raw radar images. Triangles are the results from the filtering
approach. Triangles toward right markers represent the interpolation technique.
The filtering and interpolation are the square markers. Finally, the results from
the interpolation and filtering approaches are presented using the diamond
markers. Red, blue, and green markers correspond to ADV-1 (h = 3.8 m),
ADV-2 (h = 5 m), and ADV-3 (h = 7 m) data, respectively.

images. Besides, the peak amplitude of the wave energy941

spectra increases when the distance from the radar antenna942

decreases because of the shoaling and beach morphology of943

the Castelldefels coast, as mentioned earlier. These experimen-944

tal results confirm that the filtering and interpolation technique945

can improve the accuracy of the sea state parameter estimates,946

even at closer distances from the radar antenna.947

VII. DISCUSSION948

A. Salgar Beach Data Set949

An ANOVA test is performed using the estimation of Hs950

obtained from different methods listed in Table VI. This951

sea state parameter gives relevant information to identify the952

statistical differences among the preprocessing methodologies.953

Results are summarized in Table VII. SoV, SS, MS, and dof954

refer to Source of Variance, Square Sum, Mean Square, and955

degrees of freedom, respectively.956

The ANOVA is computed using the decomposition of957

squares sum procedure [60] and considering nine Hs estimates958

retrieved from five different methods. This fact produces an959

entire process of 45 values of Hs analyzed. According to960

Table VII, the critical F-value (3.06) is lower than the observed961

F-value (61.07), whereby the preprocessing method signifi-962

cantly affects the estimation of Hs . In addition, a statistically963

significant difference can be observed with a confidence level964

of 95% since P-value is lower than α = 0.05.965

TABLE VII

ANOVA RESULTS FROM THE S3 DATA SET. Hs ESTIMATES ARE

OBTAINED FROM RAW RADAR IMAGES AND USING FILTERING,
INTERPOLATION, AND THE COMBINATIONS OF FILTERING

AND INTERPOLATION APPROACHES

According to the P-value of the Shapiro–Wilks test (0.477), 966

which is greater than α = 0.05, the residuals obtained from 967

the ANOVA test can be fit to a normal distribution with 968

a confidence level of 95%. The Bartlett test has a P-value 969

of 0.965 (greater than α = 0.05), whereby the homoscedas- 970

ticity assumption of residuals has complied with a confidence 971

level of 95%. Finally, the confidence interval of Lag 1 contains 972

the zero value [−0.1997, 0.2921] that allows the validation of 973

the independence assumption. 974

Once the ANOVA results have been validated, an LSD test 975

is performed to examine the mean values of Hs estimates 976

retrieved from different methods using the confidence intervals 977

of 95%. Table VIII summarizes the LSD results. It can be seen 978

that three homogeneous groups are identified, which do not 979

exceed the LSD value of 0.079 m. 980

As shown in Table VIII, Hs estimates are statistically equal 981

using the raw radar images and the LP filter approach. Besides, 982

these methods underestimate Hs since they have the lowest 983

mean values (1.75 and 1.795 m, respectively). In addition, 984

an overestimation of Hs is obtained from the interpolated 985

and the interpolated and filtered images without the statistical 986

difference between both procedures. Finally, the filtering and 987

interpolation approaches give the most accurate estimation of 988

Hs . It can be concluded that the filtering and interpolation 989

approaches allow removing shadowing in the coastal areas, 990

obtaining the estimation of the sea state parameters with the 991

highest resolution and accuracy. 992

B. Castelldefels Beach Data Set 993

In order to examine the performance of the filtering and 994

interpolation technique during very mild sea state conditions 995

(lower peak periods and wave heights), Fig. 19 depicts the bias 996

error, D(r0), including the C1, C4, and C6 data sets. It can be 997

seen that the estimation accuracy relies on both peak period 998

and significant wave height. The highest bias is obtained from 999

the waves of the C1 data set, where Tp < 6 s and Hs < 1000

0.45 m. Although only the data sets whose Tp are higher than 1001

five times the temporal resolution of the radar system were 1002

considered for testing the preprocessing techniques, Fig. 19 1003

shows that the bias error is acceptable even for waves whose 1004

Tp are lower than 6.25 s but with Hs ≥ 0.5 m. 1005

Since the filtering and interpolation technique depends on 1006

recording high SNR sea clutter data, the method needs suffi- 1007

cient wave action to operate properly. Therefore, it is possible 1008

to obtain the most accurate wave parameters’ estimates in the 1009

nearshore areas when the following conditions are fulfilled 1010

simultaneously: 1) Hs is at least 0.5 m and preferably higher 1011
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Fig. 18. Comparison of the wave frequency spectra derived from the radar-processed images and (a) AWAC, (b) ADV-1, (c) ADV-2, and (d) ADV-3 records
at 21-, 3.8-, 5-, and 7-m water depth, respectively. Black lines represent the spectra obtained from in situ measurements. Yellow lines show the corresponding
wave frequency spectra using raw radar data. Blue and green lines represent the radar-retrieved spectra from filtered and interpolated images, respectively.
Finally, the wave frequency spectra from the combination of filtering and interpolation approaches are depicted using red lines for the filtered and interpolated
time-sequence radar images and purple lines for the interpolated and filtered sea clutter images.

TABLE VIII

RESULTS OF FISHER’S LEAST SIGNIFICANT DIFFERENCE (LSD) TEST

Fig. 19. Scatter plot of the error bias of Hs estimates with respect to the
peak period, considering the AWAC record as the true values of Hs , which are
depicted as yellow square markers. Red circles represent the retrieved error
bias, and the black line corresponds to the first-order polynomial function that
best fit their behavior along Tp with r = 0.49.

and 2) Tp ≥ 4 s. Besides, the best quality data are collected1012

when Tp is higher than the temporal resolution of the radar1013

system and the first criterion is fulfilled. In this case, bias error1014

is almost zero, as shown in the right-hand side of Fig. 19.1015

VIII. CONCLUSION 1016

The proposed shadowing mitigation method allows the esti- 1017

mation of sea surface elevation maps in coastal areas through 1018

the sea clutter data obtained from the X-band marine radar 1019

systems in extreme grazing incidence angles without calibra- 1020

tion, neither the empirical MTF adjusts. This method considers 1021

the temporal sequences of processed marine radar images and 1022

inversion techniques based on the FFT analysis to calculate the 1023

wave properties in the frequency domain. The FFT analysis is 1024

physically meaningful when the intensity sea clutter signals 1025

are a reasonable proxy of actual wave conditions. Therefore, 1026

shadowing effects in extreme grazing incidence angles need 1027

to be removed in order to eliminate the noise and to improve 1028

the estimates of sea state parameters in shallow waters. The 1029

method compensates the distortions introduced by the radar 1030

acquisition process and the power decay of the radar signal 1031

along range applying image-enhancement techniques through 1032

a couple of image preprocessing steps based on the filtering 1033

and interpolation approaches. 1034

To mitigate shadowing, an investigation was carried out to 1035

empirically examine the behavior of the sea clutter intensities 1036

along range direction to determine the best threshold value 1037

for the interpolation approach that explains shadowing behav- 1038

ior. The characterization considers the data provided by the 1039
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X-band radar systems deployed at two different heights above1040

the MSL (10 and 20 m). Results reveal that an ever-increasing1041

amount of intensities affected by shadowing arises, as the1042

distance from the radar antenna increases as expected. In this1043

regard, the threshold value for the interpolation approach con-1044

siders the influence of the antenna height above the MSL on1045

shadowing modulation effects. Shadowing has not previously1046

analyzed in detail, considering beam intensities behavior along1047

range at two different radar antenna heights.1048

To develop the methodology, the improvement resulting1049

from five preprocessing approaches are evaluated, considering1050

the sea clutter data collected by an FR-8252 X-band marine1051

radar. An LP filter and an interpolation with the adjusted1052

threshold were proposed. Results show that the LP filter1053

intensifies lower intensities and reduces higher sea clutter1054

data in the most remote distances from the radar antenna.1055

In addition, the interpolation approach significantly reduces1056

the shadowing modulation effects. Wave patterns imaged by1057

the radar are more distinguishable by using the combination1058

of these two approaches (filtering and interpolation, in this1059

order). The inversion technique considers the HP Gauss and1060

BP Gabor filters instead of the MTF approach. The effect of1061

the Gaussian smoothing is to blur the radar image, eliminating1062

the dependence on the modulation effects along range. The1063

Gabor BP filter intensifies the swell peaks that appear in the1064

wave directional spectrum that contains relevant information1065

about the sea state.1066

Regarding filtering and interpolation approaches, errors for1067

Hs , θp, and Tp calculated as the difference between the1068

estimated and true data show a mean bias and a relative1069

value of 0.05 m (2.72%), 1.52◦ (5.94%), and 0.15 s (1.67%),1070

respectively. In addition, the directional wave spectrum yields1071

accurate θp, k p, and λp estimates using this preprocessing1072

technique. The results also show good agreement in the1073

overlaid plot of the wave frequency spectra derived from the in1074

situ data, radar estimates, and JONSWAP spectrum. It is worth1075

to note that Tp is generally estimated with high accuracy for1076

all the preprocessing techniques. Hence, the accuracy of Hs1077

estimates is the principal criteria that have been taken into1078

account to evaluate the effectiveness of each approach.1079

According to the LSD results, it can be concluded that Hs is1080

underestimated by the raw radar and filtering method mainly1081

because the shaded areas are still present. Besides, the inter-1082

polated and the interpolated and filtered radar images overes-1083

timate Hs . Finally, the filtering and interpolation approaches1084

give the most accurate estimations of Hs in the extreme graz-1085

ing incidence angles. The scattered distribution of Hs between1086

the radar estimates and the external reference data is more con-1087

centrated using the combination of filtering and interpolation1088

approaches than the other techniques, obtaining correlation1089

coefficients higher than 0.8 which are good outcomes for field1090

data sets. Therefore, the proposed method is able to remove1091

the shadowing and to reproduce, with high accuracy, the sea1092

state parameters. Finally, the best performance of the method1093

is achieved when Hs is at least 0.5 m and preferably higher1094

and Tp ≥ 4 s. However, the bias error of Hs is acceptable1095

even for waves whose Tp are lower than 6.25 s but with Hs ≥1096

0.5 m. The flexibility of the mobile radar acquisition system is1097

a significant advantage beside HF radar stations and offshore 1098

applications. 1099
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A Shadowing Mitigation Approach for Sea State
Parameters Estimation Using X-Band Remotely

Sensing Radar Data in Coastal Areas
Wendy Navarro , Juan C. Velez, Alejandro Orfila, and Serguei Lonin

Abstract— A novel procedure based on filtering and interpola-1

tion approaches is proposed to estimate the sea state parameters,2

including significant wave height, peak wave direction, peak3

period, peak wavenumber, and peak wavelength in shallow waters4

using the X-band marine radars. The method compensates the5

distortions introduced by the radar acquisition process and the6

power decay of the radar signal along the distance applying7

image-enhancement techniques instead of empirical and semi-8

empirical calibration methods that use signal-to-noise ratio and9

in situ measurements as external references. To determine the10

threshold value for the interpolation approach, the influence of11

the antenna height on shadowing modulation effects is examined12

through performing an analysis of variance (ANOVA) that uses13

data from two X-band radars deployed at 10 and 20 m above14

MSL. ANOVA results reveal that it is possible to explain the15

increment of intensities affected by shadowing throughout the16

distance using an adaptive threshold retrieved from a third-17

order polynomial function of the mean radar cross section (RCS).18

Finally, an X-band radar is installed at 13 m above MSL to test19

the proposed technique. During measurements, the wind and20

wave conditions varied, and the antenna-look direction remained21

constant. Errors for Hs, θ p, and Tp calculated as the difference22

between estimated and true data show a mean bias and a relative

AQ:1
AQ:2

AQ:3
AQ:4

AQ:5

23

value of 0.05 m (2.72%), 1.52◦ (5.94%), and 0.15 s (1.67%),24

respectively. The directional and wave energy spectra derived25
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from radar estimates, acoustic wave and current, ADVs record, 26

as well as JONSWAP formulation are presented to illustrate 27

the improvement resulting from the proposed method over the 28

frequency domain. 29

Index Terms— Acoustic Doppler current profiler (ADCP), 30

acoustic Doppler velocimeter (ADV) sensor, acoustic wave and 31

current (AWAC) sensor, analysis of variance (ANOVA), backscat- 32

tering, radar cross section (RCS), remote sensing, sea clutter, sea 33

state monitoring, X-band radar images. 34

I. INTRODUCTION 35

SHALLOW water environments are dynamic areas that 36

play an important role for commercial activities, pro- 37

viding high-value ecosystems and economic benefits, which 38

makes them one of the most attractive and populated land 39

zones in the world [1]. In these areas, ocean waves interact 40

with the bottom, modifying their properties and conditioning 41

its complex coastal morphology. In particular, beaches and 42

nonconsolidated coasts dissipate the energy from incoming 43

waves, being the first natural coastal defenses against flooding. 44

Furthermore, extreme morphological changes in coastal areas 45

can cause negative impacts on the quality life of human set- 46

tlements, affecting also the civil structures. Therefore, access 47

to continuous and real-time wave measurements is crucial 48

for coastal studies, and the assessment of global change 49

impacts on coasts. However, acquisition of sea surface data 50

is a complex, expensive, and labor-intensive task [2]. In situ 51

monitoring systems (e.g., buoys and bottom-mounted pressure 52

gauges) have a high cost of installation and maintenance, being 53

the main drawback to use them massively in nearshore areas. 54

In contrast, nearshore remote sensing technologies provide an 55

attractive alternative, being fixed optical video cameras and 56

X-band marine radars the best-developed approaches [1]. 57

With regard to nearshore remote sensing, video-based 58

monitoring systems can estimate bathymetry, shoreline, and, 59

in some ways, wave parameters at nearshore and swash 60

zones. Zarruk et al. [3] present a detailed comparison of 61

some commercial and automated coastal video monitoring 62

systems, such as ARGUS, SIRENA, and HORUS. ARGUS 63

coastal stations developed by the Coastal Imaging Labora- 64

tory, Oregon State University, Corvallis, OR, USA, were 65

pioneering in video-based monitoring. However, users cannot 66

personalize their applications [4]. The Mediterranean Institute 67

for Advanced Studies (IMEDEA), Esporles, Spain, developed 68

0196-2892 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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SIRENA and ULISES [3], [5], [6], two open-source software69

conceived with the objective of video monitoring dynamical70

systems. HORUS, developed by the University of Cantabria,71

Santander, Spain, and the National University of Colombia,72

Bogotá, Colombia, is able to estimate waves, shoreline evolu-73

tion, and the number of beach users employing snapshots from74

high-resolution video cameras [7], [8]. Despite its undoubted75

potential, video-based monitoring systems are unable to scan76

sea state during the night. Hostil weather conditions during77

measurements (e.g., fog, low wind, or rain) also contribute78

to degrading their performance. Besides, it is nearly impos-79

sible to estimate significant wave height (Hs) due to optical80

limitations. Therefore, the X-band radars are becoming widely81

used in coastal monitoring because of their flexibility and their82

fine spatial and temporal resolution in comparison with in situ83

sensors and other remote sensing techniques, such as video-84

based monitoring, satellites, synthetic aperture radar (SAR)85

imagery, and high-frequency (HF) coastal radars [9], [10].86

A. Sea State Estimation Techniques Using X-Band Radar87

Data88

X-band marine radars employ frequencies between 8 and89

12 GHz, recognizing the sea surface signature, usually named90

sea clutter, through backscattering and Bragg’s scattering91

laws. Although commercial X-band radars filter the sea clutter92

for navigation and surveillance onboard ships, i.e., for the93

detection and tracking of targets in the surrounding area, these94

electromagnetic signals have relevant information to describe95

the sea state during the measurement period [9], [11], [12].96

The electromagnetic signal transmitted by an X-band radar is97

reflected from short capillary waves, whose wavenumber is98

comparable to the wavelength of the transmitted signal (λ ≈99

3 cm). Thus, the roughness of the sea surface caused by wind100

can be geometrically defined, considering the echo intensities101

and the time differences between radar-emitted waves and102

received signal [13], [14]. The mathematical description of103

sea clutter, modulation transfer function (MTF), describes the104

modulation of centimetrics surface waves on water by longerAQ:6 105

waves, considering the diverse modulations of the incident106

radar signal that is affected by the statistical properties of107

the ocean dynamic [15], [16]. MTF takes into account the108

aerodynamic, hydrodynamic, tilt, and shadowing modulation.109

Aerodynamic modulation defines the capillary waves through110

wind-sea interaction. Hydrodynamic modulation of short sea111

surface ripples determines the amplitude and phase of the112

modulated longer waves, making them visible on sea clutter113

radar images. Besides, tilt modulation considers that the wave114

slope variations lead to changes on the effective incident angle115

of the radiated electromagnetic signal. Finally, shadowing116

occurs when higher waves obstruct microwave backscatter117

from smaller one, mainly during low-grazing angle radar118

measurements [11], [17]–[21].119

Inversion schemes have been broadly used for estimating120

sea state parameters using the time sequence of sea clutter121

images analyzed over the frequency domain. A number of122

researchers used this method to obtain the directional wave123

spectrum starting from the 3-D fast Fourier transform124

(3-D-FFT) of raw radar images in a test region. 125

Nieto-Borge [9], Izquierdo and Nieto-Borge [13], and 126

Nieto-Borge et al. [22] estimate Hs and θp , considering the 127

dispersion relation of linear waves to filter the 3-D-FFT 128

from the radar images. Although this approach estimates the AQ:7129

wavenumber vector, peak frequency, and peak wave direction 130

[
−→
k = (kx , ky), f p , and θp , respectively], for finding the 131

directional wave spectrum and the wave frequency spectrum, 132

the approach requires a previous empirical calibration using 133

the square root of measured signal-to-noise ratio (SNR) 134

derived from in situ sensors (e.g., from buoys) to estimate 135

specifically Hs . Besides, the calibration procedure depends 136

on radar antenna location [22], [23]. Dankert et al. [24]–[27] 137

consider tilt modulation to estimate Hs without calibration. 138

However, in this paper, the antenna is installed on oil rigs 139

at deep waters, avoiding the shadowing modulation and the 140

nonlinear behavior in shallow waters [25]. 141

Regarding coastal monitoring, Nieto-Borge et al. [28] pro- 142

posed an empirical MTF correction as an extension of 143

the traditional inverse modeling technique applied in shal- 144

low waters [9], [13], [22]. This mathematical approximation 145

describes radar backscattering at horizontal polarization (HH) 146

using a constant MTF of |M(k)|2 = kβ , where β = −1.2 [28]. 147

However, this function was determined through offshore radar 148

data collected at deep waters (600-m depth [28]). Additionally, 149

the sea clutter radar images were obtained by a permanent 150

WaMoS II station (Wave and Current Monitoring System, 151

a commercial wave measuring device that digitalizes and saves 152

sea clutter images collected by the X-band radar systems) 153

of 100 m above the mean sea level (MSL), where shadowing 154

has a minor impact on radar imaging and grazing incidence 155

angles are not extreme [25]. This system was deployed at 156

oil rigs, such as Ekofisk [25] and Glas Dowr [29], whose 157

heights are beyond 50 m above the sea level [25], [30]. 158

Vogelzang et al. [31] used the WaMoS II device to estimate 159

Hs , θp , and Tp , installing the radar system at 10 m above 160

the ground. Results show that Hs , Tp , and θp were retrieved 161

with 20% (about 30 cm), 0.6 s, and 9◦ of error, respectively. 162

However, WaMoS II data need to be calibrated using a 163

reference directional Waverider buoy located at about 600-m 164

offshore. Recently, Salcedo-Sanz et al. [32] carried out sea 165

state measurements, installing this system on a Fino 1 plat- 166

form, where shadowing cannot be neglected. A support vector 167

regression (SVR) computer-aided algorithm was trained to 168

remove calibration and to estimate Hs using simulation-based 169

data [32]. However, SVR neglects diffraction effects, and the 170

estimates of Hs are only accurate up to 1.5 m. According to 171

this paper, the X-band radar antennas installed in low-grazing 172

incidence conditions cannot detect sea state when local wind 173

speed is lower than 3 m/s because it does not induce enough 174

roughness on the sea surface [32]. Punzo et al. [10], Serafino 175

et al. [33], [34], and Ludeno et al. [35], [36] proposed the nor- 176

malized scalar product (NSP) that is based on spectral analysis 177

and filtering of overlapping sea clutter regions, considering the 178

dispersion relation to estimate wave parameters, bathymetry, 179

shoreline, and surface currents in harbors. A novel commercial 180

coastal monitoring device, REMOCEAN [37]–[39], uses this 181

approach to survey coastal areas. Although NSP has been 182
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tested in coastal and harbor areas, it follows the empirical183

MTF proposed by Nieto-Borge et al. [28], which was obtained184

using the offshore measurements [34]. On a general basis,185

processing techniques based on empirical MTF approaches186

show good agreement between the estimated and ground187

truth wave data. However, they depend on several factors188

and assumptions, which make them only approximate and189

likely need to be calibrated when they are applied on different190

locations [1].191

B. Potential of a Shadowing Mitigation Technique in X-Band192

Radars Estimations193

Shadowing effects on radar images are gaining increasing194

interest in recent years, mainly to estimate Hs from shad-195

owed radar images. Plant and Farquharson [40] investigated196

two types of shadowing: geometric and partial shadowing197

at deep waters. They suggest that geometric shadowing is198

a poor description of backscatter from low-grazing angles.199

However, it is difficult to distinguish between these two types200

of shadowing because the SNR differences are very small [41].201

The geometric optics theory and constant threshold have been202

used for estimating Hs through the probability of illumination.203

However, a constant threshold value cannot be applied for204

different sea states [42]. In this regard, spectral analysis and205

image shadow statistical methods have been broadly used to206

estimate Hs [41], [42]. The spectral analysis approach con-207

siders the SNR and the 3-D discrete Fourier transform that208

demands calibration by using an external reference sensor. The209

image shadow statistical method is based on the principles210

of geometric shadowing and bandpass (BP) filtering. This211

technique has shown to have good performance. However,212

it considers infinite deep water conditions [42]. An improved213

method is proposed by Wei et al. [41], which includes the214

water depth (h) for the estimation of Hs . However, they use215

the peak period derived from an external reference instead216

of the estimated from the radar data, still relying on in217

situ measurements. Lund et al. [43] examine the wave data218

dependence on range and azimuth. They remove the azimuth219

dependence in Hs estimates using the least-squares fitting220

and the Fourier series but still using deep water radar data.221

They suggest that the azimuth dependence could be neglected222

in coastal areas since waves approach the shoreline, unlike223

offshore stations [43].224

Considering the above-mentioned contributions, this paper225

presents a novel procedure to estimate the wave parameters226

in coastal areas, considering extreme grazing incidence angles227

without external calibration, neither the definition of an empir-228

ical MTF. Our method employs the filtering and interpolation229

approaches to mitigate the shadowing effects so as to enhance230

the sea clutter raw radar data (beam by beam). We study the231

shadowing effects that have not been studied yet in detail,232

considering its influences on sea clutter intensities along range233

(i.e., the distance from the detected target to the transmitter234

antenna) [44].235

The proposed methodology uses the data sets acquired236

from a FURUNO FR-8252 X-band marine pulse radar, whose237

acquisition system was developed by the Telecommunication238

and Signals Group (GT&S), Universidad del Norte, Barran- 239

quilla, Colombia [11]. The radar system was deployed at 240

onshore locations during different field campaigns that took 241

place in beaches from the Caribbean Colombian coast (Salgar 242

beach, Colombia, on February 2014 and June 2015) and 243

the Western Mediterranean coast (Castelldefels beach, Spain, 244

on March 2018). Five different preprocessing approaches were 245

tested in order to determine the most appropriate technique 246

to estimate the coastal sea state parameters with high res- 247

olution and accurate mitigating shadowing. Results derived 248

from each proposed technique were compared with in situ 249

data obtained by a Nortek acoustic wave and current (AWAC) 250

sensor. Section IV gives more details about the methodology. 251

In summary, the main contributions of this paper are as 252

follows. 253

1) Unlike previous studies that use offshore empirical MTF 254

to correct the estimation of coastal wave parameters, 255

the proposed methodology considers intensity data of 256

each beam along range, taking advantage of the high 257

spatial resolution of radar systems (6 m, in this case). 258

2) To the best of our knowledge, this is the first method 259

that identifies the intensities affected by shadowing 260

modulation along range and corrects them using the 261

filtering and interpolation approaches to fill in the shaded 262

areas. 263

3) The system was designed using the data acquired by 264

coastal radar stations in nearshore applications, con- 265

sidering extreme grazing incidence angles from the 266

electromagnetic signal over the sea surface without 267

calibration. 268

4) The procedure is able to reconstruct the wave frequency 269

spectrum at each pixel with a spatial resolution of 6 m, 270

covering an area of more than 5 km2. As a result, 271

the estimation of coastal wave parameters derived from 272

the X-band radar systems can be compared with hun- 273

dreds of in situ sensors monitoring the total coverage 274

area of the radar system at the same time. However, 275

spatial resolution improvements involve restrictions 276

in the temporal sampling domain [1]. Although the AQ:8277

X-band marine radars map hundreds of meters, cov- 278

ering large areas during short timescales, their bene- 279

fits often compensate with lower accuracy, and higher 280

computational needs to be compared with the in situ 281

measurements. 282

This paper is outlined as follows. Section II gives a brief 283

description of the field sites and all the data sets used for the 284

analysis. Section III provides the details of the X-band marine 285

radar system used for the sea clutter acquisition. Section IV 286

is devoted to presenting an empirical characterization of shad- 287

owing effects in coastal areas, defining the methodology to 288

adjust the threshold value for the interpolation approach. The 289

methodology to estimate wave parameters, such as f p , Tp, θp, 290

k p, λp , and Hs , is presented in Section V. Section VI deals 291

with the comparison of the sea state parameters estimation 292

and the measurement provided by an acoustic Doppler current 293

profiler (ADCP) sensor: Nortek AWAC system, which was 294

installed at a depth level of 8 m in the coverage area. 295
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TABLE I

SUMMARY OF THE DATA SETS CONSIDERED FOR THE STUDY

Fig. 1. Salgar beach location and equipment setup in the Salgar Castle (20 m
above the MSL: LAT = 11◦1′5.772′′ N, LON = 74◦56′29.796′′ W).

A discussion is presented in Section VII. Finally, Section VIII296

concludes this paper.297

II. DATA SETS AND FIELD SITES DESCRIPTION298

This paper considers three data sets acquired from two299

different beaches: Salgar beach in Colombia and Castelldefels300

beach in Spain. Table I summarizes the dates and the number301

of sea states (n) considered. It also includes the code used302

hereinafter to refer to each set. The sea state conditions303

detailed in Table I are the average peak values of Tp and304

Hs derived from AWAC sensors, as will be explained in305

Section III.306

In this paper, we use S1 and S2 data sets (see Table I) for307

the characterization of shadowing modulation throughout the308

distance away from the radar antenna location. S3 data set309

runs from the Salgar field campaign on June 2015 are used310

to illustrate the technique and to explain the initial results.311

The technique is then further tested using the data collected312

in the MUSAFELS experiment, conducted from March 14 to313

19, 2018, at the Castelldefels beach (C1–C6 data sets) over a314

wide range of wind and wave conditions.315

A. Salgar Beach316

Salgar beach is one of the beaches of Puerto Salgar, a village317

in the municipality of Puerto Colombia seven miles from318

Barranquilla, in the Colombian Caribbean region. The wide319

belt of beaches begins on the province of Sabanilla and320

ends on the rocky cliff of Salgar Castle, a National Historic321

Landmark. Salgar is located on the Northwestern coast of the322

Caribbean Sea, as shown in Fig. 1. From a morphodynamic323

point of view, Salgar is an intermediated transverse bar and324

rip beach (TBR) with high wave energy dissipating along325

its coastline. It is discontinuous along the shore, because of326

Fig. 2. Castelldefels beach location and equipment setup in the
Marítimo restaurant (13 m above the MSL: LAT = 41◦15′54.440′′ N,
LON = 1◦59′50.628′′ E).

alternation of shallow bars and deeper rip channel. Typically, 327

Hs is below 2 m from the northeast, according to in situ data 328

from the directional wave buoy located at Bocas de Ceniza, 329

Colombia [45], [46]. As depicted in Fig. 1, the field site is 330

located at 11◦1′5.772′′ N, 74◦56′29.796′′ W, on the terrace 331

floor of the Salgar Castle. 332

Salgar beach is a shocking case of coastal erosion 333

[47], [48]. Some civil coastal defense structures, such as 334

groynes, have been constructed in the Salgar beach for damage 335

mitigation and protection of this vulnerable zone. Regard- 336

ing the hazard rating (i.e., the qualitative ranking proposed 337

in [49]–[52] to measure the beach hazard levels, considering 338

extreme influence of breaking waves, turbulence, waves set- 339

up/set-down, rip currents, and extreme beach morphology 340

changes [45]), Salgar beach corresponds to a moderately haz- 341

ardous area, with a hazard rate of 6/10 due to the groynes 342

that generate topographic rips [45]. It is one of the highest 343

rates in the Colombian Caribbean coast. Besides, Salgar beach 344

has a C public risk level, mainly because of human overuse 345

and touristic exploitation [45]. Therefore, sea state needs to 346

be continuously monitored to manage the timely preventive 347

actions against these issues. 348

B. Castelldefels Beach 349

Castelldefels is an open, tideless, and dissipative beach, 350

located approximately 20 km southwest of Barcelona, 351

Spain, facing southward at the Western Mediterranean Sea, 352

as depicted in Fig. 2. Castelldefels beach is about 4.5-km 353

long, and it belongs to the stretch of the Llobregat river delta. 354

The study site is located at 41◦15′54.440′′ N, 1◦59′50.628′′
355

E, scanning 5 km2 with the radar signal. This beach is 356
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Fig. 3. General layout of the marine radar and the in situ sensors in (a) Salgar campaign (S1–S3 data sets) and (b) MUSAFELS campaign (C1–C6 data
sets). Here, hant and h correspond to the antenna height above MSL and the water depth, respectively.

mainly comprised of sand with a uniform sediment size of357

0.3 mm. Generally, waves come from both East-Southeast358

and the Southwest, but the highest waves come from the359

East (mainly between September and March) because of the360

strongest influence of winds that are presented from this361

direction [53], [54].362

III. EXPERIMENTAL SETUP363

Sea clutter data and the true values of wave parameters are364

obtained through the X-band radar images and a set of in situ365

measurements, respectively. S1 and S2 data sets were derived366

from two radar antennas installed on the first and terrace floors367

in Salgar Castle at 10 and 20 m above the MSL, respectively.368

For S3 experiment, a single X-band marine radar was deployedAQ:9 369

on the same location than S2. Radar antenna was oriented 27◦
370

NW. An ADCP was installed at 8-m water depth to evaluate371

the X-band radar performance.372

For MUSAFELS campaign (C1–C6 data sets), an X-band373

radar was deployed on the roof of a building at 13 m above374

MSL with a field view of 180◦. The antenna was oriented375

193◦ SW. Wave data were obtained from an array of three376

wave gauges (ADV 1–3) located at 3.8-, 5-, and 7-m water377

depths, respectively. Besides, an ADCP sensor was deployed378

at 21-m water depth inside the footprint of the radar antenna.379

Fig. 3 gives a general layout of the marine radar and in situ380

sensors that were deployed in the Salgar beach [see Fig. 3(a)]381

and the Castelldefels beach [see Fig. 3(b)].382

A. X-Band Radar Remote Sensing System383

In this paper, a commercial X-band marine radar FURUNO384

8252 was used for scanning the coastal area. In particular,385

the pulse nautical radar was equipped with a 6-ft-long X-band 386

antenna (9.41 GHz) that rotates in the horizontal plane (HH 387

polarization) with a rotation rate of 48 rpm, which results in 388

a temporal resolution of 1.25 s. The output peak power of 389

the system is 25 kW, and the radar field of view was 180◦
390

for the measurement campaigns, thereby the coverage area 391

corresponds to 5 km2. The radar system transmits the short 392

pulses whose length is 80 ns with a horizontal beamwidth 393

of 1.35◦. 394

The nominal range resolution �rRADAR relies on the length 395

of the electromagnetic transmitted pulses τ , as shown in the 396

following equation: 397

�rRADAR =
cτ

2
(1) 398

where c is the speed of light. Thus, a τ = 80 ns pulse 399

length corresponds to a range resolution (�rRADAR) of 12 m. 400

However, the sample frequency of the acquisition system could 401

be selected in order to obtain a desired range resolution for 402

the digitized images [21]. 403

The range resolution designed for the system is obtained by 404

�r =
c

2 fADC
(2) 405

being �r = 6 m, where the azimuthal resolution is 0.1◦ and 406

the sampling frequency fADC = 25 MHz for the analog- 407

to-digital converter (ADC) [21]. Table II summarizes some 408

configuration parameters of the radar system [55]. 409

Fig. 4 shows the block diagram of the X-band radar system. 410

It employs an FPGA Cyclone I core that incorporates a 411

clock signal of 50 MHz, a 10-bit ADC acquisition card 412

that allows mapping the digitized echo intensity from 0 to 413

1023, and a LAN controller to send the sea clutter data 414
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Fig. 4. Block diagram of the radar acquisition system and settings.

TABLE II

PARAMETERS OF THE RADAR ACQUISITION SYSTEM FURUNO FR-8252

to a computer via Ethernet port connection [11], [21]. Echo415

signals received from the sea surface are visualized in the416

Radar Display Unit. Then, the acquisition system discretizes417

the sea clutter data using Trigger, Heading, and Bearing418

signals for synchronization. Thereby, the time sequence of419

raw radar images is acquired and transmitted [11], [21]. The420

radar system measures the sea surface through off-line spectral421

analysis. Sea state parameters as θp, Tp , and Hs and temporal–422

spatial images of the sea surface elevation can be obtained.423

B. In Situ Measurements424

Wave data from the three bottom-mounted pressure gauges425

(ADV 1–3) are obtained, considering the pressure field asso-426

ciated with a progressive wave and the unsteady Bernoulli427

equation. Basically, the acoustic Doppler velocimeter (ADV)428

gauges sense the pressure fluctuations, and then, we calculate429

the associated water surface elevation by least-square fitting430

pressure data to a Fourier series and applying (3) and (4) [56].431

These expressions consider that the pressure measured by the 432

gauge is comprised by a hydrostatic term, which does not rely 433

on the presence of waves, and an oscillating dynamic pressure 434

as a result of the presence of wave motion. Considering the 435

following equations: 436

η =
pD

ρgK p(−h)
(3) 437

K p(−h) =
1

cosh(kh)
(4) 438

where pD is the dynamic pressure that is isolated by subtract- 439

ing the mean hydrodynamic pressure, ρ is the ocean water 440

density, g is the acceleration due to gravity, and K p(−h) the 441

pressure response factor, the free sea surface displacement η 442

is estimated, knowing the wavenumber values k. The linear 443

dispersion relation could be used for determining k, as shown 444

in the following equation: 445

ω2 = gk tanh(kh) (5) 446

being h the water depth of the installed gauge and ω the 447

angular frequency of the reconstructed waves. 448

On the other hand, the X-band radar scanned the sea 449

surface every 5 min during the Salgar beach campaign, but the 450

deployed ADCP provides currents and wave data only 20 min 451

every hour. Therefore, the outputs of the X-band radar are 452

averaged every hour, and the resulting sea state parameters are 453

compared with the in situ data in order to minimize the error 454

produced by no-matching output time between the X-band 455

radar data set and the in situ measurements. 456

Although the three bottom-mounted pressure gauges (ADV 457

1–3) operated during 210 s every 30 min and the AWAC 458

sensor worked twice each hour, collecting sea state data 459

during 20 min on each run for the MUSAFELS experiment, 460

the X-band radar worked continuously. Therefore, the time 461
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Fig. 5. Polynomial approximation from the mean RCS collected by the radar antennas located at (a) 10 m and (b) 20 m above MSL. Red line represents
the best third-order polynomial function fit to the average RCS (black dots) of each antenna height.

exposure radar images were truncated until the measurement462

period is limited by the in situ sensors.463

IV. SHADOWING CHARACTERIZATION464

In order to characterize the sea clutter intensities affected465

by shadowing modulation, each radar antenna height of the466

S1 and S2 data sets corresponds to a stochastic process that467

has its own realizations along range. The sample space (
) of468

these two stochastic processes is made from 200 realizations469

corresponding to the intensities of the highest variance beam470

along range from the sea clutter images. A prefiltering is471

first applied in order to identify the highest variance beam472

in the sea clutter image, eliminating echo signals received473

from buildings, vessels, land, and other objects. If it is not474

done, the highest variance beam may correspond to nonclutter475

signals distorting the analysis [11], [12].476

The variation of shadowing along range has a key role477

in estimating wave parameters, such as Hs [57]. Con-478

sidering that the geometric shadowing occurs when any479

echo signal is received from the smallest and obstructed480

waves forming hidden and noisy areas in the sea clutter481

images [40], [42], [43], [58], two methods for counting the482

amount of intensities affected by shadowing are proposed. As a483

first step, the mean radar cross section (RCS) of each antenna484

height is fit to a third-order polynomial function since the485

radar equation explains that the power decay along range is486

cubic [43]. Fig. 5(a) and (b) presents the polynomial function487

fit to the mean RCS at 10 and 20 m above the MSL, respec-488

tively. The proposed methods for shadowing characterization489

are as follows.490

Method 1: It considers that the intensities affected by491

shadowing are those below the polynomial approxima-492

tion at each range. The red line in Fig. 5 corresponds493

to the adjusted threshold considered in this method,494

which changes for each distance from the radar antenna.495

Likewise, the black dots correspond to the mean RCS.496

Method 2: It takes into account that shadowing can497

be identified, counting all the echo intensities that are498

below the smallest value of the polynomial approxima-499

tion, which is usually reached at 2 km away from the500

radar antenna, as shown in Fig. 5. After that distance,501

Fig. 6. Descriptive statistical measures of the stochastic processes with
respect to the range: (a) mean, (b) median, (c) mode, (d) standard deviation,
(e) maximum, and (f) minimum of the echo intensities along range in gray
levels (0–255), and (g) kurtosis coefficient (i.e., the fourth standardized
moment, κ) along range considering the mean amplitude values. Red and
black dots represent the measured radar data at 10 and 20 m above MSL,
respectively. Each distance considers 200 intensity points at both heights.

there are no significant differences between the averaged 502

intensities. Unlike the previous method, the threshold 503

value does not change along range, but it may vary for 504

different sea state conditions. 505

The proposed methods consider principles of geometric 506

shadowing along the surrounding azimuth area of the highest 507

variance beam. However, they can be applied to partial shad- 508

owing processes because the echo signal from shadowed areas 509

is always weaker than the backscatter signal from illuminated 510

facets [42]. This assumption makes sense since radar SNR is 511

directly derived from wave intensity and variance [11], [12]. 512

Due to the azimuth direction of the highest variance beam 513

matches properly with the wave direction, it provides the most 514

accurate description of the current coastal wave conditions 515

and allows searching an appropriate threshold to explain 516

shadowing. Besides, we focus on range dependence instead 517

of azimuth dependence since waves approach the shoreline in 518
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Fig. 7. Scatter plots of the probability of shadowing along range, considering (a) method 1 and (b) method 2. Square markers and black dots represent the
percentage of intensities affected by shadowing at 10 and 20 m above MSL, respectively. Each distance considers 200 intensity points at both heights.

coastal areas due to bottom refraction (unlike offshore stations)519

and the azimuth dependence could be neglected [43].520

Basic statistical measures are computed for the two sto-521

chastic processes of interest. Fig. 6 depicts the mean, median,522

mode, standard deviation, and maximum and minimum values523

of the echo intensities along range in gray levels (0–255).524

According to Fig. 6, a more stable variance is observed from525

the intensities captured at 20 m (black dots) than the echo526

signals obtained at 10 m above MSL (red dots). Variance peaks527

arise due to the radar antenna delay and the original operation528

of a pulse X-band radar [25], [59].529

Fig. 6(g) depicts the kurtosis (κ) behavior using the mean530

RCS from 200 intensity points at each distance. Since kurtosis531

is a measure of how outlier-prone a distribution is, we found532

the mean kurtosis value (κ̄) to characterize the entire data533

set along range. As it can be seen, majority of points are534

concentrated around κ ≈ 3 for both heights. Indeed, κ̄ is535

2.97±0.38 and 3.04±0.40 for data set collected at 10 and 20 m536

above MSL, respectively. Hence, data behave as a Gaussian537

distribution at both heights. Besides, 11.8% and 15.4% of total538

kurtosis data (416 distances) are higher than 3 ± σκ̄ at 10 and539

20 m above MSL, respectively. Hence, it can be concluded540

that the intensity data at both heights are normally distributed,541

and they can be described as a mesokurtic distribution with a542

great concentration around the mean values. It is worth to note543

that the maximum κ is obtained in the most remote distance,544

mainly more than 2 km away from the radar antenna, taking545

into account the data set at 10-m height. Higher κ values546

are presented for nearshore distances (less than 300 m from547

the antenna). Considering Fig. 6, these irregular areas have548

been eliminated from the analysis to avoid including greater549

variability in the process.550

Fig. 7(a) and (b) depicts the scatter plots from the probabil-551

ity of shadowing along range, considering methods 1 and 2,552

respectively. According to Fig. 7(b), the number of intensities553

affected by shadowing increases when the distance from radar554

antenna also increases, being affected up to 60% of the total555

intensities in the most remote areas. It is in agreement with556

the hypothesis proposed in [57] for synthetic radar images.557

However, it does not occur for method 1, considering the558

irregular behavior along range depicted in Fig. 7(a).559

TABLE III

TOTAL NUMBER OF INTENSITIES AFFECTED BY SHADOWING ALONG

RANGE AND CHANGE PERCENTAGES

Table III shows the percentages of change from the total 560

number of intensities affected by shadowing at 10 and 20 m 561

above MSL for methods 1 and 2. These data are the measure of 562

average change from the total shadowing effect. Considering 563

method 2, the percentage of change between the radar antenna 564

heights at 10 and 20 m exceeds 5%, unlike the results from 565

method 1 are below 5%. In general, this result allows inferring 566

that if the radar antenna height decreases, the shadowing 567

effects increase, as expected. However, an analysis of vari- 568

ance (ANOVA) test is carried out to validate that method 2 is 569

the most appropriate to explain shadowing. 570

Table IV summarizes the ANOVA results for method 2 using 571

the decomposition of squares sum [60]. The radar antenna 572

height considers two levels (10 and 20 m above MSL) 573

with 200 repetitions per range. The entire process considers 574

284 ranges from 300 to 2000 m with a spatial resolution 575

of 6 m, resulting in 568 surveyed data. The critical F- 576

value of the Fisher test is lower than the observed F-value. 577

Thereby, it indicates with a confidence level of 95% that the 578

radar antenna height is a significant factor for explaining the 579

shadowing modulation effects in sea clutter images. Similarly, 580

because P-value (0.0006) is lower than α = 0.05, there is a 581

statistically significant difference between the means of the 582

radar antenna heights considered. 583

To validate the ANOVA results, the assessment of normality, 584

homoscedasticity, and independence of residuals assumptions 585

is performed [60]. Fig. 8(a) illustrates the normal probability 586

plot of the residuals obtained from the ANOVA test. Residuals 587

comply with the normality assumption. Fig. 8(b) depicts 588

a scatter plot of the probability of shadowing against the 589

radar antenna height above MSL. It can be seen that both 590

heights present a similar variance, indicating that ANOVA 591



IE
E
E
 P

ro
o

f

NAVARRO et al.: SHADOWING MITIGATION APPROACH FOR SEA STATE PARAMETERS ESTIMATION 9

TABLE IV

SIMPLE ANOVA RESULTS FROM THE DATA OF THE RADAR ANTENNA HEIGHTS (10 AND 20 m ABOVE MSL) CONSIDERING METHOD 2

Fig. 8. Validation of the ANOVA assumptions. (a) Normal probability plot
to validate the normality of residuals. (b) Scatter plot of radar antenna heights
and the probability of shadowing to evaluate the homoscedasticity. (c) Esti-
mated autocorrelations for ANOVA residuals to examine the independence
assumption. Dashed line depicts the confidence interval limits of 95% from
the first 24 autocorrelation coefficients whose values are shown as gray bars.

residuals comply with the homoscedasticity assumption.592

Besides, the homoscedasticity assumption is examined running593

a Bartlett test. The P-value is 0.227 (greater than α = 0.05).594

Thereby, it can be concluded with a confidence level of 95%595

that there is no statistical difference between the variances by596

height. Considering this behavior, it is not possible to reject597

the homoscedasticity assumption. In addition, the confidence598

interval of Lag 1 (i.e., the first delay of the autocorrelation599

function) is [−0.065, 0.082] that contains zero value. This fact600

analytically validates the independence of residuals. Fig. 8(c)601

shows 24 estimated autocorrelations coefficients from the602

ANOVA residuals and the confidence interval of 95% around603

zero. Since all the probability limits contain the estimated604

coefficient, the autocorrelation coefficients do not have a sta-605

tistically significant correlation, implying that the time series606

are completely random.607

An LSD test (Fisher’s Least Significant Difference between608

means) is performed to determine if the radar antenna heights609

lead to a different shadowing behavior [60]. Table V summa-610

TABLE V

RESULTS FROM FISHER’S LEAST SIGNIFICANT DIFFERENCE (LSD) TEST

rizes the LSD results. There are two homogeneous zones of 611

operation, considering the LSD value of 0.031. Thus, when 612

the radar antenna height decreases, the amount of intensities 613

with shadowing effects increases, being in good agreement 614

with the range dependence of shadowing. We conclude that 615

method 2 allows a better characterization of the shadowing 616

effects throughout range. 617

V. PROPOSED APPROACH FOR SEA STATE 618

MONITORING IN COASTAL AREAS 619

Considering the shadowing characterization described ear- 620

lier, it is possible to remove the shadowing effects on 621

sea clutter images, applying image-enhancement techniques 622

based on the filtering and interpolation approaches. The 623

proposed method can be described following the steps pre- 624

sented in Fig. 9. The procedure considers two main stages: 625

a preprocessing approach and an inversion technique, which 626

are described in detail in this section. The preprocessing 627

approach aims to compensate the distortions introduced by the 628

radar acquisition process and shadowing effects. The inversion 629

technique applies the Gauss and Gabor filters on the image 630

spectrum instead of an empirical MTF adjust to estimate the 631

sea state parameters from the directional wave spectrum. 632

A. Preprocessing Approaches 633

To determine the most appropriate image-enhancement tech- 634

nique for improving the estimation of sea state parameters 635

in coastal areas, five different approaches based on filter- 636

ing and interpolation are examined. The proposed methods 637

are: 1) filtering; 2) interpolation with the adjusted threshold; 638

3) interpolation with the fixed threshold; 4) filtering and 639

interpolation with the adjusted threshold (in this order); and 640

5) interpolation with the adjusted threshold and filtering (in 641

this order). The assessment of each technique considers the 642

recognition of clear wave patterns, the stability of the sea 643

clutter intensities along range, and the mitigation of shadowing 644

effects in the sea clutter images. It is worth to note that the 645

preprocessing approaches are applied on each intensity beam 646

of the entire raw sea clutter images collected by the X-band 647

radar system in the coverage area. 648

1) Filtering: The filtering approach considers the design of 649

a zero-phase Butterworth low-pass (LP) selective filter with 650

order n = 44 and cutoff frequency of 0.5 Hz. The wind 651
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Fig. 9. Flow diagram of the data processing approach for sea state monitoring in coastal areas.

wave frequencies are considered to be between 0.033 and652

0.485 Hz [61]. Fig. 10(a) illustrates the raw and filtered RCS653

from the highest variance beam of the sea clutter image654

obtained by the X-band radar from S3 data set at 11:08 UTC.655

It can be seen that the LP filter intensifies lower intensities and656

reduces higher sea clutter data at the most remote distances657

from the radar antenna.658

2) Interpolation: The interpolation approach considers that659

the shadowing modulation and the power decay of the660

radar signal along range can be compensated, interpolating661

the lowest intensities using at least two neighboring pixels.662

The threshold value from the interpolation procedure defines663

whether an RCS is affected by shadowing modulation. Con-664

sidering method 2 of the empirical shadowing characteri-665

zation described earlier, pixels from the sea clutter images666

whose intensities are lower than the proposed threshold are667

considered to be affected by shadowing. In this regard, two668

linear interpolation approaches are proposed. The first one669

considers a fixed threshold of 350 units of intensity quantized670

to 10 bits (which corresponds to a gray level of 87), taking671

into account the methodology proposed in [62]. The second672

approach proposes an adjusted threshold that has the value of673

the smallest intensity obtained from the third-order polynomial674

approximation that is fit to the mean RCS along range.675

Fig. 10(b) presents the raw and interpolated RCS from the676

highest variance beam of a sea clutter image (S3 data set at677

11:08 UTC). Both interpolation approaches with fixed (dark 678

blue dotted line) and adjusted threshold (light blue dotted 679

line) are considered. As depicted in Fig. 10(b), the adjusted 680

threshold value remains constant along range for the beam of 681

interest. However, it can vary with time and wave conditions, 682

whereby the interpolation approach considers a threshold value 683

that is adjusted for each radar image. In addition, the overlaid 684

plot in Fig. 10(b) shows that the interpolation with fixed 685

threshold causes a significant distortion on the sea clutter 686

signal along range, changing the sea state information obtained 687

from the X-band radar images. 688

3) Combination of Filtering and Interpolation With Adjusted 689

Threshold Approaches: Considering the advantages obtained 690

by using the filtering and interpolation approaches on raw 691

radar images, the improvement resulting from the combination 692

of these both techniques is evaluated. As already stated, 693

the interpolation approach with adjusted threshold significantly 694

reduces the shadowing effects causing irregular areas in the 695

most remote ranges, and the LP filter intensifies lower RCS 696

and reduces higher sea clutter data. The a priori results suggest 697

that the combination of both approaches can improve the 698

estimation of sea state parameters. The combinations consider 699

the filtering and interpolation as well as the interpolation and 700

filtering techniques that are applied on the raw radar image in 701

this order. 702
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Fig. 10. Preprocessing techniques in comparison to raw RSC: (a) filtering (red line), (b) interpolation with the adjusted threshold (light blue line) and fixed
threshold (dark blue line), and (c) using the combination of filtering and interpolation approaches from the highest variance beam intensities of S3 data set
at 11:08 UTC. Black and orange dotted lines represent the raw and the interpolated and filtered RCS, respectively. Green line corresponds to the filtered and
interpolated sea clutter data.

The overlaid plot in Fig. 10(c) depicts the sea clutter data703

along range from the highest variance beam of the raw radar704

and the processed image using the combinations of filtering705

and interpolation approaches. According to Fig. 10(c), when706

the radar images are interpolated after applying the LP filter,707

the RCS of the shaded areas is filled with information of the708

surrounding pixels, whereby sea state data are intensified in709

these regions.710

Fig. 11 shows the differences between gray level intensities711

obtained from each preprocessing approach and the raw radar712

amplitudes, which are normalized by the maximum gray level713

value (255). According to Fig. 11(a), wave patterns imaged714

by the radar system are clearer than those observed in the raw715

radar data, reducing higher sea clutter data at the most remote716

distances using the LP filter. It can be seen that the adjusted717

interpolation reconstructs the wave fields and enhances the718

raw radar data in Fig. 11(b). However, in some areas, mainly719

more than 2 km away from the radar antenna, the interpolation720

technique cannot be properly applied since there are not721

sufficient neighboring pixels whose intensities are higher than722

the threshold resulting in irregular sea clutter areas [25], [59].723

As shown in Fig. 11(c), the wave patterns imaged by the724

radar are more distinguishable using the LP filter and the725

interpolation approach, providing clearer wave field informa-726

tion. Section VI examines the improvement resulting from727

each preprocessing technique to estimate sea state parameters728

through the spectral analysis.729

Afterward, time-sequence regions of 128 × 128 pixels are730

built centered at in situ sensor coordinates (r0) or at a range731

of interest from the highest variance beam. Then, processed732

regions are turned on gray scale, and intensities at r0 are saved733

for all ti .734

B. Inversion Technique735

The 3-D-FFT from the processed radar time sequence is736

computed, and the Gauss and Gabor spatial filters are applied.737

Fig. 11. Normalized differences between the raw radar image and processing
images acquired in the Salgar beach from S3 data set at 11:08 UTC using
(a) filtering, (b) interpolation, (c) filtering and interpolation, and (d) interpo-
lation and filtering approaches.

The effect of the 2-D Gaussian smoothing is to blur the 738

radar image, eliminating the dependence on modulation effects 739

along range. As depicted in Figs. 12(a) and 13(a), the Gauss 740

high-pass (HP) filter eliminates the peak spectral intensity that 741

appears around f = 0 Hz due to the mean RCS decay along 742

range direction that can be defined as a function of the antenna 743

height above the mean MSL. The Gabor BP filter intensifies 744

the swell peaks that appear in the directional (kx , ky) spectrum, 745

as shown in Figs. 12(b) and 13(b). The spectral peaks are 746

identified convolving a square window of ones (3 × 3 pixels) 747

with the 2-D wave spectrum filtered through the Gaussian 748

smoothing. This window moves around the overlapping region 749

of equal size inside the 2-D spectrum. The 2-D-FFT is 750

obtained from the sum of the magnitudes derived from 3-D 751

Fourier coefficients in the third dimension (i.e., time). The 752

maximum values of this convolution correspond to the swell 753

peaks (kxmax, kymax). It is worth to note that the kmax vector 754

has two maximum values due to the symmetrical form of the 755

directional wave spectrum. Considering these spectral peaks, 756



IE
E
E
 P

ro
o

f

12 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 12. (a) HP Gauss filter. (b) BP Gabor filter.

Fig. 13. (a) Raw and (b) processed directional wave spectra using the Gauss
and Gabor filters to suppress the spectral noise components.

the peak wavenumber, k p = k2
xmax

+ k2
ymax

(1/2)
, and the peak757

wavelength, λp = 2π/k p , are estimated.758

Analytically, the Gauss �̂(kx , ky) and Gabor 
̂(kx , ky)759

filters are760

�̂(kx , ky) = exp

(

−|k|2

2σ 2
kx

)

− exp

(

−|k|2

2σ 2
ky

)

(6)761


̂(kx , ky) = exp

(

−|(kx − kxmax) + (ky − kymax)|
2

2σ 2
k

)

+762

exp

(

−|(kx + kxmax) + (ky + kymax)|
2

2σ 2
k

)

(7)763

where |k| corresponds to the magnitude of the wavenumber764

vector defined as k2
x + k2

y
(1/2)

. Besides, σkx , σky , and σk are765

the standard deviations that define the filter bandwidth in the766

corresponding dimensions. The spatial filters are multiplied767

with the complex Fourier coefficients of the directional wave768

spectrum in order to remove the Fourier coefficients with769

nonrelevant information about sea state.770

Fig. 13(b) depicts the processed directional spectrum771

obtained by S3 data set at 11:08 UTC using both the Gauss772

and Gabor filters, in this order. The directional spectrum has773

one dominant spectral wave direction around 25.6◦ (northeast).774

Sea surface elevation η̃(r, t) is reconstructed by the inverse775

Fourier transform (3-D-IFFT) using the filtered directional776

spectrum [see Fig. 13(b)]. It is worth to note that η̃(r, t)777

corresponds to not properly scaled values in gray levels of778

the true sea surface elevation η(r, t) because sea clutter data779

directly depict the electromagnetic echo intensities, rather than780

the sea surface displacement [22]. Here, η̃(r0, t) represents the781

sea surface elevation at range r0 that is scaled as η(r0, t) = 782

cZ η̃(r0,t), being c defined as 783

c =
△r × r0 tan(△ϕ) × tan(�)

2 max(η̃(r0, t) − η̃(r0, t))
(8) 784

and Z η̃(r0,t), the normalization of the η̃(r0, t) values with 785

respect to the noise level using its standard deviation, is given 786

by 787

Z η̃(r0,t) =
η̃(r0, t) − η̃(r0, t)

ση̃(r0,t)
(9) 788

where △r and △ϕ are the spatial resolution and the horizontal 789

beam resolution of the radar system (6 m and 1.35◦, respec- 790

tively). In addition, the maximum value of η̃(r0, t) is used 791

for normalizing the area computed in the numerator of the 792

relation. Besides, the grazing incidence angle � is defined 793

as arctan(hant/r0), being hant the radar antenna height [40]. 794

Finally, ση̃(r0,t) and η̃(r0, t) represent the standard deviation 795

and the mean value of η̃(r0, t), respectively. 796

Wave energy spectral density is obtained, considering the 797

temporal sequence of scaled η(r0, t) by using the Welch PSD 798

methodology. The Welch method divides each set of 128 sam- 799

ples into 16 overlapping Hamming windows of equal size to 800

compute periodograms. These periodograms are averaged to 801

obtain an adequate estimation of the wave spectral density. Hs , 802

Tp , and f p are estimated by means of the frequency spectrum 803

derived from the computed wave elevation map, taking into 804

account that Hs = 4E (1/2), where E is the energy of the 805

frequency spectrum and Tp = 1/ f p , where f p is the peak 806

frequency of the wave spectral density S( f ). 807

Wave energy spectra derived from radar data are compared 808

against the spectrum recorded by the in situ system as well as 809

the semiempirical JONSWAP spectrum proposed by Hassel- 810

mann et al. [63]. The JONSWAP formulation describes local 811

wind-generated seas with limited fecth defined as 812

S(ω) =
αg2

ω5
exp

[

−5

4

(ωp

ω

)4
]

γ r , r = exp

[

−

(

ω − ωp
)2

2σ 2ω2
p

]

813

(10) 814

where ω = 2π f is the wave angular frequency in radians, ωp 815

is the peak ω that is computed with the peak frequency f p 816

in Hz of the wave frequency spectrum, γ is the peak-shape 817

parameter that is usually chosen as 3.30, and σ is 0.07 for ω ≤ 818

ωp and 0.09 for ω > ωp . The values of γ vary approximately 819

from 1 to 6 even for a constant wind speed since γ is actually 820

a random variable normally distributed with mean 3.30 and 821

variance 0.62. However, γ is obtained from the analysis of 822

the measured data [64]. 823

In this case, γ is adjusted to 3.49 according to radar 824

measurements, and the constant αg2 is obtained from the 825

peak value of the wave frequency spectra S(ωp). In addition, 826

the mean value of the scale parameter, α, is 0.0267 with 827

a standard deviation of 0.0145. The values of these para- 828

meters are in good agreement with the analysis presented 829

in [65] for the Colombian Caribbean coast. The JONSWAP 830

formulation is used for the validation of sea clutter data 831

obtained from the radar system through the assessment of good 832
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TABLE VI

PERCENTAGE RELATIVE ERROR AND ABSOLUTE ERROR BETWEEN THE RADAR

ESTIMATION AND THE AWAC In Situ DATA

agreement between the radar wave frequency spectrum and the833

JONSWAP semiempirical spectrum.834

VI. RESULTS835

A. Salgar Beach Data Set836

The proposed algorithm uses regions of 128 × 128 pix-837

els from the digitized radar image. The sea state informa-838

tion derived from nine 128 time-sequence radar images sets839

(S3 data set) is analyzed in detail. According to hourly AWAC840

record, Hs was 1.92 and 1.93 m, Tp was 8.75 and 8.47 s,841

f p was 0.1142 and 0.1181 Hz, and θp corresponds to 21.61◦
842

and 25.65◦ from 09:29:17 and 10:29:17 UTC, respectively.843

Table VI presents the percentage relative error, R(r0), and the844

corresponding bias error, D(r0), between the X-band radar845

estimates χ̂(r0) of the ground truth values χtrue(r0) from846

the sea state parameters Hs and θp derived from the AWAC847

data, which are computed to measure the performance of the848

proposed techniques.849

Results show that Tp is estimated with the same accuracy850

using the different preprocessing approaches. This fact sug-851

gests that the enhancement procedure of the raw radar images852

does not affect the estimation of this sea state parameter that853

has been retrieved with high accuracy. From 09:29:17 and854

10:29:17 UTC, the estimation errors are 1.67% (−0.15 s) and855

1.59% (0.14 s) for Tp and 1.70% (1.88 mHz) and 1.56%856

(−1.79 mHz) for fp , respectively. In addition, k p and λp857

are estimated from the radar data using the directional wave858

spectrum, being retrieved as 0.0818 rad/m and 76.778 m,859

respectively.860

Analyzing the measurements in Table VI, the best perfor-861

mance is obtained from the filtered and interpolated radar862

images with an adjusted threshold. In this regard, the sig-863

nificant wave height was retrieved with a maximum error864

of 2.72% (about 0.05 m). The estimation errors of the peak865

period and the peak wave direction were below 0.15 s and866

2◦, respectively. As shown in Table VI, the significant wave867

height is overestimated by the interpolation with the adjusted868

threshold and by using the interpolation and filtering proce-869

dure. Besides, Hs is underestimated by the raw radar and870

the filtering method mainly because the shaded areas are still871

present. However, the assessment of the statistical difference872

among the estimation of the sea state parameters derived from873

each preprocessing method needs to be examined in order to874

Fig. 14. Comparison of the wave frequency spectra derived from the AWAC
record (black line), the X-band radar wave elevation maps (gray dashed line),
and the JONSWAP adjust (red line) from S3 data set using (a) raw, (b) filtered,
(c) interpolated with adjusted threshold, (d) filtered and interpolated, and
(e) interpolated and filtered time-sequence radar images.

identify whether the percentage of relative error is significant 875

and to determine a single preprocessing approach with the 876

highest resulting improvement. 877

Fig. 14 illustrates the comparison of the average frequency 878

spectra derived from the estimated wave elevation map using 879

different preprocessing approaches described earlier (dashed 880

gray line), the semiempirical JONSWAP spectrum adjusted 881

with the peak amplitude and frequency of the radar S( f ) 882

(red line), and the AWAC record (black line) at 8-m depth 883

at r0 = 1.4 km away from the radar antenna. Note that the 884
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Fig. 15. Scatter plots of Hs , Tp , and θp between the radar-retrieved data and
the AWAC record using all the preprocessing techniques. Circles depict the
estimates from the raw radar images. Triangles are the results from the filtering
approach. Triangles toward right markers represent the interpolation technique.
The filtering and interpolation are the square markers. Finally, the results from
the interpolation and filtering approaches are presented using the diamond
markers.

three spectra present the best agreement for the filtered and885

interpolated radar images. Besides, a good agreement between886

the spectra derived from the AWAC record and radar data887

is obtained. It is of interest to note that the shape of the888

JONSWAP spectrum does not completely coincide with the889

radar data because it considers older waves (i.e., waves whose890

ratio between their speed of propagation and the wind speed891

tends to infinity), but the measured waves are not necessarily892

saturated.893

B. Castelldefels Beach Data Set894

The proposed techniques are tested using the regions of 128895

× 128 pixels from the MUSAFELS data sets C2, C3, and C5,896

whose peak periods are higher than five times the temporal897

resolution of the radar system (5△t = 6.25 s). The other three898

data sets (C1, C4, and C6) will be used for discussing the899

strengths and weaknesses of the system in Section VII.900

Fig. 15 presents the scatter plot between the radar-retrieved901

data Hs , Tp , and θp and the AWAC-retrieved data for all the902

preprocessing techniques. From Fig. 15, it can be observed903

that the combination of filtering and interpolation approaches904

(square markers) has a better performance than the other pre-905

processing techniques. In this case, the correlation coefficients,906

r, between the radar estimates and the external reference are907

0.8, 0.91, and 0.46 for Hs , Tp, and θp , respectively. Besides,908

the root mean square error (RMSE) of the raw images is909

0.16 for Hs , but the RMSE of the best performance tech-910

nique is 0.12. Additionally, the scattered distribution is more911

concentrated when applying the combination of filtering and912

Fig. 16. Scatter plots of Hs between the radar-retrieved data and the ADVs
record using all the preprocessing techniques. Circles depict the estimates
from the raw radar images. Triangles are the results from the filtering
approach. Triangles toward right markers represent the interpolation technique.
The filtering and interpolation are the square markers. Finally, the results from
the interpolation and filtering approaches are presented using the diamond
markers. Red, blue, and green markers correspond to ADV-1 (h = 3.8 m),
ADV-2 (h = 5 m), and ADV-3 (h = 7 m) data, respectively.

interpolation approaches than the other techniques. In general, 913

it can be seen that Tp estimates are in good agreement with in 914

situ measurements for all the analyzed approaches. Therefore, 915

the preprocessing techniques do not significantly affect the 916

performance of this sea state parameter, as mentioned earlier 917

for the Salgar analysis. 918

To further verify the effectiveness of the filtering and inter- 919

polation approaches, Figs. 16 and 17 depict the scatter plots 920

for Hs and Tp , respectively, from March 16 to March 18 at 921

the ADV locations. According to these scatter plots, the best 922

performance preprocessing technique is the combination of 923

filtering and interpolation approaches with a correlation coeffi- 924

cient of 0.9, 0.85, and 0.86 for Hs radar estimates derived from 925

ADV-1 (h = 3.8 m), ADV-2 (h = 5 m), and ADV-3 (h = 7 m) 926

data, respectively. As mentioned earlier, Tp is estimated with 927

high accuracy for all the preprocessing approaches. However, 928

the performance for Hs radar estimates is gradually improved 929

when the distance from the radar antenna decreases. It could be 930

explained considering the shoaling theory and the morphology 931

of the Castelldefels beach that causes better-defined waves 932

with stronger echo intensities and higher wave heights in the 933

nearshore area than at the AWAC location (21-m depth). 934

Fig. 18(a) illustrates the comparison of the average fre- 935

quency spectra derived from the estimated wave elevation map 936

using the preprocessing approaches and the AWAC record 937

(black line). Fig. 18(b)–(d) considers the ADV 1, 2, and 938

3 records, respectively. Note that the four spectra present 939

the best agreement for the filtered and interpolated radar 940



IE
E
E
 P

ro
o

f

NAVARRO et al.: SHADOWING MITIGATION APPROACH FOR SEA STATE PARAMETERS ESTIMATION 15

Fig. 17. Scatter plots of Tp between the radar-retrieved data and the ADVs
record using all the preprocessing techniques. Circles depict the estimates
from the raw radar images. Triangles are the results from the filtering
approach. Triangles toward right markers represent the interpolation technique.
The filtering and interpolation are the square markers. Finally, the results from
the interpolation and filtering approaches are presented using the diamond
markers. Red, blue, and green markers correspond to ADV-1 (h = 3.8 m),
ADV-2 (h = 5 m), and ADV-3 (h = 7 m) data, respectively.

images. Besides, the peak amplitude of the wave energy941

spectra increases when the distance from the radar antenna942

decreases because of the shoaling and beach morphology of943

the Castelldefels coast, as mentioned earlier. These experimen-944

tal results confirm that the filtering and interpolation technique945

can improve the accuracy of the sea state parameter estimates,946

even at closer distances from the radar antenna.947

VII. DISCUSSION948

A. Salgar Beach Data Set949

An ANOVA test is performed using the estimation of Hs950

obtained from different methods listed in Table VI. This951

sea state parameter gives relevant information to identify the952

statistical differences among the preprocessing methodologies.953

Results are summarized in Table VII. SoV, SS, MS, and dof954

refer to Source of Variance, Square Sum, Mean Square, and955

degrees of freedom, respectively.956

The ANOVA is computed using the decomposition of957

squares sum procedure [60] and considering nine Hs estimates958

retrieved from five different methods. This fact produces an959

entire process of 45 values of Hs analyzed. According to960

Table VII, the critical F-value (3.06) is lower than the observed961

F-value (61.07), whereby the preprocessing method signifi-962

cantly affects the estimation of Hs . In addition, a statistically963

significant difference can be observed with a confidence level964

of 95% since P-value is lower than α = 0.05.965

TABLE VII

ANOVA RESULTS FROM THE S3 DATA SET. Hs ESTIMATES ARE

OBTAINED FROM RAW RADAR IMAGES AND USING FILTERING,
INTERPOLATION, AND THE COMBINATIONS OF FILTERING

AND INTERPOLATION APPROACHES

According to the P-value of the Shapiro–Wilks test (0.477), 966

which is greater than α = 0.05, the residuals obtained from 967

the ANOVA test can be fit to a normal distribution with 968

a confidence level of 95%. The Bartlett test has a P-value 969

of 0.965 (greater than α = 0.05), whereby the homoscedas- 970

ticity assumption of residuals has complied with a confidence 971

level of 95%. Finally, the confidence interval of Lag 1 contains 972

the zero value [−0.1997, 0.2921] that allows the validation of 973

the independence assumption. 974

Once the ANOVA results have been validated, an LSD test 975

is performed to examine the mean values of Hs estimates 976

retrieved from different methods using the confidence intervals 977

of 95%. Table VIII summarizes the LSD results. It can be seen 978

that three homogeneous groups are identified, which do not 979

exceed the LSD value of 0.079 m. 980

As shown in Table VIII, Hs estimates are statistically equal 981

using the raw radar images and the LP filter approach. Besides, 982

these methods underestimate Hs since they have the lowest 983

mean values (1.75 and 1.795 m, respectively). In addition, 984

an overestimation of Hs is obtained from the interpolated 985

and the interpolated and filtered images without the statistical 986

difference between both procedures. Finally, the filtering and 987

interpolation approaches give the most accurate estimation of 988

Hs . It can be concluded that the filtering and interpolation 989

approaches allow removing shadowing in the coastal areas, 990

obtaining the estimation of the sea state parameters with the 991

highest resolution and accuracy. 992

B. Castelldefels Beach Data Set 993

In order to examine the performance of the filtering and 994

interpolation technique during very mild sea state conditions 995

(lower peak periods and wave heights), Fig. 19 depicts the bias 996

error, D(r0), including the C1, C4, and C6 data sets. It can be 997

seen that the estimation accuracy relies on both peak period 998

and significant wave height. The highest bias is obtained from 999

the waves of the C1 data set, where Tp < 6 s and Hs < 1000

0.45 m. Although only the data sets whose Tp are higher than 1001

five times the temporal resolution of the radar system were 1002

considered for testing the preprocessing techniques, Fig. 19 1003

shows that the bias error is acceptable even for waves whose 1004

Tp are lower than 6.25 s but with Hs ≥ 0.5 m. 1005

Since the filtering and interpolation technique depends on 1006

recording high SNR sea clutter data, the method needs suffi- 1007

cient wave action to operate properly. Therefore, it is possible 1008

to obtain the most accurate wave parameters’ estimates in the 1009

nearshore areas when the following conditions are fulfilled 1010

simultaneously: 1) Hs is at least 0.5 m and preferably higher 1011
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Fig. 18. Comparison of the wave frequency spectra derived from the radar-processed images and (a) AWAC, (b) ADV-1, (c) ADV-2, and (d) ADV-3 records
at 21-, 3.8-, 5-, and 7-m water depth, respectively. Black lines represent the spectra obtained from in situ measurements. Yellow lines show the corresponding
wave frequency spectra using raw radar data. Blue and green lines represent the radar-retrieved spectra from filtered and interpolated images, respectively.
Finally, the wave frequency spectra from the combination of filtering and interpolation approaches are depicted using red lines for the filtered and interpolated
time-sequence radar images and purple lines for the interpolated and filtered sea clutter images.

TABLE VIII

RESULTS OF FISHER’S LEAST SIGNIFICANT DIFFERENCE (LSD) TEST

Fig. 19. Scatter plot of the error bias of Hs estimates with respect to the
peak period, considering the AWAC record as the true values of Hs , which are
depicted as yellow square markers. Red circles represent the retrieved error
bias, and the black line corresponds to the first-order polynomial function that
best fit their behavior along Tp with r = 0.49.

and 2) Tp ≥ 4 s. Besides, the best quality data are collected1012

when Tp is higher than the temporal resolution of the radar1013

system and the first criterion is fulfilled. In this case, bias error1014

is almost zero, as shown in the right-hand side of Fig. 19.1015

VIII. CONCLUSION 1016

The proposed shadowing mitigation method allows the esti- 1017

mation of sea surface elevation maps in coastal areas through 1018

the sea clutter data obtained from the X-band marine radar 1019

systems in extreme grazing incidence angles without calibra- 1020

tion, neither the empirical MTF adjusts. This method considers 1021

the temporal sequences of processed marine radar images and 1022

inversion techniques based on the FFT analysis to calculate the 1023

wave properties in the frequency domain. The FFT analysis is 1024

physically meaningful when the intensity sea clutter signals 1025

are a reasonable proxy of actual wave conditions. Therefore, 1026

shadowing effects in extreme grazing incidence angles need 1027

to be removed in order to eliminate the noise and to improve 1028

the estimates of sea state parameters in shallow waters. The 1029

method compensates the distortions introduced by the radar 1030

acquisition process and the power decay of the radar signal 1031

along range applying image-enhancement techniques through 1032

a couple of image preprocessing steps based on the filtering 1033

and interpolation approaches. 1034

To mitigate shadowing, an investigation was carried out to 1035

empirically examine the behavior of the sea clutter intensities 1036

along range direction to determine the best threshold value 1037

for the interpolation approach that explains shadowing behav- 1038

ior. The characterization considers the data provided by the 1039
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X-band radar systems deployed at two different heights above1040

the MSL (10 and 20 m). Results reveal that an ever-increasing1041

amount of intensities affected by shadowing arises, as the1042

distance from the radar antenna increases as expected. In this1043

regard, the threshold value for the interpolation approach con-1044

siders the influence of the antenna height above the MSL on1045

shadowing modulation effects. Shadowing has not previously1046

analyzed in detail, considering beam intensities behavior along1047

range at two different radar antenna heights.1048

To develop the methodology, the improvement resulting1049

from five preprocessing approaches are evaluated, considering1050

the sea clutter data collected by an FR-8252 X-band marine1051

radar. An LP filter and an interpolation with the adjusted1052

threshold were proposed. Results show that the LP filter1053

intensifies lower intensities and reduces higher sea clutter1054

data in the most remote distances from the radar antenna.1055

In addition, the interpolation approach significantly reduces1056

the shadowing modulation effects. Wave patterns imaged by1057

the radar are more distinguishable by using the combination1058

of these two approaches (filtering and interpolation, in this1059

order). The inversion technique considers the HP Gauss and1060

BP Gabor filters instead of the MTF approach. The effect of1061

the Gaussian smoothing is to blur the radar image, eliminating1062

the dependence on the modulation effects along range. The1063

Gabor BP filter intensifies the swell peaks that appear in the1064

wave directional spectrum that contains relevant information1065

about the sea state.1066

Regarding filtering and interpolation approaches, errors for1067

Hs , θp, and Tp calculated as the difference between the1068

estimated and true data show a mean bias and a relative1069

value of 0.05 m (2.72%), 1.52◦ (5.94%), and 0.15 s (1.67%),1070

respectively. In addition, the directional wave spectrum yields1071

accurate θp, k p, and λp estimates using this preprocessing1072

technique. The results also show good agreement in the1073

overlaid plot of the wave frequency spectra derived from the in1074

situ data, radar estimates, and JONSWAP spectrum. It is worth1075

to note that Tp is generally estimated with high accuracy for1076

all the preprocessing techniques. Hence, the accuracy of Hs1077

estimates is the principal criteria that have been taken into1078

account to evaluate the effectiveness of each approach.1079

According to the LSD results, it can be concluded that Hs is1080

underestimated by the raw radar and filtering method mainly1081

because the shaded areas are still present. Besides, the inter-1082

polated and the interpolated and filtered radar images overes-1083

timate Hs . Finally, the filtering and interpolation approaches1084

give the most accurate estimations of Hs in the extreme graz-1085

ing incidence angles. The scattered distribution of Hs between1086

the radar estimates and the external reference data is more con-1087

centrated using the combination of filtering and interpolation1088

approaches than the other techniques, obtaining correlation1089

coefficients higher than 0.8 which are good outcomes for field1090

data sets. Therefore, the proposed method is able to remove1091

the shadowing and to reproduce, with high accuracy, the sea1092

state parameters. Finally, the best performance of the method1093

is achieved when Hs is at least 0.5 m and preferably higher1094

and Tp ≥ 4 s. However, the bias error of Hs is acceptable1095

even for waves whose Tp are lower than 6.25 s but with Hs ≥1096

0.5 m. The flexibility of the mobile radar acquisition system is1097

a significant advantage beside HF radar stations and offshore 1098

applications. 1099
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