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Abstract. We consider the problem of identifying sharp criteria under which ra-
dial H1 (finite energy) solutions to the focusing 3d cubic nonlinear Schrödinger
equation (NLS) i∂tu + ∆u + |u|2u = 0 scatter, i.e. approach the solution to a lin-
ear Schrödinger equation as t → ±∞. The criteria is expressed in terms of the
scale-invariant quantities ‖u0‖L2‖∇u0‖L2 and M [u]E[u], where u0 denotes the ini-
tial data, and M [u] and E[u] denote the (conserved in time) mass and energy of the
corresponding solution u(t). The focusing NLS possesses a soliton solution eitQ(x),
where Q is the ground-state solution to a nonlinear elliptic equation, and we prove
that if M [u]E[u] < M [Q]E[Q] and ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 , then the so-
lution u(t) is globally well-posed and scatters. This condition is sharp in the sense
that the soliton solution eitQ(x), for which equality in these conditions is obtained,
is global but does not scatter. We further show that if M [u]E[u] < M [Q]E[Q] and
‖u0‖L2‖∇u0‖L2 > ‖Q‖L2‖∇Q‖L2 , then the solution blows-up in finite time. The
technique employed is parallel to that employed by Kenig-Merle [16] in their study
of the energy-critical NLS.

1. Introduction

Consider the cubic focusing nonlinear Schrödinger (NLS) equation on R3:

(1.1) i∂tu+ ∆u+ |u|2u = 0,

where u = u(x, t) is complex-valued and (x, t) ∈ R3 × R. The initial-value problem

posed with initial-data u(x, 0) = u0(x) is locally well-posed in H1 (see Ginibre-Velo

[9]; standard reference texts are Cazenave [3], Linares-Ponce [20], and Tao [29]). Such

solutions, during their lifespan [0, T ∗) (where T ∗ = +∞ or T ∗ < +∞), satisfy mass

conservation M [u](t) = M [u0], where

M [u](t) =

∫
|u(x, t)|2 dx,

and energy conservation E[u](t) = E[u0], where

E[u](t) =
1

2

∫
|∇u(x, t)|2 dx− 1

4

∫
|u(x, t)|4 dx

(and we thus henceforth denote these quantities M [u] and E[u] respectively, with no

reference to the time t).
1
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The equation also has several invariances, among them (in each of the following

cases, ũ is a solution to (1.1) if and only if u is a solution to (1.1)):

• Spatial translation. For a fixed x0 ∈ R3, let ũ(x, t) = u(x+ x0, t).

• Scaling. For a fixed λ ∈ (0,+∞), let ũ(x, t) = λu(λx, λ2t).

• Galilean phase shift. For a fixed ξ0 ∈ R3, let ũ(x, t) = eixξ0e−itξ
2
0u(x− 2ξ0t, t).

The scale-invariant Sobolev norm is Ḣ1/2, although we find it more useful, as described

below, to focus on the scale invariant quantities ‖u(t)‖L2‖∇u(t)‖L2 and M [u]E[u].

The Galilean invariance leaves only the L2 norm invariant, while translation leaves

all Sobolev norms invariant. We note that these two symmetries do not preserve

radiality, while the scaling symmetry does.

The nonlinear elliptic equation

(1.2) −Q+ ∆Q+ |Q|2Q = 0, Q = Q(x), x ∈ R3,

has an infinite number of solutions in H1. Among these there is exactly one solution of

minimal mass1, called the ground-state solution, and it is positive (real-valued), radial,

smooth, and exponentially decaying (see Appendix B of Tao’s text [29] for exposition).

We henceforth denote by Q this ground-state solution. If we let u(x, t) = eitQ(x),

then u is a solution to (1.1), and is called the standard soliton. A whole family of

soliton solutions to (1.1) can be built from the standard soliton via the invariances of

the NLS equation (1.1):

(1.3) u(x, t) = eiteix·ξ0e−it|ξ0|
2

λu(λ(x− (x0 + 2ξ0t)), λ
2t).

The standard soliton has the property that the quantities ‖u0‖L2‖∇u0‖L2 andM [u]E[u]

are minimal among all solitons (1.3). Indeed, these quantities are independent of

translation and scaling, and the introduction of a Galilean phase shift only increases

their values. Since solutions to the linear Schrödinger equation completely disperse

(spread out, and shrink in a variety of spatial norms) as t → ±∞, the soliton solu-

tions by their definition do not scatter (approach a solution of the linear Schrödinger

equation). Indeed, soliton solutions represent a perfect balance between the focusing

forces of the nonlinearity and the dispersive forces of the linear component.

The basic line of thought in the subject, motivated by heuristics (Soffer [24]), rig-

orous partial results (Tao [27, 28]), numerical simulation (Sulem-Sulem [26]), and

analogy with the completely integrable one-dimensional case, is that a solution of

(1.1) either completely disperses as t → ∞ (linear effects dominate), blows-up in

finite time (nonlinear effects dominate) or the solution resolves into a sum of solitons

1In view of the connection between solutions Q to (1.2) and solutions u(t) = eitQ to (1.1), and
the fact that ‖u(t)‖L2‖∇u(t)‖L2 is a scale invariant quantity for solutions u(t) to (1.1), it might be
more natural to classify the family of solutions Q to (1.2) in terms of the quantity ‖Q‖L2‖∇Q‖L2

rather than the mass. However, any solution Q to (1.2) must satisfy the Pohozhaev identity
‖Q‖L2‖∇Q‖L2 =

√
3‖Q‖2L2 , and thus the two classifications are equivalent.
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propagating in different directions or at different speeds plus dispersive radiation as

t → ∞ (nonlinear effects and linear effects balance). Since the smallest value of

‖u0‖L2‖∇u0‖L2 among all soliton solutions is ‖Q‖L2‖∇Q‖L2 , it seems reasonable to

conjecture, even for nonradial data, that if ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 , then the

solution scatters provided we can rule out blow-up. Ruling out blow-up in this sit-

uation is straightforward provided M [u]E[u] < M [Q]E[Q] using the conservation of

mass and energy and a result of M. Weinstein stating that an appropriate Gagliardo-

Nirenberg inequality is optimized at Q. The main result of this paper is the resolution

of this conjecture under the assumption of radial data, which appears below as The-

orem 1.1(1)(b).

Theorem 1.1. Let u0 ∈ H1 be radial and let u be the corresponding solution to (1.1)

in H1 with maximal forward time interval of existence [0, T ). Suppose M [u]E[u] <

M [Q]E[Q].

(1) If ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2, then

(a) T = +∞ (the solution is globally well-posed in H1), and

(b) u scatters in H1. This means that there exists φ+ ∈ H1 such that

lim
t→+∞

‖u(t)− eit∆φ+‖H1 = 0 .

(2) If ‖u0‖L2‖∇u0‖L2 > ‖Q‖L2‖∇Q‖L2, then T < +∞ (the solution blows-up in

finite time).

It is straightforward to establish as a corollary the same result for negative times:

take the complex conjugate of the equation and replace t by −t. Since the hypotheses

in Theorem 1.1 (1)(2) apply to u0 if and only if they apply to ū0, we obtain that the

hypotheses of (1) imply that u scatters both as t → +∞ and t → −∞ and the

hypotheses of (2) imply that u blows-up both in finite positive time and in finite

negative time. An interesting open question is whether or not there exist solutions

u with M [u]E[u] ≥ M [Q]E[Q] that exhibit different behavior in the positive and

negative directions.

The proof of Theorem 1.1(1)(b) is based upon ideas in Kenig-Merle [16], who proved

an analogous statement for the energy-critical NLS.

The key dynamical quantity in the proof of Theorem 1.1 is a localized variance

‖xu(t)‖L2(|x|≤R). The virial identity states that if ‖xu0‖L2 <∞, then u satisfies

(1.4) ∂2
t

∫
|x|2|u(x, t)|2 dx = 24E[u]− 4‖∇u(t)‖2

L2
x
.

We use a localized version of this identity in both the proof of Theorem 1.1(2) and

the rigidity lemma (see §6) giving Theorem 1.1(1)(b). On a heuristic level (keeping

in mind that ‖u(t)‖L2 is conserved), under the hypotheses of Theorem 1.1(1), the

right side of (1.4) is strictly positive, which pushes the variance ‖xu(t)‖L2 to +∞ as
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t→ +∞, which says roughly that the mass of u is being redistributed to large radii,

meaning that it “disperses”, and we expect the effect of the nonlinearity to diminish

and scattering to occur. On the other hand, under the hypotheses of Theorem 1.1(2),

the right side of (1.4) is strictly negative, which pushes the variance ‖xu(t)‖L2 to 0 in

finite time, meaning that all the mass of u concentrates at the origin and we expect

blow-up. We do not use (1.4) directly, however, for two reasons. First, it requires

the additional hypothesis that the initial data has finite variance–an assumption we

would like to avoid. Secondly, in the case of the scattering argument, we don’t see a

method for proving scattering given only the strict convexity (in time) of the variance

and its divergence to +∞, although it is heuristically consistent with scattering. The

problem is that large variance can be produced by a very small amount of mass

moving to very, very large radii, while still leaving a significant amount of mass at

small radii. Therefore, to prove the scattering claim in Theorem 1.1(1)(b), we instead

use a localized virial identity, as Kenig-Merle [16] did, involving a localized variance.

If a very small amount of mass moved to very, very large radii, it would not affect

the localized variance dramatically.

For the 3d cubic defocusing NLS

i∂tu+ ∆u− |u|2u = 0

scattering has been established for all H1 solutions (regardless of “size”) even for

nonradial data by Ginibre-Velo [10] using a Morawetz inequality. This proof was sim-

plified by Colliander-Keel-Staffilani-Takaoka-Tao [4] using a new interaction Morawetz

inequality they discovered. These Morawetz estimates, however, are not positive def-

inite for solutions to the focusing equation (1.1), and thus, cannot be applied directly

to our problem. It remains open whether or not one could prove suitable bounds on

the nonpositive terms to recover the results of this paper.

For (1.1), Tao [27] proved a few results in the direction of the soliton resolution con-

jecture, assuming the solution is radial and global (has globally bounded H1 norm).

It is shown that for large data, radial solutions asymptotically split into (i) a (smooth)

function localized near the origin (which is either zero or has a non-zero mass and

energy and obeys an asymptotic Pohozhaev identity), (ii) a radiation term evolving

by the linear Schrödinger flow, and (iii) an error term (approaching zero in the Ḣ1

norm). Further results for mass supercritical, energy subcritical NLS equations in

higher dimensions (N ≥ 5) were established by Tao in [28].

The equation (1.1) frequently arises, often in more complex forms, as a model

equation in physics. In 2d, it appears as a model in nonlinear optics – see Fibich [7]

for a review. When coupled with a nonlinear wave equation, it arises as the Zakharov

system [32] in plasma physics. According to [18] p.7, in the mass supercritical case

“the most important partial case p = 3, d = 3 corresponds to the subsonic collapse
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of Langmuir waves in plasma”. Furthermore, (1.1) arises as a model for the Bose-

Einstein condensate (BEC) in condensed matter physics. There, it appears as the

Gross-Pitaevskii (GP) equation (in 1d, 2d, and 3d), which is (1.1) with a (real)

potential V = V (x):

(1.5) i∂tu+ ∆u− V u+ a|u|2u = 0 .

It is derived by mean-field theory approximation (see Schlein [25]), and |u(x, t)|2 rep-

resents the density of the condensate at time t and position x. The coefficient a in

the nonlinearity is governed by a quantity called the s-scattering length. Some el-

ements used in recent experiments (7Li, 85Rb, 133Cs) posses a negative s-scattering

length in the ground state and are modeled by (1.5) with a < 0. V (x) is an ex-

ternal trapping potential imposed by a system of laser beams and is typically taken

to be harmonic V (x) = β|x|2. These “unstable BECs” (where a < 0) have been

investigated experimentally recently (see the JILA experiments [6]) and a number of

theoretical predictions have been confirmed, including the observation of “collapse

events” (corresponding to blow-up of solutions to (1.5)). A few articles have ap-

peared (for example [1]) in the physics literature discussing the critical number of

atoms required to initiate collapse. The “critical number of atoms” corresponds to

“threshold mass M [u]” in our terminology, and connects well with the mathematical

investigations in this paper.

The format of this paper is as follows. In §2, we give a review of the Strichartz

estimates, the small data theory, and the long-time perturbation theory. We review

properties of the ground state profile Q in §3 and recall its connection to the sharp

Gagliardo-Nirenberg estimate of M. Weinstein [31]. In §4, we introduce the local virial

identity and prove Theorem 1.1 except for the scattering claim in part (1)(b). In §5-6,

we prove Theorem 1.1(1)(b). This is done in two stages, assuming that the threshold

for scattering is strictly below the one claimed. First, in §5, we construct a solution

uc (a “critical element”) that stands exactly at the boundary between scattering and

nonscattering. This is done using a profile decomposition lemma in Ḣ1/2, obtained

by extending the Ḣ1 methods of Keraani [14]. We then show that time slices of uc(t),

as a collection of functions in H1, form a precompact set in H1 (and thus uc has

something in common with the soliton eitQ(x)). This enables us to prove that uc

remains localized uniformly in time. In §6, this localization is shown to give a strict

convexity (in time) of a localized variance which leads to a contradiction with the

conservation of mass at large times. In §7, we explain how Theorem 4.2 should carry

over to more general nonlinearities and general dimensions (mass supercritical and

energy subcritical cases) of NLS equations.

Acknowledgement. J.H. is partially supported by an NSF postdoctoral fellow-

ship. S.R. would like to thank Mary and Frosty Waitz for their great hospitality
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during her visits to Berkeley. We both thank Guixiang Xu for pointing out a few

misprints and the referee for helpful suggestions.

2. Local theory and Strichartz estimates

We begin by recalling the relevant Strichartz estimates (e.g., see Cazenave [3],

Keel-Tao [15]). We say that (q, r) is Ḣs Strichartz admissible (in 3d) if

2

q
+

3

r
=

3

2
− s.

Let

‖u‖S(L2) = sup
(q,r) L2 admissible

2≤r≤6, 2≤q≤∞

‖u‖Lq
tL

r
x
.

In particular, we are interested in (q, r) equal to (10
3
, 10

3
) and (∞, 2). Define2

‖u‖S(Ḣ1/2) = sup
(q,r) Ḣ1/2 admissible
3≤r≤6−, 4+≤q≤∞

‖u‖Lq
tL

r
x
,

where 6− is an arbitrarily preselected and fixed number < 6; similarly for 4+. We

will, in particular, use (q, r) equal to (5, 5), (20, 10
3

), and (∞, 3). Now we consider

dual Strichartz norms. Let

‖u‖S′(L2) = inf
(q,r) L2 admissible

2≤q≤∞, 2≤r≤6

‖u‖
Lq′

t L
r′
x
,

where (q′, r′) is the Hölder dual to (q, r). Also define

‖u‖S′(Ḣ−1/2) = inf
(q,r) Ḣ−1/2 admissible
4
3

+≤q≤2−, 3+≤r≤6−

‖u‖
Lq′

t L
r′
x
.

The Strichartz estimates are

‖eit∆φ‖S(L2) ≤ c‖φ‖L2

and ∥∥∥∥∫ t

0

ei(t−t
′)∆f(·, t′)dt′

∥∥∥∥
S(L2)

≤ c‖f‖S′(L2).

By combining Sobolev embedding with the Strichartz estimates, we obtain

‖eit∆φ‖S(Ḣ1/2) ≤ c‖φ‖Ḣ1/2

and

(2.1)

∥∥∥∥∫ t

0

ei(t−t
′)∆f(·, t′)dt′

∥∥∥∥
S(Ḣ1/2)

≤ c‖D1/2f‖S′(L2) .

2For some inequalities, the range of valid exponents (q, r) can be extended. The Kato inequality
(2.2) imposes the most restrictive assumptions that we incorporate into our definitions of S(Ḣ1/2)
and S(Ḣ−1/2).
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We shall also need the Kato inhomogeneous Strichartz estimate [13] (for further ex-

tensions see [8] and [30])

(2.2)

∥∥∥∥∫ t

0

ei(t−t
′)∆f(·, t′) dt′

∥∥∥∥
S(Ḣ1/2)

≤ c‖f‖S′(Ḣ−1/2) .

In particular, we will use L5
tL

5
x and L20

t L
10
3
x on the left side, and L

10/3
t L

5/4
x on the right

side.

We extend our notation S(Ḣs), S ′(Ḣs) as follows: If a time interval is not specified

(that is, if we just write S(Ḣs), S ′(Ḣs)), then the t-norm is evaluated over (−∞,+∞).

To indicate a restriction to a time subinterval I ⊂ (−∞,+∞), we will write S(Ḣs; I)

or S ′(Ḣs; I).

Proposition 2.1 (Small data). Suppose ‖u0‖Ḣ1/2 ≤ A. There is δsd = δsd(A) > 0

such that if ‖eit∆u0‖S(Ḣ1/2) ≤ δsd, then u solving (1.1) is global (in Ḣ1/2) and

‖u‖S(Ḣ1/2) ≤ 2 ‖eit∆u0‖S(Ḣ1/2),

‖D1/2u‖S(L2) ≤ 2 c ‖u0‖Ḣ1/2 .

(Note that by the Strichartz estimates, the hypotheses are satisfied if ‖u0‖Ḣ1/2 ≤ cδsd.)

Proof. Define

Φu0(v) = eit∆u0 + i

∫ t

0

ei(t−t
′)∆|v|2v(t′)dt′.

Applying the Strichartz estimates, we obtain

‖D1/2Φu0(v)‖S(L2) ≤ c‖u0‖Ḣ1/2 + c‖D1/2(|v|2v)‖
L

5/2
t L

10/9
x

and

‖Φu0(v)‖S(Ḣ1/2) ≤ ‖e
it∆u0‖S(Ḣ1/2) + c‖D1/2(|v|2v)‖

L
5/2
t L

10/9
x

.

Applying the fractional Leibnitz [17] and Hölder inequalities

‖D1/2(|v|2v)‖
L

5/2
t L

10/9
x
≤ ‖v‖2

L5
tL

5
x
‖D1/2v‖L∞t L2

x
≤ ‖v‖2

S(Ḣ1/2)
‖D1/2v‖S(L2).

Let

δsd ≤ min
( 1√

24c
,

1

24cA

)
.

Then Φu0 : B → B, where

B =
{
v
∣∣ ‖v‖S(Ḣ1/2) ≤ 2‖eit∆u0‖S(Ḣ1/2), ‖D

1/2v‖S(L2) ≤ 2c‖u0‖Ḣ1/2

}
and Φu0 is a contraction on B. �
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Proposition 2.2 (H1 scattering). If u0 ∈ H1, u(t) is global with globally finite Ḣ1/2

Strichartz norm ‖u‖S(Ḣ1/2) < +∞ and a uniformly bounded H1 norm supt∈[0,+∞) ‖u(t)‖H1 ≤
B, then u(t) scatters in H1 as t→ +∞. This means that there exists φ+ ∈ H1 such

that

lim
t→+∞

‖u(t)− eit∆φ+‖H1 = 0.

Proof. Since u(t) solves the integral equation

u(t) = eit∆u0 + i

∫ t

0

ei(t−t
′)∆(|u|2u)(t′) dt′,

we have

(2.3) u(t)− eit∆φ+ = −i
∫ +∞

t

ei(t−t
′)∆(|u|2u)(t′)dt′,

where

φ+ = u0 + i

∫ +∞

0

e−it
′∆(|u|2u)(t′)dt′.

Applying the Strichartz estimates to (2.3), we have

‖u(t)− eit∆φ+‖H1 ≤ c‖|u|2 (1 + |∇|)u‖
L

5/2
[t,+∞)

L
10/9
x

≤ c‖u‖2
L5

[t,+∞)
L5

x
‖u‖L∞t H1

x

≤ cB‖u‖2
L5

[t,+∞)
L5

x
.

Send t→ +∞ in this inequality to obtain the claim. �

The following long-time perturbation result is similar in spirit to Lemma 3.10 in

Colliander-Keel-Staffilani-Takaoka-Tao [5], although more refined than a direct analo-

gous version since the smallness condition (2.4) is expressed in terms of S(Ḣ1/2) rather

than D−1/2S(L2). This refinement is achieved by employing the Kato inhomogeneous

Strichartz estimates [13].

Proposition 2.3 (Long time perturbation theory). For each A � 1, there exists

ε0 = ε0(A)� 1 and c = c(A)� 1 such that the following holds. Let u = u(x, t) ∈ H1
x

for all t and solve

i∂tu+ ∆u+ |u|2u = 0 .

Let ũ = ũ(x, t) ∈ H1
x for all t and define

e
def
= i∂tũ+ ∆ũ+ |ũ|2ũ .

If

‖ũ‖S(Ḣ1/2) ≤ A , ‖e‖S′(Ḣ−1/2) ≤ ε0 , and

(2.4) ‖ei(t−t0)∆(u(t0)− ũ(t0))‖S(Ḣ1/2) ≤ ε0 ,
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then

‖u‖S(Ḣ1/2) ≤ c = c(A) <∞ .

Proof. Let w be defined by u = ũ+ w. Then w solves the equation

(2.5) i∂tw + ∆w + (ũ2w̄ + 2|ũ|2w) + (2 ũ |w|2 + ¯̃uw2) + |w|2w − e = 0.

Since ‖ũ‖S(Ḣ1/2) ≤ A, we can partition [t0,+∞) into N = N(A) intervals3 Ij =

[tj, tj+1] such that for each j, the quantity ‖ũ‖S(Ḣ1/2;Ij) ≤ δ is suitably small (δ to be

chosen below). The integral equation version of (2.5) with initial time tj is

(2.6) w(t) = ei(t−tj)∆w(tj) + i

∫ t

tj

ei(t−s)∆W (·, s) ds,

where

W = (ũ2w̄ + 2|ũ|2w) + (2 ũ |w|2 + ¯̃uw2) + |w|2w − e.
By applying the Kato Strichartz estimate (2.2) on Ij, we obtain

(2.7) ‖w‖S(Ḣ1/2;Ij) ≤ ‖e
i(t−tj)∆w(tj)‖S(Ḣ1/2;Ij) + c ‖ũ2w‖

L
10/3
Ij

L
5/4
x

+ c ‖ũw2‖
L

10/3
Ij

L
5/4
x

+ c ‖w3‖
L

10/3
Ij

L
5/4
x

+ ‖e‖S′(Ḣ−1/2;Ij).

Observe

‖ũ2w‖
L

10/3
Ij

L
5/4
x
≤ ‖ũ‖2

L20
Ij
L

10/3
x
‖w‖L5

Ij
L5

x
≤ ‖ũ‖2

S(Ḣ1/2;Ij)
‖w‖S(Ḣ1/2;Ij) ≤ δ2‖w‖S(Ḣ1/2;Ij).

Similarly,

‖ũw2‖
L

10/3
Ij

L
5/4
x
≤ δ‖w‖2

S(Ḣ1/2;Ij)
, and ‖w3‖

L
10/3
Ij

L
5/4
x
≤ ‖w‖3

S(Ḣ1/2;Ij)
.

Substituting the above estimates in (2.7),

(2.8) ‖w‖S(Ḣ1/2;Ij) ≤ ‖e
i(t−tj)∆w(tj)‖S(Ḣ1/2;Ij) + cδ2‖w‖S(Ḣ1/2;Ij)

+ cδ‖w‖2
S(Ḣ1/2;Ij)

+ c‖w‖3
S(Ḣ1/2;Ij)

+ cε0.

Provided

(2.9) δ ≤ min
(

1,
1

6c

)
and

(
‖ei(t−tj)∆w(tj)‖S(Ḣ1/2;Ij) + cε0

)
≤ min

(
1,

1

2
√

6c

)
,

we obtain

(2.10) ‖w‖S(Ḣ1/2;Ij) ≤ 2‖ei(t−tj)∆w(tj)‖S(Ḣ1/2;Ij) + 2cε0.

Now take t = tj+1 in (2.6), and apply ei(t−tj+1)∆ to both sides to obtain

(2.11) ei(t−tj+1)∆w(tj+1) = ei(t−tj)∆w(tj) + i

∫ tj+1

tj

ei(t−s)∆W (·, s) ds.

3The number of intervals depends only on A, but the intervals themselves depend upon the
function ũ.
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Since the Duhamel integral is confined to Ij = [tj, tj+1], by again applying the Kato

estimate, similarly to (2.8) we obtain the estimate

‖ei(t−tj+1)∆w(tj+1)‖S(Ḣ1/2) ≤ ‖e
i(t−tj)∆w(tj)‖S(Ḣ1/2) + cδ2‖w‖S(Ḣ1/2;Ij)

+ cδ‖w‖2
S(Ḣ1/2;Ij)

+ c‖w‖3
S(Ḣ1/2;Ij)

+ cε0.

By (2.10) and (2.11), we bound the previous expression to obtain

‖ei(t−tj+1)∆w(tj+1)‖S(Ḣ1/2) ≤ 2‖ei(t−tj)∆w(tj)‖S(Ḣ1/2) + 2cε0.

Iterating beginning with j = 0, we obtain

‖ei(t−tj)∆w(tj)‖S(Ḣ1/2) ≤ 2j‖ei(t−t0)∆w(t0)‖S(Ḣ1/2) + (2j − 1)2cε0

≤ 2j+2cε0.

To accommodate the second part of (2.9) for all intervals Ij, 0 ≤ j ≤ N − 1, we

require that

(2.12) 2N+2cε0 ≤ min
(

1,
1

2
√

6c

)
.

We review the dependence of parameters: δ is an absolute constant selected to meet

the first part of (2.9). We were given A, which then determined N (the number of

time subintervals). The inequality (2.12) specifies how small ε0 needs to be taken in

terms of N (and thus, in terms of A). �

3. Properties of the ground state

M. Weinstein [31] proved that the sharp constant cGN in the Gagliardo-Nirenberg

estimate

(3.1) ‖f‖4
L4 ≤ cGN‖f‖L2‖∇f‖3

L2

is attained at the function Q (the ground state described in the introduction), i.e.,

cGN = ‖Q‖4
L4/(‖Q‖L2‖∇Q‖3

L2). By multiplying (1.2) by Q, integrating, and applying

integration by parts, we obtain

−‖Q‖2
L2 − ‖∇Q‖2

L2 + ‖Q‖4
L4 = 0 .

By multiplying (1.2) by x · ∇Q, integrating, and applying integration by parts, we

obtain the Pohozhaev identity

3

2
‖Q‖2

L2 +
1

2
‖∇Q‖2

L2 −
3

4
‖Q‖4

L4 = 0 .

These two identities enable us to obtain the relations

(3.2) ‖∇Q‖2
L2 = 3‖Q‖2

L2 , ‖Q‖4
L4 = 4‖Q‖2

L2 ,
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and thus, reexpress

(3.3) cGN =
4

3‖Q‖L2‖∇Q‖L2

=
4

3
√

3‖Q‖2
L2

.4

We also calculate

(3.4) M [Q]E[Q] = ‖Q‖2
L2

(
1

2
‖∇Q‖2

L2 −
1

4
‖Q‖4

L4

)
=

1

6
‖Q‖2

L2‖∇Q‖2
L2 =

1

2
‖Q‖4

L2 .

For later purposes we recall a version of the Gagliardo-Nirenberg inequality valid

only for radial functions, due to W. Strauss [25]. In R3, for any R > 0, we have

(3.5) ‖f‖4
L4(|x|>R) ≤

c

R2
‖f‖3

L2(|x|>R)‖∇f‖L2(|x|>R).

4. Global versus blow-up dichotomy

In this section we show how to obtain Theorem 1.1 part (1)(a) and part(2). This was

proved in Holmer-Roudenko [12] for general mass supercritical and energy subcritical

NLS equations with H1 initial data, but for self-containment of this exposition we

outline the main ideas here.

Before giving the proof, we observe that the following quantities are scaling invari-

ant:

‖∇u‖L2 · ‖u‖L2 and E[u] ·M [u].

Next, we quote a localized version of the virial identity as in Kenig-Merle [16]. We

refer, for example, to Merle-Raphaël [21] or Ozawa-Tsutsumi [22] for a proof.

Lemma 4.1 (Local virial identity). Let χ ∈ C∞0 (RN), radially symmetric and u solve

i∂tu+ ∆u+ |u|p−1u = 0.

Then

(4.1) ∂2
t

∫
χ(x) |u(x, t)|2 dx = 4

∫
χ′′|∇u|2−

∫
∆2χ |u|2−4

(
1

2
− 1

p+ 1

)∫
∆χ |u|p+1.

We prove a slightly stronger version of Theorem 1.1 parts (1)(a) and (2) that is

valid for nonradial initial condition. The generalization of this theorem to all mass

supercritical and energy critical cases of NLS can be found in §7 as well as in [12]. A

different type of condition for global existence, phrased as ‖u0‖L2 ≤ γ∗(‖∇u0‖L2) for

a certain monotonic function γ : R+ → R+, is given by Bégout [2].

Theorem 4.2 (Global versus blow-up dichotomy). Let u0 ∈ H1(R3) (possibly non-

radial), and let I = (−T∗, T ∗) be the maximal time interval of existence of u(t) solving

(1.1). Suppose that

(4.2) M [u0]E[u0] < M [Q]E[Q].

4Numerical calculations show ‖Q‖2L2(R3)
∼= 18.94, which gives cGN

∼= 0.0406 (in R3).
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If (4.2) holds and

(4.3) ‖∇u0‖L2‖u0‖L2 < ‖∇Q‖L2‖Q‖L2 ,

then I = (−∞,+∞), i.e. the solution exists globally in time, and for all time t ∈ R

(4.4) ‖∇u(t)‖L2‖u0‖L2 < ‖∇Q‖L2‖Q‖L2 .

If (4.2) holds and

(4.5) ‖∇u0‖L2‖u0‖L2 > ‖∇Q‖L2‖Q‖L2 ,

then for t ∈ I

(4.6) ‖∇u(t)‖L2‖u0‖L2 > ‖∇Q‖L2‖Q‖L2 .

Furthermore, if (a) |x|u0 ∈ L2(R3), or (b) u0 is radial, then I is finite, and thus, the

solution blows up in finite time.

We recently became aware that the global existence assertion and the blow-up

assertion under the hypothesis |x|u0 ∈ L2(R3) in this theorem previously appeared

in the literature in Kuznetsov-Rasmussen-Rypdal-Turitsyn [19]. We have decided to

keep the proof below since it is short and for the convenience of the reader (there are

significant notational differences between our paper and theirs).

Remark 4.3. 5 Since this theorem applies to the nonradial case, we remark that one

should exploit the Galilean invariance to extend the class of solutions u to which it

applies. Since u is global [respectively, blows up in finite time] if and only if a Galilean

transformation of it is global [respectively, blows up in finite time], given u consider

for some ξ0 ∈ R3 the transformed solution

w(x, t) = eix·ξ0e−it|ξ0|
2

u(x− 2ξ0t, t).

We compute

‖∇w‖2
L2 = |ξ0|2M [u] + 2ξ0 · P [u] + ‖∇u‖2

L2 ,

where the vector P [u] = Im
∫
ū∇u dx is the conserved momentum. Therefore, M [w] =

M [u] and

E[w] =
1

2
|ξ0|2M [u] + ξ0 · P [u] + E[u].

To minimize E[w] and ‖∇w‖L2 , we take ξ0 = −P [u]/M [u]. Then we test the condition

(4.2), and (4.3) or (4.5) for w, rather than u. This means that for P 6= 0, the

hypothesis (4.2) can be sharpened to

M [u]

(
− P [u]2

2M [u]
+ E[u]

)
< M [Q]E[Q]

5We thank J. Colliander for supplying this comment.
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and the hypothesis (4.3) can be sharpened to(
−P [u]2

M [u]
+ ‖∇u0‖2

L2

)
‖u0‖2

L2 < ‖Q‖2
L2‖∇Q‖2

L2

and similarly for (4.5).

Proof. Multiplying the definition of energy by M [u] and using (3.1), we have

M [u]E[u] =
1

2
‖∇u‖2

L2‖u0‖2
L2 −

1

4
‖u‖4

L4‖u0‖2
L2

≥ 1

2
‖∇u‖2

L2‖u0‖2
L2 −

1

4
cGN ‖∇u‖3

L2 ‖u0‖3
L2 .

Define f(x) = 1
2
x2 − cGN

4
x3. Then f ′(x) = x − 3

4
cGN x

2 = x
(
1− 3

4
cGN x

)
, and thus,

f ′(x) = 0 when x0 = 0 and x1 = 4
3

1
cGN

= ‖∇Q‖L2 ‖Q‖L2 by (3.3). Note that f(0) = 0

and f(x1) = 1
6
‖∇Q‖2

L2 ‖Q‖2
L2 . Thus, the graph of f has a local minimum at x0

and a local maximum at x1. The condition (4.2) together with (3.4) imply that

M [u0]E[u0] < f(x1). Combining this with energy conservation, we have

(4.7) f(‖∇u(t)‖L2‖u0‖L2) ≤M [u0]E[u(t)] = M [u0]E[u0] < f(x1).

If initially ‖u0‖L2 ‖∇u0‖L2 < x1, i.e. the condition (4.3) holds, then by (4.7) and

the continuity of ‖∇u(t)‖L2 in t, we have ‖u0‖L2 ‖∇u(t)‖L2 < x1 for all time t ∈ I
which gives (4.4). In particular, the Ḣ1 norm of the solution u is bounded, which

proves global existence (and thus, global wellposedness) in this case.

If initially ‖u0‖L2 ‖∇u0‖L2 > x1, i.e. the condition (4.5) holds, then by (4.7)

and the continuity of ‖∇u(t)‖L2 in t, we have ‖u0‖L2 ‖∇u(t)‖L2 > x1 for all time

t ∈ I which gives (4.6). We can refine this analysis to obtain the following: if

the condition (4.5) (together with (4.2)) holds, then there exists δ1 > 0 such that

M [u0]E[u0] < (1 − δ1)M [Q]E[Q], and thus, there exists δ2 = δ2(δ1) > 0 such that

‖u0‖2
L2 ‖∇u(t)‖2

L2 > (1 + δ2) ‖∇Q‖2
L2 ‖Q‖2

L2 for all t ∈ I.

Now if u has a finite variance, we recall the virial identity

∂2
t

∫
|x|2 |u(x, t)|2 dx = 24E[u0]− 4‖∇u(t)‖2

L2 .

Multiplying both sides by M [u0] and applying the refinement of inequalities (4.2) and

(4.6) mentioned above as well as (3.4), we get

M [u0] ∂2
t

∫
|x|2 |u(x, t)|2 dx = 24M [u0]E[u0]− 4‖∇u(t)‖2

L2 ‖u0‖2
L2

< 24 · 1
6

(1− δ1) ‖∇Q‖2
L2 ‖Q‖2

L2 − 4(1 + δ2)‖∇Q‖2
L2 ‖Q‖2

L2

= −4(δ1 + δ2)‖∇Q‖2
L2 ‖Q‖2

L2 < 0,

and thus, I must be finite, which implies that blow up occurs in finite time.

If u0 is radial, we use a localized version of the virial identity (4.1). Choose χ(r)

(radial) such that ∂2
rχ(r) ≤ 2 for all r ≥ 0, χ(r) = r2 for 0 ≤ r ≤ 1, and χ(r) is
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constant for r ≥ 3. Let χm(r) = m2χ(r/m). The rest of the argument follows the

proof of the main theorem in Ogawa-Tsutsumi [22], although we include the details

here for the convenience of the reader. We bound each of the terms in the local virial

identity (4.1) as follows, using that ∆χm(r) = 6 for r ≤ m and ∆2χm(r) = 0 for

r ≤ m:

4

∫
χ′′m |∇u|2 ≤ 8

∫
R3

|∇u|2 ,

−
∫

∆2χm |u|2 ≤
c

m2

∫
m≤|x|≤3m

|u|2 ,

−
∫

∆χm |u|4 ≤ −6

∫
|x|≤m

|u|4 + c

∫
m≤|x|≤3m

|u|4 ≤ −6

∫
R3

|u|4 + c′
∫
|x|≥m

|u|4 .

Adding these three bounds and applying the radial Gagliardo-Nirenberg estimate

(3.5), we obtain that for any large m > 0, we have

∂2
t

∫
χm(|x|) |u(x, t)|2 dx ≤ 24E[u0]− 4

∫
|∇u|2

+
c1

m2
‖u0‖3

L2 ‖∇u‖L2 +
c2

m2

∫
m<|x|

|u|2.

Let ε > 0 be a small constant to be chosen below. Use Young’s inequality in the third

term on the right side to separate the L2-norm and gradient term and then absorb

the gradient term into the second term with the chosen ε. Multiplying the above

expression by M [u0], we get

M [u0] ∂2
t

∫
χm(|x|) |u(x, t)|2 dx

≤ 24E[u0]M [u0]− (4− ε)‖∇u‖2
L2‖u0‖2

L2 +
c(ε)

m4
‖u0‖8

L2 +
c2

m2
‖u0‖4

L2

≤ −c3‖∇Q‖L2 ‖Q‖L2 +
c(ε)

m4
‖u0‖8

L2 +
c2

m2
‖u0‖4

L2 ,(4.8)

where

c3 ≡ −4(1− δ1) + (4− ε)(1 + δ2) = +4δ1 − ε(1 + δ2).

Select ε = ε(δ1, δ2) > 0 so that c3 > 0 and then take m = m(c3, ε,M [u0]) large enough

so that the right side of (4.8) is bounded by a strictly negative constant. This implies

that the maximal interval of existence I is finite. �

The next two lemmas provide some additional estimates that hold under the hy-

potheses (4.2) and (4.3) of Theorem 4.2. These estimates will be needed for the

compactness and rigidity results in §5-6.

Lemma 4.4 (Lower bound on the convexity of the variance). Let u0 ∈ H1(R3) satisfy

(4.2) and (4.3). Furthermore, take δ > 0 such that M [u0]E[u0] < (1− δ)M [Q]E[Q].
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If u is the solution of the Cauchy problem (1.1) with initial data u0, then there exists

cδ > 0 such that for all t ∈ R

(4.9) 24E[u]− 4‖∇u(t)‖2
L2 = 8‖∇u(t)‖2

L2 − 6‖u(t)‖4
L4 ≥ cδ ‖∇u(t)‖2

L2 .

Proof. By the analysis in the proof of Theorem 4.2, there exists δ2 = δ2(δ) > 0 such

that for all t ∈ R,

(4.10) ‖u0‖2
L2‖∇u(t)‖2

L2 ≤ (1− δ2)2 ‖∇Q‖2
L2‖Q‖2

L2 .

Let

h(t) =
1

‖Q‖2
L2‖∇Q‖2

L2

(
8‖u0‖2

L2‖∇u(t)‖2
L2 − 6‖u0‖2

L2‖u(t)‖4
L4

)
,

and set g(y) = y2−y3. By the Gagliardo-Nirenberg estimate (3.1) with sharp constant

cGN and (3.3),

h(t) ≥ 8 g
(‖∇u(t)‖L2‖u0‖L2

‖∇Q‖L2‖Q‖L2

)
.

By (4.10), we restrict attention to 0 ≤ y ≤ 1− δ2. By an elementary argument, there

exists c = c(δ2) such that g(y) ≥ c y2 if 0 ≤ y ≤ 1−δ2, which completes the proof. �

Lemma 4.5 (Comparability of gradient and energy). Let u0 ∈ H1(R3) satisfy (4.2)

and (4.3). Then
1

6
‖∇u(t)‖2

L2 ≤ E[u] ≤ 1

2
‖∇u(t)‖2

L2 .

Proof. The second inequality is immediate from the definition of energy. The first

one is obtained by observing that

1

2
‖∇u‖2

L2 −
1

4
‖u‖4

L4 ≥
1

2
‖∇u‖2

L2

(
1− 1

2
cGN ‖∇u‖L2‖u‖L2

)
≥ 1

6
‖∇u‖2

L2 ,

where we used (3.1), (3.3) and (4.4). �

In the proofs of Proposition 5.4 and 5.5, we will need the following result called

existence of wave operators since the map Ω+ : ψ+ 7→ v0 is called the wave operator

(see the proposition for the meaning of ψ+ and v0).

Proposition 4.6 (Existence of wave operators). Suppose ψ+ ∈ H1 and

(4.11)
1

2
‖ψ+‖2

L2‖∇ψ+‖2
L2 < M [Q]E[Q].

Then there exists v0 ∈ H1 such that v solving (1.1) with initial data v0 is global in

H1 with

‖∇v(t)‖L2‖v0‖L2 ≤ ‖Q‖L2‖∇Q‖L2 , M [v] = ‖ψ+‖2
L2 , E[v] =

1

2
‖∇ψ+‖2

L2 ,

and

lim
t→+∞

‖v(t)− eit∆ψ+‖H1 = 0.
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Moreover, if ‖eit∆ψ+‖S(Ḣ1/2) ≤ δsd, then

‖v0‖Ḣ1/2 ≤ 2 ‖ψ+‖Ḣ1/2 and ‖v‖S(Ḣ1/2) ≤ 2 ‖eit∆ψ+‖S(Ḣ1/2).

Proof. We want to solve the integral equation

(4.12) v(t) = eit∆ψ+ − i
∫ +∞

t

ei(t−t
′)∆(|v|2v)(t′) dt′

first for t ≥ T with T large. This is achieved as in the proof of the small data scattering

theory (Proposition 2.1), since there exists T � 0 such that ‖eit∆ψ+‖S(Ḣ1/2;[T,+∞)) ≤
δsd. By estimating (4.12), we obtain

‖∇v‖S(L2;[T,+∞)) ≤ c‖ψ+‖Ḣ1 + c‖∇(v3)‖S′(L2)

≤ c‖ψ+‖Ḣ1 + c‖∇v‖S(L2;[T,+∞))‖v‖2
S(Ḣ1/2;[T,+∞))

,

where in the last step, we used ‖ · ‖S′(L2) ≤ ‖ · ‖L10/7
t L

10/7
x

and the Hölder partition
7
10

= 3
10

+ 1
5

+ 1
5
. Thus, ‖∇v‖S(L2;[T,+∞)) ≤ 2 c ‖ψ+‖Ḣ1 . Using this, we obtain similarly,

‖∇(v(t)− eit∆ψ+)‖S(L2;[T,+∞)) → 0 as T → +∞.

Since v(t) − eit∆ψ+ → 0 in H1 as t → +∞, eit∆ψ+ → 0 in L4 as t → +∞, and

‖∇eit∆ψ+‖L2 is conserved, we have

E[v] = lim
t→+∞

(1

2
‖∇eit∆ψ+‖2

L2 −
1

4
‖eit∆ψ+‖4

L4

)
=

1

2
‖ψ+‖2

L2 .

Immediately, we obtain M [v] = ‖ψ+‖2
L2 . Note that we now have M [v]E[v] <

M [Q]E[Q] by (4.11). Observe that

lim
t→+∞

‖∇v(t)‖2
L2‖v‖2

L2 = lim
t→+∞

‖∇eit∆ψ+‖2
L2‖eit∆ψ+‖2

L2

= ‖∇ψ+‖2
L2‖ψ+‖2

L2

≤ 2M [Q]E[Q]

=
1

3
‖∇Q‖2

L2‖Q‖2
L2 ,

where in the last two steps we used (4.11) and (3.4). Take T sufficiently large so that

‖∇v(T )‖L2‖v‖L2 ≤ ‖∇Q‖L2‖Q‖L2 . By Theorem 4.2, we can evolve v(t) from T back

to time 0. �

5. Compactness

Definition 5.1. Suppose u0 ∈ H1 and u is the corresponding H1 solution to (1.1)

and [0, T ∗) the maximal forward time interval of existence. We shall say that SC(u0)

holds if T ∗ = +∞ and ‖u‖S(Ḣ1/2) <∞.
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To prove Theorem 1.1(1)(b), we must show that if ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 ,

and M [u]E[u] < M [Q]E[Q], then SC(u0) holds. We already know that under these

hypotheses, we have an a priori bound on ‖∇u(t)‖L2 , and thus, the maximal for-

ward time of existence is T ∗ = +∞ (this is the energy subcritical case). The goal is,

therefore, to show that the global-in-time Ḣ1/2 Strichartz norm is finite.

By Lemma 4.5, if M [u]E[u] < 1
6
δ4

sd and ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 , then

‖u0‖4
Ḣ1/2 ≤ ‖u0‖2

L2‖∇u0‖2
L2 ≤ 6M [u]E[u] ≤ δ4

sd.

Thus, by the small data theory (Proposition 2.1), SC(u0) holds. Let (ME)c be the

number defined as the supremum over all δ for which the following statement holds

true: “If u0 is radial with ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 and M [u]E[u] < δ, then

SC(u0) holds.” We then clearly have 0 < 1
6
δ4

sd ≤ (ME)c. If (ME)c ≥M [Q]E[Q], then

Theorem 1.1(1)(b) is true. We, therefore, proceed with the proof of Theorem 1.1(1)(b)

by assuming that (ME)c < M [Q]E[Q] and ultimately deduce a contradiction (much

later, in §6). By definition of (ME)c, we have

(C.1) If u0 is radial and ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 and M [u]E[u] < (ME)c,

then SC(u0) holds.

(C.2) There exists a sequence of radial solutions un to (1.1) with corresponding ini-

tial data un,0 such that ‖un,0‖L2‖∇un,0‖L2 < ‖Q‖L2‖∇Q‖L2 andM [un]E[un]↘
(ME)c as n→ +∞, for which SC(un,0) does not hold for any n.

The goal of this section is to use the above sequence un,0 (rescaled so that ‖un,0‖L2 =

1 for all n) to prove the existence of an H1 radial solution uc to (1.1) with initial

data uc,0 such that ‖uc,0‖L2‖∇uc,0‖L2 < ‖Q‖L2‖∇Q‖L2 and M [uc]E[uc] = (ME)c

for which SC(uc,0) does not hold (Proposition 5.4). Moreover, we will show that

K = {uc(t) | 0 ≤ t < +∞} is precompact in H1 (Proposition 5.5), which will enable

us to show that for each ε > 0, there is an R > 0 such that, uniformly in t, we have∫
|x|>R

|∇uc(t, x)|2dx ≤ ε

(Lemma 5.6). This will then play into the rigidity theorem of the next section that

will ultimately lead to a contradiction.

Before stating and proving Proposition 5.4, we introduce some preliminaries in the

spirit of the results of Keraani [14], since we are not able to directly apply his results

as was possible in Kenig-Merle [16]. Note in the following lemma that φn, ψj and WM
n

are functions of x alone, in notational contrast to the analogous lemma in Keraani

([14] Proposition 2.6).

Lemma 5.2 (Profile expansion). Let φn(x) be a radial uniformly bounded sequence

in H1. Then for each M there exists a subsequence of φn, also denoted φn, and

(1) For each 1 ≤ j ≤M , there exists a (fixed in n) radial profile ψj(x) in H1,

(2) For each 1 ≤ j ≤M , there exists a sequence (in n) of time shifts tjn,
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(3) There exists a sequence (in n) of remainders WM
n (x) in H1,

such that

φn =
M∑
j=1

e−it
j
n∆ψj +WM

n .

The time sequences have a pairwise divergence property: For 1 ≤ i 6= j ≤M , we have

(5.1) lim
n→+∞

|tin − tjn| = +∞.

The remainder sequence has the following asymptotic smallness property6:

(5.2) lim
M→+∞

[
lim

n→+∞
‖eit∆WM

n ‖S(Ḣ1/2)

]
= 0.

For fixed M and any 0 ≤ s ≤ 1, we have the asymptotic Pythagorean expansion

(5.3) ‖φn‖2
Ḣs =

M∑
j=1

‖ψj‖2
Ḣs + ‖WM

n ‖2
Ḣs + on(1).

Note that we do not claim that the remainder WM
n is small in any Sobolev norm,

i.e. for all we know it might be true that for some s, 0 ≤ s ≤ 1, we have

lim inf
M→+∞

[
lim

n→+∞
‖WM

n ‖Ḣs

]
> 0 .

Fortunately, the Strichartz norm smallness (5.2) will suffice in our application.

Proof. Since φn is assumed uniformly bounded in H1, let c1 be such that ‖φn‖H1 ≤ c1.

Note the interpolation inequality

‖v‖Lq
tL

r
x
≤ ‖v‖1−θ

Lq̃
tL

r̃
x

‖v‖θL∞t L3
x
,

where (q, r) is any Ḣ1/2 Strichartz admissible pair (so 2
q

+ 3
r

= 1 and 3 ≤ r < +∞),

θ = 3
2r−3

(so 0 < θ ≤ 1), r̃ = 2r, and q̃ = 4r
2r−3

. Observe that (q̃, r̃) is also Ḣ1/2

Strichartz admissible. By this inequality and the Strichartz estimates (for 0 < θ < 3
5
)7,

we get

‖eit∆WM
n ‖Lq

tL
r
x
≤ c ‖WM

n ‖1−θ
Ḣ1/2‖eit∆WM

n ‖θL∞t L3
x
.

Since we will have ‖WM
n ‖Ḣ1/2 ≤ c1, it will suffice for us to show that

lim
M→+∞

[
lim sup
n→+∞

‖eit∆WM
n ‖L∞t L3

x

]
= 0 .

Let A1 ≡ lim supn→+∞ ‖eit∆φn‖L∞t L3
x
. If A1 = 0, the proof is complete with

ψj = 0 for all 1 ≤ j ≤ M . Suppose A1 > 0. Pass to a subsequence so that

6We can always pass to a subsequence in n with the property that ‖eit∆WM
n ‖S(Ḣ1/2) converges.

Therefore, we use lim and not lim sup or lim inf. Similar remarks apply for the limits that appear
in the Pythagorean expansion.

7This restriction is for consistency with our definition of S(Ḣ1/2) in §2.



SCATTERING OF 3D CUBIC NLS 19

limn→+∞ ‖eit∆φn‖L∞t L3
x

= A1. We will show that there is a time sequence t1n and a

profile ψ1 ∈ H1 such that eit
1
n∆φn ⇀ ψ1 and ‖ψ1‖Ḣ1/2 ≥ A5

1

210c41
. For r > 1 yet to be

chosen, let χ(x) be a radial Schwartz function such that χ̂(ξ) = 1 for 1
r
≤ |ξ| ≤ r and

χ̂(ξ) is supported in 1
2r
≤ |ξ| ≤ 2r.

By Sobolev embedding,

‖eit∆φn − χ ∗ eit∆φn‖2
L∞t L3

x
≤
∫
|ξ|(1− χ̂(ξ))2|φ̂n(ξ)|2 dξ

≤
∫
|ξ|≤ 1

r

|ξ||φ̂n(ξ)|2 dξ +

∫
|ξ|≥r
|ξ||φ̂n(ξ)|2 dξ

≤ 1

r
‖φn‖2

L2 +
1

r
‖φn‖2

Ḣ1

≤ c2
1

r
.

Take r =
16c21
A2

1
so that

c21
r

=
A2

1

16
, and then we have for n large

‖χ ∗ eit∆φn‖L∞t L3
x
≥ 1

2
A1 .

Note that

‖χ ∗ eit∆φn‖3
L∞t L3

x
≤ ‖χ ∗ eit∆φn‖2

L∞t L2
x
‖χ ∗ eit∆φn‖L∞t L∞x

≤ ‖φn‖2
L2‖χ ∗ eit∆φn‖L∞t L∞x ,

and thus, we have

‖χ ∗ eit∆φn‖L∞t L∞x ≥
A3

1

8c2
1

.

Since φn are radial functions, so are χ∗eit∆φn, and by the radial Gagliardo-Nirenberg

inequality, we obtain

‖χ ∗ eit∆φn‖L∞t L∞{|x|≥R}
≤ 1

R
‖χ ∗ eit∆φn‖1/2

L2
x
‖∇χ ∗ eit∆φn‖1/2

L2
x
≤ c1

R
.

Therefore, by selecting R large enough

‖χ ∗ eit∆φn‖L∞t L∞{|x|≤R}
≥ A3

1

16c2
1

.

Let t1n and x1
n (with |x1

n| ≤ R) be sequences such that for each n,

|χ ∗ eit1n∆φn(x1
n)| ≥ A3

1

32c2
1

,

or, written out, ∣∣∣∣∫
R3

χ(x1
n − y) eit

1
n∆φn(y) dy

∣∣∣∣ ≥ A3
1

32c2
1

.
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Pass to a subsequence such that x1
n → x1 (possible since |x1

n| ≤ R). Then since

‖χ(x1 − ·)− χ(x1
n − ·)‖L3/2 → 0 as n→ +∞, we have∣∣∣∣∫

R3

χ(x1 − y) eit
1
n∆φn(y) dy

∣∣∣∣ ≥ A3
1

64c2
1

.

Consider the sequence eit
1
n∆φn, which is uniformly bounded in H1. Pass to a subse-

quence so that eit
1
n∆φn ⇀ ψ1, with ψ1 ∈ H1 radial and ‖ψ1‖H1 ≤ lim sup ‖φn‖H1 ≤ c1.

By the above, we have ∣∣∣∣∫
R3

χ(x1 − y)ψ1(y) dy

∣∣∣∣ ≥ A3
1

64c2
1

.

By Plancherel and Cauchy-Schwarz applied to the left side of the above inequality,

we obtain

‖χ‖Ḣ−1/2‖ψ1‖Ḣ1/2 ≥
A3

1

64c2
1

.

By converting to radial coordinates, we can estimate ‖χ‖Ḣ−1/2 ≤ r. Thus,

‖ψ1‖Ḣ1/2 ≥
A3

1

64c2
1

· 1

r
=

A5
1

210c4
1

.

Let W 1
n = φn − e−it

1
n∆ψ1. Since eit

1
n∆φn ⇀ ψ1, we have that for any 0 ≤ s ≤ 1

(5.4) 〈φn, e−it
1
n∆ψ1〉Ḣs = 〈eit1n∆φn, ψ

1〉Ḣs → ‖ψ1‖2
Ḣs ,

and, by expanding ‖W 1
n‖2

Ḣs , we obtain

lim
n→+∞

‖W 1
n‖2

Ḣs = lim
n→+∞

‖φn‖2
Ḣs − ‖ψ1‖2

Ḣs .

From this with s = 1 and s = 0 we deduce that ‖W 1
n‖H1 ≤ c1.

Let A2 = lim supn→+∞ ‖eit∆W 1
n‖L∞t L3

x
. If A2 = 0, then we are done. If A2 > 0, then

repeat the above argument, with φn replaced by W 1
n to obtain a sequence of time

shifts t2n and a profile ψ2 ∈ H1 such that eit
2
n∆W 1

n ⇀ ψ2 and

‖ψ2‖Ḣ1/2 ≥
A5

2

210c4
1

.

We claim that |t2n − t1n| → +∞. Indeed, suppose we pass to a subsequence such that

t2n − t1n → t21 finite. Then

ei(t
2
n−t1n)∆[eit

1
n∆φn − ψ1] = eit

2
n∆[φn − e−it

1
n∆ψ1] = eit

2
n∆W 1

n ⇀ ψ2.

Since t2n − t1n → t21 and eit
1
n∆φn − ψ1 ⇀ 0, the left side of the above expression

converges weakly to 0, so ψ2 = 0, a contradiction. Let W 2
n = φn − eit

1
n∆ψ1 − eit2n∆ψ2.
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Note that

〈φn, eit
2
n∆ψ2〉Ḣs = 〈e−it2n∆φn, ψ

2〉Ḣs

= 〈e−it2n∆(φn − eit
1
n∆ψ1), ψ2〉Ḣs + on(1)

= 〈e−it2n∆W 1
n , ψ

2〉Ḣs + on(1)

→ ‖ψ2‖2
Ḣs ,

where the second line follows from the fact that |t1n− t2n| → ∞. Using this and (5.4),

we compute

lim
n→+∞

‖W 2
n‖2

Ḣs = lim
n→+∞

‖φn‖2
Ḣs − ‖ψ1‖2

Ḣs − ‖ψ2‖2
Ḣs ,

and thus, ‖W 2
n‖H1 ≤ c1.

We continue inductively, constructing a sequence tMn and a profile ψM such that

eit
M
n ∆WM−1

n ⇀ ψM and

(5.5) ‖ψM‖Ḣ1/2 ≥
A5
M

210c4
1

.

Suppose 1 ≤ j < M . We shall show that |tMn − tjn| → +∞ inductively by assuming

that |tMn − tj+1
n | → +∞, . . . , |tMn − tM−1

n | → +∞. Suppose, passing to a subsequence

that tMn − tjn → tMj finite. Note that

ei(t
M
n −t

j
n)∆(eit

j
n∆W j−1

n −ψj)−ei(tMn −t
j+1
n )∆ψj+1−· · ·−ei(tMn −t

M−1
n )∆ψM−1 = eit

M
n ∆WM−1

n .

The left side converges weakly to 0, while the right side converges weakly to ψM ,

which is nonzero; contradiction. This proves (5.1). Let WM
n = φn − e−it

1
n∆ψ1 − · · · −

e−it
M
n ∆ψM . Note that

〈φn, e−it
M
n ∆ψM〉 = 〈eitMn ∆φn, ψ

M〉Ḣs

= 〈eitMn ∆(φn − eit
1
n∆ψ1 − · · · − eit

M−1
n ∆ψM−1), ψM〉Ḣs + on(1)

= 〈eitMn ∆WM−1
n , ψM〉Ḣs + on(1),

where the middle line follows from the pairwise divergence property (5.1). Thus,

〈φn, e−it
M
n ∆ψM〉 → ‖ψM‖2

Ḣs . The expansion (5.3) is then shown to hold by expanding

‖WM
n ‖2

Ḣs .

By (5.5) and (5.3) with s = 1
2
, we have

+∞∑
M=1

(
A5
M

210c4
1

)2

≤ lim
n→+∞

‖φn‖2
Ḣ1/2 ≤ c2

1,

and hence, AM → 0 as M → +∞. �
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Corollary 5.3 (Energy Pythagorean expansion). In the situation of Lemma 5.2, we

have

(5.6) E[φn] =
M∑
j=1

E[e−it
j
n∆ψj] + E[WM

n ] + on(1).

Proof. We will use the compact embedding H1
rad ↪→ L4

rad (which follows from the radial

Gagliardo-Nirenberg estimate of Strauss [25]) to address a j for which tjn converges

to a finite number (if one exists). We will also use the decay of linear Schrödinger

solutions in the L4 norm as time →∞.

There are two cases to consider.

Case 1. There exists some j for which tjn converges to a finite number, which

without loss we assume is 0. In this case we will show that

lim
n→+∞

‖WM
n ‖L4

x
= 0, for M > j,

lim
n→+∞

‖e−itin∆ψi‖L4
x

= 0, for all i 6= j,

and

lim
n→+∞

‖φn‖L4 = ‖ψj‖L4 ,

which, combined with (5.3) for s = 1, gives (5.6).

Case 2. For all j, |tjn| → ∞. In this case we will show that

lim
n→+∞

‖e−it
j
n∆ψj‖L4

x
= 0, for all j

and

lim
n→+∞

‖φn‖L4 = lim
n→+∞

‖WM
n ‖L4 ,

which, combined with (5.3) for s = 1, gives (5.6).

Proof of Case 1. In this situation, we have, from the proof of Lemma 5.2 that

W j−1
n ⇀ ψj. By the compactness of the embedding H1

rad ↪→ L4
rad, it follows that

W j−1
n → ψj strongly in L4. Let i 6= j. Then we claim that ‖eitin∆ψi‖L4 → 0 as

n → ∞. Indeed, since tjn = 0, by (5.1), we have |tin| → +∞. For a function

ψ̃i ∈ Ḣ3/4 ∩ L4/3, from Sobolev embedding and the Lp spacetime decay estimate of

the linear flow, we obtain

‖eit
j
n∆ψi‖L4 ≤ c‖ψi − ψ̃i‖Ḣ3/4 +

c

|tin|1/4
‖ψ̃i‖L4/3 .

By approximating ψi by ψ̃i ∈ C∞c in Ḣ3/4 and sending n→ +∞, we obtain the claim.

Recalling that

W j−1
n = φn − e−it

1
n∆ψ1 − · · · − e−it

j−1
n ∆ψj−1,

we conclude that φn → ψj strongly in L4. Recalling that

WM
n = (W j−1

n − ψj)− e−it
j+1
n ∆ψj+1 − · · · − e−itMn ∆ψM ,
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we also conclude that WM
n → 0 strongly in L4 for M > j.

Proof of Case 2. Similar to the proof of Case 1. �

Proposition 5.4 (Existence of a critical solution). There exists a global (T ∗ = +∞)

solution uc in H1 with initial data uc,0 such that ‖uc,0‖L2 = 1,

E[uc] = (ME)c < M [Q]E[Q],

‖∇uc(t)‖L2 < ‖Q‖L2‖∇Q‖L2 for all 0 ≤ t < +∞,

and

‖uc‖S(Ḣ1/2) = +∞.

Proof. We consider the sequence un,0 described in the introduction to this section.

Rescale it so that ‖un,0‖L2 = 1; this rescaling does not affect the quantitiesM [un]E[un]

and ‖un,0‖L2‖∇un,0‖L2 . After this rescaling, we have ‖∇un,0‖L2 < ‖Q‖L2‖∇Q‖L2 and

E[un]↘ (ME)c. Each un is global and non-scattering, i.e. ‖un‖S(Ḣ1/2) = +∞. Apply

the profile expansion lemma (Lemma 5.2) to un,0 (which is now uniformly bounded

in H1) to obtain

(5.7) un,0 =
M∑
j=1

e−it
j
n∆ψj +WM

n ,

where M will be taken large later. By the energy Pythagorean expansion (Corollary

5.3), we have

M∑
j=1

lim
n→+∞

E[e−it
j
n∆ψj] + lim

n→+∞
E[WM

n ] = lim
n→+∞

E[un,0] = (ME)c,

and thus (recalling that each energy is ≥ 0 – see Lemma 4.5),

(5.8) lim
n→+∞

E[e−it
j
n∆ψj] ≤ (ME)c ∀ j.

Also by s = 0 of (5.3), we have

(5.9)
M∑
j=1

M [ψj] + lim
n→+∞

M [WM
n ] = lim

n→+∞
M [un,0] = 1.

Now we consider two cases; we will show that Case 1 leads to a contradiction and

thus does not occur; Case 2 will manufacture the desired critical solution uc.

Case 1. More than one ψj 6= 0. By (5.9), we necessarily have M [ψj] < 1 for each

j, which by (5.8) implies that for n sufficiently large,

M [e−it
j
n∆ψj]E[e−it

j
n∆ψj] < (ME)c.
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For a given j, there are two cases to consider: Case (a). If |tjn| → +∞ (passing to a

subsequence we have tjn → +∞ or tjn → −∞) we have ‖e−it
j
n∆ψj‖L4 → 0 (as discussed

in the proof of Corollary 5.3), and thus,

1

2
‖ψj‖2

L2‖∇ψj‖2
L2 < (ME)c

(we have used ‖∇e−it
j
n∆ψj‖L2 = ‖∇ψj‖L2). Let NLS(t)ψ denote the solution to (1.1)

with initial data ψ. By the existence of wave operators (Proposition 4.6), there exists

ψ̃j such that

‖NLS(−tjn)ψ̃j − e−it
j
n∆ψj‖H1 → 0, as n→ +∞

with

‖ψ̃j‖L2 ‖∇NLS(t)ψ̃j‖L2 < ‖Q‖L2‖∇Q‖L2 ,

M [ψ̃j] = ‖ψj‖2
L2 , E[ψ̃j] =

1

2
‖∇ψj‖2

L2 ,

and thus,

M [ψ̃j]E[ψ̃j] < (ME)c, ‖NLS(t)ψ̃j‖S(Ḣ1/2) < +∞.

Case (b). On the other hand, if for a given j we have tjn → t∗ finite (and there can

be at most one such j by (5.1)), we note that by continuity of the linear flow in H1,

e−it
j
n∆ψj → e−it∗∆ψj strongly in H1,

and we let ψ̃j = NLS(t∗)[e
−it∗∆ψj] so that NLS(−t∗)ψ̃j = e−it∗∆ψj. In either case,

associated to each original profile ψj we now have a new profile ψ̃j such that

‖NLS(−tjn)ψ̃j − e−it
j
n∆ψj‖H1 → 0 as n→ +∞.

It now follows that we can replace e−it
j
n∆ψj by NLS(−tjn)ψ̃j in (5.7) to obtain

un,0 =
M∑
j=1

NLS(−tjn)ψ̃j + W̃M
n ,

where

lim
M→+∞

[
lim

n→+∞
‖eit∆W̃M

n ‖S(Ḣ1/2)

]
= 0.

The idea of what follows is that we approximate

NLS(t)un,0 ≈
M∑
j=1

NLS(t− tjn)ψ̃j

via a perturbation theory argument, and since the right side has bounded S(Ḣ1/2)

norm, so must the left-side, which is a contradiction. To carry out this argument, we
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introduce the notation vj(t) = NLS(t)ψ̃j, un(t) = NLS(t)un,0, and8

ũn(t) =
M∑
j=1

vj(t− tjn).

Then

i∂tũn + ∆ũn + |ũn|2ũn = en,

where

en = |ũn|2ũn −
M∑
j=1

|vj(t− tjn)|2vj(t− tjn).

We claim that there is a (large) constant A (independent of M) with the property

that for any M , there exists n0 = n0(M) such that for n > n0,

‖ũn‖S(Ḣ1/2) ≤ A.

Moreover, we claim that for each M and ε > 0 there exists n1 = n1(M, ε) such that

for n > n1,

‖en‖L10/3
t L

5/4
x
≤ ε.

Note that since ũn(0)− un(0) = W̃M
n , there exists M1 = M1(ε) sufficiently large such

that for each M > M1 there exists n2 = n2(M) such that n > n2 implies

‖eit∆(ũn(0)− un(0))‖S(Ḣ1/2) ≤ ε.

Thus, we may apply Proposition 2.3 (long-time perturbation theory) to obtain that

for n and M sufficiently large, ‖un‖S(Ḣ1/2) <∞, a contradiction.9

Therefore, it remains to establish the above claims, and we begin with showing that

‖ũn‖S(Ḣ1/2) ≤ A for n > n0 = n0(M), where A is some large constant independent of

M . Let M0 be large enough so that

‖eit∆W̃M0
n ‖S(Ḣ1/2) ≤ δsd.

Then for each j > M0, we have ‖eit∆ψj‖S(Ḣ1/2) ≤ δsd, and by the second part of

Proposition 4.6 we obtain

(5.10) ‖vj‖S(Ḣ1/2) ≤ 2‖eit∆ψj‖S(Ḣ1/2) for j > M0.

By the elementary inequality: for aj ≥ 0,∣∣∣( M∑
j=1

aj

)5/2

−
M∑
j=1

a
5/2
j

∣∣∣ ≤ cM
∑
j 6=k

|aj||ak|3/2 ,

8ũn, and en also depend on M , but we have suppressed the notation.
9The order of logic here is: The constant A, which is independent of M , is put into Prop. 2.3,

which gives a suitable ε. We then take M1 = M1(ε) as above, and then take n = max(n0, n1, n2).
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we have

(5.11)

‖ũn‖5
L5

tL
5
x

=

M0∑
j=1

‖vj‖5
L5

tL
5
x

+
M∑

j=M0+1

‖vj‖5
L5

tL
5
x

+ cross terms

≤
M0∑
j=1

‖vj‖5
L5

tL
5
x

+ 25

M∑
j=M0+1

‖eit∆ψj‖5
L5

tL
5
x

+ cross terms ,

where we used (5.10) to bound middle terms. On the other hand, by (5.7),

(5.12) ‖eit∆un,0‖5
L5

tL
5
x

=

M0∑
j=1

‖eit∆ψj‖5
L5

tL
5
x

+
M∑

j=M0+1

‖eit∆ψj‖5
L5

tL
5
x

+ cross terms .

The “cross terms” are made ≤ 1 by taking n0 = n0(M) large enough and appealing

to (5.1). We observe that since ‖eit∆un,0‖L5
tL

5
x
≤ c‖un,0‖Ḣ1/2 ≤ c′, (5.12) shows that

the quantity
∑M

j=M0+1 ‖eit∆ψj‖5
L5

tL
5
x

is bounded independently of M provided n > n0.

Then, (5.11) gives that ‖ũn‖L5
tL

5
x

is bounded independently of M provided n > n0.

A similar argument establishes that ‖ũn‖L∞t L3
x

is bounded independently of M for

n > n0. Interpolation between these exponents gives that ‖ũn‖L20
t L

10/3
x

is bounded

independently of M for n > n0. Finally, by applying the Kato estimate (2.2) to the

integral equation for i∂tũn + ∆ũn + |ũn|2ũn = en and using that ‖en‖S(Ḣ−1/2) ≤ 1

(proved next), we obtain that ‖ũn‖S(Ḣ1/2) is bounded independently of M for n > n0.

We now address the next claim, that for each M and ε > 0, there exists n1 =

n1(M, ε) such that for n > n1, ‖en‖L10/3
t L

5/4
x
≤ ε. The expansion of en consists of

∼M3 cross terms of the form

vj(t− tjn)vk(t− tkn)v`(t− t`n),

where not all three of j, k, and ` are the same. Assume, without loss, that j 6= k,

and thus, |tjn − tkn| → ∞ as n→ +∞. We estimate

‖vj(t− tjn)vk(t− tkn)v`(t− t`n)‖
L

10/3
t L

5/4
x
≤ ‖vj(t− tjn)vk(t− tkn)‖

L10
t L

5/3
x
‖v`(t− t`n)‖L5

tL
5
x
.

Now observe that

‖vj(t− (tjn − tkn)) · vk(t)‖
L10

t L
5/3
x
→ 0,

since vj and vk belong to L20
t L

10/3
x and |tjn − tkn| → ∞.

Case 2. ψ1 6= 0, and ψj = 0 for all j ≥ 2.

By (5.9), we have M [ψ1] ≤ 1 and by (5.8), we have limn→+∞E[e−it
1
n∆ψ1] ≤ (ME)c.

If t1n converges (to 0 without loss of generality), we take ψ̃1 = ψ1 and then we have

‖NLS(−t1n)ψ̃1 − e−it
1
n∆ψ1‖H1 → 0 as n → +∞. If, on the other hand, t1n → +∞,

then since ‖eit1n∆ψ1‖L4 → 0,

1

2
‖∇ψ1‖2

L2 = lim
n→+∞

E[e−it
1
n∆ψ1] ≤ (ME)c.
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Thus, by the existence of wave operators (Proposition 4.6), there exists ψ̃1 such

that M [ψ̃1] = M [ψ1] ≤ 1, E[ψ̃1] = 1
2
‖∇ψ1‖2

L2 ≤ (ME)c, and ‖NLS(−t1n)ψ̃1 −
e−it

1
n∆ψ1‖H1 → 0 as n→ +∞.

In either case, let W̃M
n = WM

n +(e−it
1
n∆ψ1−NLS(−t1n)ψ̃1). Then, by the Strichartz

estimates,

‖e−it∆W̃M
n ‖S(Ḣ1/2) ≤ ‖e

−it∆WM
n ‖S(Ḣ1/2) + c‖e−it1n∆ψ1 −NLS(−t1n)ψ̃1‖Ḣ1/2 ,

and therefore, limn→+∞ ‖e−it∆W̃M
n ‖S(Ḣ1/2) = limn→+∞ ‖e−it∆WM

n ‖S(Ḣ1/2). Hence, we

now have

un,0 = NLS(−t1n)ψ̃1 + W̃M
n

with M [ψ̃1] ≤ 1, E[ψ̃1] ≤ (ME)c, and

lim sup
M→+∞

[
lim

n→+∞
‖W̃M

n ‖S(Ḣ1/2)

]
= 0 .

Let uc be the solution to (1.1) with initial data uc,0 = ψ̃1. Now we claim that

‖uc‖S(Ḣ1/2) = ∞, and thus, M [uc] = 1 and E[uc] = (ME)c, which will complete the

proof. To establish this claim, we use a perturbation argument similar to that in Case

1. Suppose

A := ‖NLS(t− t1n)ψ̃1‖S(Ḣ1/2) = ‖NLS(t)ψ̃1‖S(Ḣ1/2) = ‖uc‖S(Ḣ1/2) <∞.

Obtain ε0 = ε0(A) from the long-time perturbation theory (Proposition 2.3), and then

take M sufficiently large and n2 = n2(M) sufficiently large so that n > n2 implies

‖W̃M
n ‖S(Ḣ1/2) ≤ ε0. We then repeat the argument in Case 1 using Proposition 2.3 to

obtain that there exists n large for which ‖un‖S(Ḣ1/2) <∞, a contradiction.

�

Proposition 5.5 (Precompactness of the flow of the critical solution). With uc as in

Proposition 5.4, let

K = {uc(t) | t ∈ [0,+∞) } ⊂ H1.

Then K is precompact in H1 (i.e. K̄ is compact in H1).

Proof. Take a sequence tn → +∞; we shall argue that uc(tn) has a subsequence

converging in H1.10 Take φn = uc(tn) (a uniformly bounded sequence in H1) in the

profile expansion lemma (Lemma 5.2) to obtain profiles ψj and an error WM
n such

that

uc(tn) =
M∑
j=1

e−it
j
n∆ψj +WM

n

10By time continuity of the solution in H1, we of course do not need to consider the case when
tn is bounded and thus has a subsequence convergent to some finite time.
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with |tjn − tkn| → +∞ as n → +∞ for fixed j 6= k. By the energy Pythagorean

expansion (Corollary 5.3), we have

M∑
j=1

lim
n→+∞

E[e−it
j
n∆ψj] + lim

n→+∞
E[WM

n ] = E[uc] = (ME)c,

and thus (recalling that each energy is ≥ 0 – see Lemma 4.5),

lim
n→+∞

E[e−it
j
n∆ψj] ≤ (ME)c ∀ j .

Also by s = 0 of (5.3), we have

M∑
j=1

M [ψj] + lim
n→+∞

M [WM
n ] = lim

n→+∞
M [un,0] = 1.

We now consider two cases, just as in the proof of Proposition 5.4; both Case 1 and

Case 2 will lead to a contradiction.

Case 1. More than one ψj 6= 0. The proof that this leads to a contradiction is

identical to that in Proposition 5.4, so we omit it.

Case 2. Only ψ1 6= 0 and ψj = 0 for all 2 ≤ j ≤M , so that

(5.13) uc(tn) = e−it
1
n∆ψ1 +WM

n

Just as in the proof of Proposition 5.4 Case 2, we obtain that

M [ψ1] = 1, lim
n→+∞

E[e−it
1
n∆ψ1] = (ME)c ,

lim
n→+∞

M [WM
n ] = 0, and lim

n→+∞
E[WM

n ] = 0 .

By the comparability lemma (Lemma 4.5),

(5.14) lim
n→+∞

‖WM
n ‖H1 = 0 .

Next, we show that (a subsequence of) t1n converges.11 Suppose that t1n → −∞. Then

‖eit∆uc(tn)‖S(Ḣ1/2;[0,+∞)) ≤ ‖e
i(t−t1n)∆ψ1‖S(Ḣ1/2;[0,+∞)) + ‖eit∆WM

n ‖S(Ḣ1/2;[0,+∞)).

Since

lim
n→+∞

‖ei(t−t1n)∆ψ1‖S(Ḣ1/2;[0,+∞)) = lim
n→+∞

‖eit∆ψ1‖S(Ḣ1/2;[−t1n,+∞)) = 0

and ‖eit∆WM
n ‖S(Ḣ1/2) ≤ 1

2
δsd, we obtain a contradiction to the small data scattering

theory (Proposition 2.1) by taking n sufficiently large. On the other hand, suppose

that t1n → +∞. Then we can similarly argue that for n large,

‖eit∆uc(tn)‖S(Ḣ1/2;(−∞,0]) ≤
1

2
δsd,

11In the rest of the argument, take care not to confuse t1n (associated with ψ1) with tn.
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and thus, the small data scattering theory (Proposition 2.1) shows that

‖uc‖S(Ḣ1/2;(−∞,tn]) ≤ δsd.

Since tn → +∞, by sending n→ +∞ in the above, we obtain ‖uc‖S(Ḣ1/2;(−∞,+∞)) ≤
δsd, a contradiction. Thus, we have shown that t1n converges to some finite t1.

Since e−it
1
n∆ψ1 → e−it

1∆ψ1 in H1 and (5.14) holds, (5.13) shows that uc(tn) con-

verges in H1. �

Lemma 5.6 (Precompactness of the flow implies uniform localization). Let u be a

solution to (1.1) such that

K = {u(t) | t ∈ [0,+∞) }

is precompact in H1. Then for each ε > 0, there exists R > 0 so that∫
|x|>R

|∇u(x, t)|2 ≤ ε, for all 0 ≤ t < +∞.

Proof. If not, then there exists ε > 0 and a sequence of times tn such that∫
|x|>n
|∇u(x, tn)|2 dx ≥ ε.

Since K is precompact, there exists φ ∈ H1 such that, passing to a subsequence of

tn, we have u(tn)→ φ in H1. By taking n large, we have both∫
|x|>n
|∇φ(x)|2 ≤ 1

4
ε

and ∫
R3

|∇(u(x, tn)− φ(x))|2 dx ≤ 1

4
ε ,

which is a contradiction. �

6. Rigidity theorem

We now prove the rigidity theorem.

Theorem 6.1 (Rigidity). Suppose u0 ∈ H1 satisfies

(6.1) M [u0]E[u0] < M [Q]E[Q]

and

(6.2) ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 .

Let u be the global H1 solution of (1.1) with initial data u0 and suppose that

K = {u(t) | t ∈ [0,+∞) } is precompact in H1.

Then u0 = 0.
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Proof. Let φ ∈ C∞0 , radial, with

φ(x) =

{
|x|2 for |x| ≤ 1

0 for |x| ≥ 2
.

For R > 0 define zR(t) =
∫
R2φ( x

R
) |u(x, t)|2 dx. Then

(6.3) |z′R(t)| ≤ 2R

∣∣∣∣∫ ū(t)∇u(t) (∇φ)
( x
R

)
dx

∣∣∣∣ ≤ cR

∫
0<|x|<2R

|∇u(t)| |u(t)| dx.

Using Hölder’s inequality and Theorem 1.1(1)(a), we bound the previous expression

by

cR ‖∇u(t)‖L2 ‖u‖L2 ≤ cR ‖∇Q‖L2 ‖Q‖L2 = c̃ R.

Thus, we obtain

(6.4) |z′R(t)− z′R(0)| ≤ 2 c̃ R for t > 0.

Next we estimate z′′R(t) using the localized virial identity (4.1):

z′′R(t) = 4

∫
φ′′
(
|x|
R

)
|∇u|2 − 1

R2

∫
(∆2φ)

( x
R

)
|u|2 −

∫
(∆φ)

( x
R

)
|u|4

≥ 8

∫
|x|≤R

|∇u|2 + 4

∫
R<|x|<2R

φ′′
(
|x|
R

)
|∇u|2 − c

R2

∫
R<|x|<2R

|u|2

− 6

∫
|x|≤R

|u|4 − c
∫
R<|x|<2R

|u|4

≥
(

8

∫
|x|≤R

|∇u|2 − 6

∫
|x|≤R

|u|4
)
− c1

∫
R<|x|<2R

(
|∇u|2 +

|u|2

R2
+ |u|4

)
.

Since (6.1) holds, take δ > 0 such that M [u0]E[u0] ≤ (1 − δ)M [Q]E[Q]. Let

ε = c−1
1 cδ

∫
|∇u0|2, where cδ is as in (4.9).

Since {u(t)|t ∈ [0,∞)} is precompact in H1, by Lemma 5.6 there exists R1 > 0

such that
∫
|x|>R1

|∇u(t)|2 ≤ 1
9
ε. Next, because of mass conservation, there exists

R2 > 0 such that 1
R2

2

∫
|u|2 < 1

9
ε. Finally, the radial Gagliardo-Nirenberg inequality

(3.5) yields the existence of R3 > 0 such that∫
|x|>R3

|u(t)|4 ≤ c

R2
3

‖∇u(t)‖L2(|x|>R3) ‖u0‖3
L2 ≤

c

R2
3

‖∇u0‖L2 ‖u0‖3
L2 ≤

1

9
ε,

with R2
3 > 9 c ε ‖∇u0‖L2 ‖u0‖3

L2 ; in the above chain we used the gradient-energy com-

parability (Lemma 4.5) with t = 0 on the left side. Take R = max{R1, R2, R3} to

obtain

(6.5) c1

∫
|x|>R

(
|∇u|2 +

|u|2

R2
+ |u|4

)
≤ 1

3
cδ

∫
|∇u0|2.
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By (4.9) and Lemma 4.5, we also have

(6.6) 8

∫
|∇u|2 − 6

∫
|u|4 ≥ cδ

∫
|∇u0|2.

Splitting the integrals on the left side of the above expression into the regions {|x| >
R} and {|x| < R} and applying (6.5), we get

8

∫
|x|≤R

|∇u|2 − 6

∫
|x|≤R

|u|4 ≥ 2

3
cδ

∫
|∇u0|2.

Hence, we obtain z′′R(t) ≥ 1
3
cδ ‖∇u0‖2

L2 , which implies by integration from 0 to t that

z′R(t)− z′R(0) ≥ 1
3
cδ ‖∇u0‖2

L2 t. Taking t large, we obtain a contradiction with (6.4),

which can be resolved only if ‖∇u0‖L2 = 0. �

To complete the proof of Theorem 1.1(1)(b), we just apply Theorem 6.1 to uc

constructed in Proposition 5.4, which by Proposition 5.5, meets the hypotheses in

Theorem 6.1. Thus uc,0 = 0, which contradicts the fact that ‖uc‖S(Ḣ1/2) = ∞.

We have thus obtained that if ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 and M [u]E[u] <

M [Q]E[Q], then SC(u0) holds, i.e. ‖u‖S(Ḣ1/2) <∞. By Proposition 2.2, H1 scattering

holds.

7. Extensions to general mass supercritical, energy subcritical NLS

equations

Consider the focusing mass supercritical, energy subcritical nonlinear Schrödinger

equation NLSp(RN):

(7.1)

{
i∂tu+ ∆u+ |u|p−1u = 0, (x, t) ∈ RN × R,
u(x, 0) = u0(x) ∈ H1(RN),

with the choice of nonlinear exponent p and the dimension N such that

0 < sc < 1, where sc =
N

2
− 2

p− 1
.

The initial value problem with u0 ∈ H1(RN) is locally well-posed, see [9]. Denote by

I = (−T∗, T ∗) the maximal interval of existence of the solution u (e.g., see [3]). This

implies that either T ∗ = +∞ or T ∗ < +∞ and ‖∇u(t)‖L2 → ∞ as t → T ∗ (similar

properties for T∗).

The solutions to this problem satisfy mass and energy conservation laws, in partic-

ular,

E[u(t)] =
1

2

∫
|∇u(x, t)|2 − 1

p+ 1

∫
|u(x, t)|p+1 dx = E[u0].

The Sobolev Ḣsc norm is invariant under the scaling u 7→ uλ(x, t) = λ2/(p−1)u(λx, λ2t)

(uλ is a solution of NLSp(RN), if u is).
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The general Gagliardo-Nirenberg inequality (see [31]) is valid for values of p and

N such that 0 ≤ sc < 112:

(7.2) ‖u‖p+1
Lp+1(RN )

≤ cGN ‖∇u‖
N(p−1)

2

L2(RN )
‖u‖2− (N−2)(p−1)

2

L2(RN )
,

where

cGN =
‖Q‖p+1

Lp+1(RN )

‖∇Q‖
N(p−1)

2

L2(RN )
‖Q‖2− (N−2)(p−1)

2

L2(RN )

and Q is the ground state solution (positive solution of minimal L2 norm) of the

equation

(7.3) −(1− sc)Q+ ∆Q+ |Q|p−1Q = 0.

(See [31] and references therein for discussion on the existence of positive solutions

of class H1(RN) to this equation.)13 The corresponding soliton solution to (7.1) is

u(x, t) = ei(1−sc)tQ(x).

The generalization of Theorem 4.2 (or Theorem 1.1 without scattering) to all 0 <

sc < 1 is based on using the scaling invariant quantity ‖∇u‖sc

L2(RN )
· ‖u‖1−sc

L2(RN )
.

Theorem 7.1. Consider NLSp(RN) with (possibly non-radial) u0 ∈ H1(RN) and

0 < sc < 1. Suppose that

(7.4) E[u0]sc M [u0]1−sc < E[Q]sc M [Q]1−sc , E[u0] ≥ 0.

If (7.4) holds and

(7.5) ‖∇u0‖sc

L2(RN )
‖u0‖1−sc

L2(RN )
< ‖∇Q‖sc

L2(RN )
‖Q‖1−sc

L2(RN )
,

then for any t ∈ I,

(7.6) ‖∇u(t)‖sc

L2(RN )
‖u0‖1−sc

L2(RN )
< ‖∇Q‖sc

L2(RN )
‖Q‖1−sc

L2(RN )
,

and thus I = (−∞,+∞), i.e. the solution exists globally in time.

If (7.4) holds and

(7.7) ‖∇u0‖sc

L2(RN )
‖u0‖1−sc

L2(RN )
> ‖∇Q‖sc

L2(RN )
‖Q‖1−sc

L2(RN )
,

then for t ∈ I

(7.8) ‖∇u(t)‖sc

L2(RN )
‖u0‖1−sc

L2(RN )
> ‖∇Q‖sc

L2(RN )
‖Q‖1−sc

L2(RN )
.

Furthermore, if (a) |x|u0 ∈ L2(RN), or (b) u0 is radial with N > 1 and 1 + 4
N
< p <

min{1 + 4
N−2

, 5}, then I is finite, and thus, the solution blows up in finite time. The

12It is also valid for sc = 1 becoming the Sobolev embedding, see Remark 7.3.
13In the case p = 3, N = 3, we have sc = 1

2 , and thus, the normalization for Q chosen here is
different from that in the main part of this paper. The normalization of Q taken here was chosen
since it enables us to draw a comparison with the sc = 1 endpoint result of Kenig-Merle [16].
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finite-time blowup conclusion and (7.8) also hold if, in place of (7.4) and (7.7), we

assume E[u0] < 0.

The proof of this theorem is similar to Theorem 4.2 and can be found in [12].

Remark 7.2. A finite-time T blow-up solution to a mass-supercritical energy subcriti-

cal NLS equation satisfies a lower bound on the blow-up rate: ‖∇u(t)‖L2 ≥ c(T−t)−α,

where α = α(p, d). This is obtained by scaling the local-theory, and it implies that

the quantity ‖u0‖sc

L2‖∇u(t)‖1−sc

L2 → ∞, thus strengthening the conclusion (7.8). A

stronger result in this direction was recently obtained by Merle-Raphaël [21]: if u(t)

blows-up in finite time T ∗ < ∞, then limt→T ∗ ‖u(t)‖Ḣsc = ∞ (in fact, it diverges to

∞ with a logarithmic lower bound).

Remark 7.3. This theorem provides a link between the mass critical NLS and energy

critical NLS equations: Consider sc = 1; the theorem holds true by the work of Kenig-

Merle [16, Section 3]. In this case there is no mass involved, the Gagliardo-Nirenberg

inequality (7.2) becomes the Sobolev inequality, the condition (7.4) is E[u0] < E[Q],

where Q is the radial positive decreasing (class Ḣ1(RN)) solution of 4Q+ |Q|p−1Q =

0, and the conditions (7.5) - (7.8) involve only the size of ‖∇u0‖L2 in relation to

‖∇Q‖L2(RN ). In regard to the case sc = 0, (7.4) should be replaced by M [u] < M [Q]

and (7.5) becomes the same statement. Under this hypotheses, the result of M.

Weinstein [31] states that

‖∇u(t)‖2
L2 ≤ 2

(
1−
‖u0‖2

L2

‖Q‖2
L2

)−1

E[u], E[u] > 0,

and thus, global existence holds. We do not recover this estimate as a formal limit

in (7.6),14 however, the conclusion about the global existence in this case does hold

true. Our intention here is not to reprove the sc = 0 endpoint result – only to

draw a connection to it. The hypothesis (7.7) should be replaced by its formal limit

‖u0‖L2 > ‖Q‖L2 , which is the complement of (7.4). Thus, the only surviving claim

in Theorem 7.1 regarding blow-up in the sc = 0 limit is that it should hold under

the hypothesis E[u0] < 0. Blow-up under this hypothesis is the classical result of

Glassey [11] in the case of finite variance, and in the radial case it is the result of

Ogawa-Tsutsumi [22].

We expect that the proof of scattering for NLSp(RN) with u0 ∈ H1(RN) and

0 < sc < 1 when (7.4) and (7.5) hold will carry over analogously to the N = 3, p = 3

case, provided (i) N > 1 (the radial assumption in 1D does not help to eliminate the

translation defect of compactness); (ii) the Kato estimate (as in (2.2)) or the more

14It might appear as a formal limit if one were to refine the estimate (7.6) to account for the gain
resulting from the strict inequality in (7.4) (as we did in the proof of Theorem 4.2) before passing
to the sc → 0 limit.
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refined Strichartz estimates by Foschi [8] are sufficient to complete the long term

perturbation argument15.
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