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Abstract. Affine invariant regions have proved a powerful feature for object

recognition and categorization. These features heavily rely on object textures

rather than shapes, however. Typically, their shapes have been fixed to ellipses

or parallelograms. The paper proposes a novel affine invariant region type, that

is built up from a combination of fitted superellipses. These novel features have

the advantage of offering a much wider range of shapes through the addition

of a very limited number of shape parameters, with the traditional ellipses and

parallelograms as subsets. The paper offers a solution for the robust fitting of su-

perellipses to partial contours, which is a crucial step towards the implementation

of the novel features.

1 Introduction

Quite recently, affine invariant regions have made a rather impressive entrance into

computer vision (e.g. [1, 9, 12, 16, 18]). Soon, these features have shown to have great

potential for some of the long-standing problems in computer vision such as viewpoint-

independent object recognition (e.g. [15]),wide baseline matching (e.g. [17]), object

categorization (e.g. [2, 3]) and texture classification (e.g. [8]).

Affine invariant regions in a way ran contrary to what had been the dominant credo

in the recognition literature up to that point, namely that shapes, parts, and contours

were the crucial features, not texture. Yet, none of the shape related strategies had ever

been able to reach the same level of performance. Intuitively, it is difficult to accept

that shape shouldn’t play a bigger role. Also, strategies based on affine invariant re-

gions have not been demonstrated to recognize untextured objects and therefore offer

only a partial solution. Previous attempts to construct invariant shape based features are

usually limited to scale invariance and stick to circular shapes [7, 6], or try to find ge-

ometrically consistent constellations of other local simple features [10], which brings

additional computational burdain. We propose a generalization of affine invariant re-

gions. In contrast to those proposed in literature, these regions do adapt their shapes

to that of the local object contours. They are based on the fitting of affinely deformed

superellipses to contour segments. By combining several, partial superellipses a wide

variety of region shapes can be generated with the addition of only few parameters.

The paper is structured as follows: Section 2 introduces the family of shapes called

”affine superellipses”. Section 3 presents our approach to fitting affine superellipses to

partial contours. Section 4 shows some preliminary results that we obtained. Conclu-

sions are drawn in Section 5.



2 Affine superellipses

Ellipses and parallelograms are ideal shapes to build affine invariant regions from, be-

cause both families of shapes are closed under affine transformations. On the other

hand, they are quite restrictive in terms of the possible shapes. There is a family of

curves, however, that takes one additional parameter, and generates a much wider class

of shapes. These are the so-called ‘superellipses’. Superellipses were introduced in 1818

by the French mathematician Gabriel Lamé. Their Cartesian equation is [19]:
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To avoid the modulus, the above formula can be written as a function of x2, y2 and an

exponent ǫ [5]. We first consider the particular case when the scaling coefficients a and

b are both 1. We call this initial family of shapes “supercircle” of unit radius (see Fig.

1):
(

x2
)ǫ

+
(

y2
)ǫ

= 1 (1)

The addition of the single parameter ǫ yields an interesting variety of shapes. Next we

generalize this shape family to one that is closed under affine transformations, more

precisely shapes that can be reduced to a supercircle via an affine transformation. The

rationale is that as in the case of existing affine invariant regions, we want to find corre-

sponding regions under variable viewpoints. These changes can be represented well by

affine transformations. Hence, points xe on these shapes are found as:

xe = Axc (2)

where xc verifies the supercircle equation (1) and A is shorthand for the 3 × 3 affine

transformation matrix. This family of shapes is wider than that of the original superel-

lipses. Not only does it allow for rigid motions of the superellipses, but it also in-

cludes skewed versions, as exemplified in fig. 2. Applying affine transformations to

superellipses rather than supercircles leads to exactly the same family, but with an over-

parameterized representation.

We refer to the family as affine superellipses or ASEs for short. The parameter ǫ
provides a viewpoint independent shape parameter. If we can compose curves with a

Fig. 1. ”Supercircles” for different values of ǫ: 0.3, 0.5, 1, 2, 8
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Fig. 2. Result of applying an affine transformation A to a supercircle.

small set of well fitting ASEs, the corresponding ǫs and the ASEs’ configuration provide

compact and viewpoint independent shape information. Fitting ASEs is the subject of

the next section.

3 ASE fitting

The problem of fitting superellipses is not entirely new. Rosin [14] has compared sev-

eral objective functions to be minimized. These functions represent summed distances

between the data points and selected points on the model curve. It proved difficult to

choose one that would perform best in all cases. An important limitation was that con-

tours were supposed to be closed. Fitting of an initial bounding box allowed him to

immediately get rid of the translation and rotation components in the optimization. In

a subsequent paper Zhang and Rosin [21] generalized the optimization to partial con-

tours. They also mapped shapes back to the circle, as a normalization step prior to the

evaluation of the objective function. The latter consisted of a sum of algebraic distances

between the normalized contour and the circle, taking the local contour gradient and

curvature into account.

In our work, we have to deal with partial contours. We also add the skew parameter

in order to deal with the full set of ASEs. Moreover, using the algebraic distance de-

pends exponentially on ǫ. For example, considering the point (x, y) on the unit radius

supercircle, the point (x + d, y) yields the error (x + d)2ǫ − x2ǫ. This means that rect-

angular shapes ( ǫ ≫ 1) are more sensitive to outliers. Therefore, we use the Euclidean

distance between contour points and the intersection of the ASE with the join through

the point and the ASE’s center. Notice that this procedure does not normalize the ASE

to a supercircle and, hence, the fitting procedure is not strictly affine invariant. We have

found that prior normalization yields fitting results that are less robust, however. Some



examples illustrating this are shown in fig. 3. We still need to study the precise causes

in more depth. It should be noted that the Zhang and Rosin approach is also not affine

invariant, even if they normalize, as they evenly sample the image contour before nor-

malizing. Affine invariance wasn’t part of their goals. This sampling problem is shared

by the PCA-based methods proposed by Pilu et al. [13], which deal with larger sets of

deformations than affine, but only for closed contours.

Fig. 3. Fitting superellipses to partial data. The red dashed lines represent the re-

sults of fitting using normalized distance, dotted green lines represent fitting us-

ing image distance. The original contours are gray. The segments used for fitting

are drawn in black. In the last case the normalized version failed to converge.

With the notations from fig. 2, we minimize the sum of all squared Euclidean dis-

tances P2R2, where P2 represents a data point and R2 is the intersection between the

ASE and the line passing through P2 and O2 - the ASE’s center:

D =
∑

P2∈data

|P2 − R2|
2 (3)

The location of R2 is computed as follows:

R2 = AR1 (4)

where A is an affine matrix expressing the translation T , rotation R, scale S and skew

K of the ASE:

A = TRSK (5)

T =





1 0 tx
0 1 ty
0 0 1



 ; R =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1





S =





sx 0 0
0 sy 0
0 0 1



 ; K =





1 k 0
0 1 0
0 0 1





Switching to polar coordinates, R1 becomes:

R1(ρ, θ) :

{

xR1
= ρR1

cos θR1

yR1
= ρR1

sin θR1

(6)



R1 verifies the supercircle equation (1):

(

ρ2

R1

)ǫ
(

(

cos2 θR1

)ǫ
+

(

sin2 θR1

)ǫ
)

= 1 (7)

⇔ ρR1
=

(

(

cos2 θR1

)ǫ
+

(

sin2 θR1

)ǫ
)

−1

2ǫ

(8)

P1 and R1 are colinear, so by replacing

{

cos θR1
=

xP1

ρP1

sin θR1
=

yP1

ρP1

in equations (6) and (8), R1 can be written as a function of P1 and ǫ:

R1 = f(P1, ǫ) ⇔
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+
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(9)

Also, P1 = A−1
P2, so the expression of R2 is:

R2 = Af(A−1
P2, ǫ) (10)

Finally, the objective function has the following expression:

D =
∑

P2∈data

|P2 − Af(A−1
P2, ǫ)|2 (11)

This being a nonlinear least-squares minimization problem, we applied the Levenberg-

Marquardt algorithm [20], a very effective and popular method for this category. The

Levenberg-Marquardt algorithm requires an initial estimate of the objective function’s

parameters, then proceeds iteratively towards the minimum. At each iteration it needs to

evaluate the residual error and the function’s Jacobian matrix. The Jacobian has a quite

complicated form, but the computations are straightforward so we omit them here.

The ǫ parameter is initialized to 2 and the skew to 0, while the other coefficients

of the matrix A are initialized by an ellipse fitting algorithm [4]. The condition set

for stopping the Levenberg-Marquardt algorithm is that for all of the 7 parameters the

difference between successive iterations is less than 10−8. On average less than 20

iterations are required for convergence.

3.1 Contour extraction

An important issue is how the contours are extracted from natural images. Good con-

tours are rather difficult to find, due to textures, occlusions, shadows, etc. For testing

our algorithm we used a method introduced by Tuytelaars et al. [18]. Starting from a

local extremum in the intensity K(x, y), rays are shot under different angles. The inten-

sity pattern along each ray emanating from the extremum is studied by evaluating the

function

fK(t) =
|K(t) − K0|

max
(

d, 1

t

∫ t

0
|K(τ) − K0|dτ

)



with t being the Euclidean arc length along the ray, K(t) the intensity at position t,
K0 the intensity extremum and d a small number added to prevent division by zero.

The point at which this function reaches an extremum is invariant under the affine ge-

ometric and photometric transformations (given the ray). All points corresponding to

an extremum of fK along the rays are linked to form a closed contour. These are the

contours from which we select affine invariant segments and then fit ASEs against.

3.2 Selection of invariant contour segments

When fitting to partial contours, there is a further issue that corresponding segments

should be selected independent of viewpoint. This can be achieved by using simple,

affine invariant criteria. One is illustrated in fig. 4. Starting from a point K , one can

select a segment such that the chords from the point to each of the endpoints enclose

the same area between them and the contour, i.e. A1 = A2 in fig. 4. There typically is

an infinite number of such segments still. Demanding that the white triangle ∆KLM
in the figure has the two areas summed (A1 + A2 = 2A1 = 2A2) reduces the number

of such segments to a finite set of possibilities. These segments M - K - L are the ones

we have fitted the ASEs to.

K

L

M

A1

A2

A1 + A2

Fig. 4. Automatic selection of a partial contour: Starting from K, the chords KL

and KM are drawn such that the areas A1 and A2 are equal and the area of the

KLM triangle is equal to A1 + A2. The partial contour excludes the LM arc.

When fitting we also look at the error. Local minima are of particular importance, as

they suggest segments out of which the complete contour can be composed in a highly

compact way. This point will be illustrated in the next section, where we show ASE-fits

to contours extracted from real images.

4 Experimental results

4.1 Synthetic data

For testing the accuracy of the fitting module we generated noisy superellipses with

different rotation, scaling, skew and epsilon coefficients. We fixed the horizontal scaling

factor to 100, and modified the other parameters as follows: vertical scaling from 50 to



150 in 6 steps, rotation angle from 0 to π/2 in 30 steps, skew factor from -50 to 50 in

6 steps. For each combination we modified the value of ǫ from 1 to 30 in increments

of 1 and verified the absolute error of the recovered ǫ for different noise levels. The

noise was generated from a uniform distribution, having a spread of 0, 1, 2 and 4 pixels.

Fitting was done using only half of the full contour. The coordinates of the generated

points were rounded to integer coordinates. The plot of the standard deviation of the

estimated ǫ from the true value is shown in fig. 5. As can be seen, rectangular shapes

(ǫ ≫ 1) are the worst affected by noise and rounding. This result is not surprising, since

sharp corners become less clear as the noise increases.

In the absence of noise and without rounding the coordinates to integers, the fitting

procedure can recover the original ǫ up to the fifth decimal.
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Fig. 5. Plot of the error of ǫ: The horizontal axis represents the ground truth ǫ. The

vertical axis shows the standard deviation of the recovered ǫ.

4.2 Natural image contours

Fig. 6 shows the back windows of a car, viewed from two directions. We show two types

of ASEs that yield local minima for the fitting error. As can be seen, these correspond

quite well, both between the mirror symmetric window pairs within each image, but also

between the images. The overall shape can be represented efficiently as a combination

of the two ASE types, as can be seen in the right column. The epsilon values are added

in the figure and can be seen to be quite clustered. The difference in the values of ǫ is

caused by non-zero mean errors during the contour extraction. Similar examples can be

seen in fig. 7, 8. Fig. 7 and 9 show ASEs fitted to the headlights of different cars. Again,

as few as two ASEs manage to form a good approximation of these shapes. As one can

see, in contrast to e.g. wheels, which always are elliptical with ǫ = 1, head-lights are

parts with a much wider variation in their shapes.

As can also be seen from these examples, the pairs of head-lights are approximated

by ASEs with similar epsilon values. Other examples are presented in fig. 10.



5 Conclusions and future work

Currently, we are working on affine invariant descriptions of such ASE configurations,

both in terms of their overall shape, as the texture content within their approximated

contour. For the latter, already extensive sets of measures exist. Moment invariants

would be one option [11]. As to the shape features, the ratio of areas of the different

ASEs in the final configuration would be one simple, additional example. Other features

should describe their relative positions, skews, and orientations. These can be quantified

by normalizing one of the ASEs to a supercircle, and expressing these parameters with

respect to the reference frame thus created.

The results seem to corroborate the viability of the ASE approach. In its full-fledged

form it will not only include several of the affine invariant region types already in use,

but will also provide a link between the texture based methods that these basically are,

and shape-based approaches. Indeed, it stands to reason that a truly generic recognition

system will have to draw on both.
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Fig. 6. A combination of two ASEs can approximate the rear window of a car.



Fig. 7. Car headlights represented with ASE combinations.
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Fig. 9. Other ASE combinations fitted to car headlights.

Fig. 10. Left: two pairs of glasses. Right: Detail of the headlight of a Mercedes.




