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A SHARP CONDITION FOR THE WELL-POSEDNESS

OF THE LINEAR KDV-TYPE EQUATION

TIMUR AKHUNOV

(Communicated by Joachim Krieger)

Abstract. An initial value problem for a very general linear equation of KdV-
type is considered. Assuming non-degeneracy of the third derivative coefficient,
this problem is shown to be well-posed under a certain simple condition, which
is an adaptation of the Mizohata-type condition from the Schrödinger equation
to the context of KdV. When this condition is violated, ill-posedness is shown
by an explicit construction. These results justify formal heuristics associated
with dispersive problems and have applications to non-linear problems of KdV-
type.

1. Introduction

This paper is concerned with the study of the equation

(1.1)

{
∂tu+ Lu = f for (t, x) ∈ (0, T ]× R

u(0, x) = u0(x)
, where L =

3∑
j=0

aj(t, x)∂
j
x,

where aj are real-valued functions.
This is the most general linear form of the KdV, one of the most studied disper-

sive equations, and is used as an important model in understanding the behavior of
linear and non-linear waves. Such an equation with non-constant dispersive coeffi-
cient a3 describes non-isotropic dispersion, and its study is of use for the quasi-linear
analogues of (1.1).

Another motivation for the study of the well-posedness of (1.1) is understanding
the relative strength of dispersive and non-dispersive effects present in the equa-
tion. In particular, from the geometrical optics expansion for the equation (cf.
the classical book of Whitham [15]), the dispersive coefficient a3 guides the prop-
agation of the wave packets, while the term a2∂

2
x can lead to the growth of the

amplitudes of the wave packets of (1.1). In light of these heuristics, it is natu-
ral to expect that well-posedness requires non-degeneracy of a3, which prevents
the collapse of the wave packets, namely 0 < ε ≤ |a3| ≤ 1

ε for some ε, and a
condition on a2 to ensure that dispersion dominates anti-diffusion effects. Craig-
Goodman [4] proved well-posedness in the Sobolev spaces Hs for a2 ≡ a1 ≡ 0 under
the non-degeneracy of coefficient a3 and ill-posedness for some degenerate cases of
a3. In a follow-up paper, Craig-Kappeler-Strauss [3] proved well-posedness with
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non-degenerate dispersion and −a2 ≥ 0, as well as extensions to the quasi-linear
analogues. These results were extended in [1] to allow for “anti-diffusion” in a2,

as long as 〈x〉
1
2
+

|a2| ≤ C, under some additional assumptions on other coefficients,
and to systems of equations.

In the current paper, the condition on the diffusion coefficient a2 is extended to
a sharp one for the well-posedness in Hs, where well-posedness means existence of
C0

[0,T ]H
s distributional solutions of (1.1) that are unique and depend continuously

on data in the C0
[0,T ]H

s topology. Namely, a condition on the diffusion coefficient

a2 along the flow is obtained, one that separates well-posedness from ill-posedness
(in the sense of violating continuous dependence) of (1.1) with non-degenerate
dispersion. This is qualitatively similar to the necessity of a Mizohato condition

|supx,t|ω|=1

∫ t

0
�b(x + sω) · ωds| < ∞ for the well-posedness Schrödinger equation

∂tu + i
u + b(x)∇u = 0 in [9]; see also [5], [6], [8] and the references therein for
more refined results on the variable coefficient Schrödinger equation. The well-
posedness is proved by the “gauged energy method”, and the condition on the
gauge captures the a2 condition. Ill-posedness is proved by an explicit geometrical
optics construction.

While preparing this paper for publication, the author learned of a preprint
by Ambrose-Wright [2] that treats an analogue of (1.1) in the periodic case. Their
argument for the well-posedness is also based on the “gauged energy method”; how-
ever, in the case of R the smoothness of the coefficients does not imply integrability
that is often needed. Additionally, this paper also proves that (1.1) possesses a local
smoothing effect, which is not present in the periodic case. The ill-posedness result
in [2] is done by a spectral method, which works only in the time independent case
of (1.1). After this paper had been accepted for publication, the author learned of
works of Tarama ([12], [13], [14]) and Mizuhara ([10]), who proved similar results
in the case of constant dispersion (a3 ≡ 1), including complex coefficients.

The rest of the paper is organized as follows. In section 2 the main results of
the paper are stated. Well-posedness is proved in section 3, and ill-posedness in
section 4.

2. Main results

The following functional space notation is used. Let BN
x = {f(x) ∈ CN (R) :

∂j
xf ∈ L∞ for all 0 ≤ i ≤ N}, B =

⋂
N BN , and Hs = {f ∈ S ′ : ‖f‖Hs =

‖〈ξ〉s f̂(ξ)‖L2 < ∞}, where 〈x〉 =
√
1 + |x|2.

For 1 ≤ p < ∞, define

‖u‖Lp
[0,T ]

Xx
:= (

∫ T

0

‖u(t)‖pXx
dt)

1
p and XT := ‖u‖L∞

[0,T ]
Xx

:= ess supt‖u(t)‖Xx

for one of spaces X above.
The following assumptions are made for the coefficients of (1.1):

(A1): Dispersive coefficient a3(t, x) is non-degenerate. That is, there are
constants Λ ≥ λ > 0 such that

λ ≤ |a3(t, x)| ≤ Λ

uniformly for (x, t) ∈ R×[0, T ].
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(A2): Regularity of the coefficients. For all N ≥ 0:
• a3 ∈ C0

[0,T ]BN+3
x ∩ C1

[0,T ]B1
x.

• a2 ∈ C0
[0,T ]BN+2

x ∩ C1
[0,T ]B0

x.

• a1 ∈ C0
[0,T ]BN+1

x .

• a0 ∈ C0
[0,T ]BN

x .

(A3): Weak diffusion.
∫ x

0
a2(y,t)
|a3(y,t)|dy ∈ C1

[0,T ]L
∞
x .

Note that by (A1) and (A2), a3 has a constant sign.
For N ≥ 0 define

CN = ‖a3‖L∞
T
+ ‖ 1

a3
‖L∞

T
+

3∑
j=0

‖aj‖BN+i
T

+
3∑

i=2

‖∂taj‖L∞
T

+ ‖
∫ x

0

a2(y, t)

|a3(y, t)|
dy‖L∞

T

+ ‖∂t
∫ x

0

a2(y, t)

|a3(y, t)|
dy‖L∞

T
.

For the well-posedness arguments, positive constants will depend on CN for some
N and will not be made explicit.

Theorem 2.1. Suppose the coefficients of (1.1) satisfy (A1)–(A3). Then for all
s ∈ R, (1.1) is well-posed in Hs. That is, for any (u0, f) ∈ Hs × L1

[0,T ]H
s there

exists a unique u ∈ C0
[0,T ]H

s satisfying (1.1) in the sense of distributions. In

addition, there exists C = C(s):

sup
0≤t≤T

‖u(t)‖Hs ≤ CeCT (‖u0‖Hs +

∫ T

0

‖f(t)‖Hsdt).(2.1)

Moreover, for any δ > 1
2 , the solution additionally satisfies u ∈ L2

[0,T ]H
s+1
〈x〉−2δdx

and

there is a C̃ = C̃(s, δ):

‖〈x〉−δ ∂xu‖L2
[0,T ]

Hs
x
≤ C̃(1 +

√
T )eC̃T (‖u0‖Hs +

∫ T

0

‖f(t)‖Hsdt).(2.2)

Estimate (2.1) implies continuous dependence for (1.1), while estimate (2.2) is a
manifestation of a local smoothing effect of (1.1).

Remark 2.2. If, in addition, f ∈ C0
[0,T ]H

s−3, then for s > 3 1
2 the unique solution

from Theorem 2.1 is classical by the Sobolev embedding.

Remark 2.3. If the coefficients of (1.1), in addition, satisfy (A1)–(A3) on [−T, 0],
then the transformation of the equation by t → −t changes the sign of all aj , while
again preserving all of the assumptions. Therefore, Theorem 2.1 extends to [−T, 0].

Moreover, the transformation x → −x in (1.1) changes the sign of aj for odd i,
but preserves the assumptions (A1)–(A3). Without loss of generality, a3 > 0 will
be assumed.

The ill-posedness result complements Theorem 2.1 and is proved by a different
method.
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Theorem 2.4. Suppose the coefficients of (1.1) satisfy (A1), (A2) and

(A3N): supx>0

∫ x

0
a2(y,0)
|a3(y,0)|dy = ∞.

Then for all T > 0 and s ∈ R (1.1) is ill-posed in C0
[0,T ]H

s forward in time. More

precisely, there is no continuous function C(t, t0) for 0 ≤ t0 ≤ t ≤ T such that

sup
t0≤t≤T

‖u(t)‖Hs ≤ C(t, t0)‖u(t0)‖Hs(2.3)

whenever u solves (1.1) on [0, T ] with f ≡ 0. Equivalently (2.1) fails on any [0, T ].

Remark 2.5. The transformation x → −x shows that (A3N) is equivalent to

sup
x<0

∫ 0

x

a2(y, 0)

|a3(y, 0)|
dy = ∞.

However, the equivalence breaks down if absolute values are removed from a3 in
(A3). Thus a3 > 0 can be assumed without loss of generality, as long as (A3N) is
replaced with

(A3N′): a3 > 0. Furthermore,

sup
x>0

∫ x

0

a2(y, 0)

a3(y, 0)
dy = ∞ or sup

x<0

∫ 0

x

a2(y, 0)

a3(y, 0)
dy = ∞.

Remark 2.6. By reversing the time t → −t as in Remark 2.3, Theorem 2.4 shows
that

sup
x>0

∫ x

0

a2(y, 0)

|a3(y, 0)|
dy = −∞

leads to ill-posedness on [−T, 0]. Thus the condition
∫ x

0
a2(y,0)
|a3(y,0)|dy ∈ L∞ is cru-

cial for the well-posedness and condition (A3) for Theorem 2.1 is sharp for well-
posedness on [−T, T ].

3. Well-posedness

The main ingredient in the proof of Theorem 2.1 is stated as the following propo-
sition, which is an a priori L2 estimate for a slightly more general version of (1.1)
that comes from commuting derivatives:

(3.1)

{
∂tu+ LAu = f for (t, x) ∈ (0, T ]× R

u(0, x) = u0(x)
, where LA = L+A0(t, x, ∂x)

with L from (1.1). The following assumptions are made on A0 ∈ C0
[0,T ]S

0, the

pseudo-differential operator of standard symbol class of order 0 (cf. Chapter VI of
[11]):

(A4): The S0 semi-norms of A0 are bounded for t ∈ [0, T ], and their size
depends on constants CN from (A1)–(A3).

Proposition 3.1. Suppose that the coefficients aj of (1.1) satisfy (A1)–(A3) and
A0 satisfies (A4). Then there exists a constant C, and for any δ > 1

2 there is a

constant C̃ such that for any u ∈ C1
[0,T ]L

2 ∩ C0
[0,T ]H

3, the triple (u, u0, f) with u0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and f defined by (3.1) satisfies

sup
0≤t≤T

‖u(t)‖L2 ≤ CeCT (‖u0‖L2 +

∫ T

0

‖f(t)‖L2dt),(3.2)

‖〈x〉−δ ∂xu‖L2
[0,T ]×x

≤ C̃(1 +
√
T )eC̃T (‖u0‖L2 +

∫ T

0

‖f(t)‖L2dt).(3.3)

Remark 3.2. If A0 ≡ 0, then N = 0 in (A2) can be chosen for Proposition 3.1.

The proof of Proposition 3.1 is done by a change of variables (gauge) followed by
the application of the energy estimates. The proof is broken into several preliminary
results.

A gauge is a smooth invertible function, which for the purposes of the argument
needs to have 3 bounded derivatives:

Definition 3.3. A function φ ∈ C0
[0,T ]B3

x ∩ C1
[0,T ]B0 is called a gauge if

• φ(x, t) > 0 with 1
φ ∈ L∞

[0,T ]×R
,

• ‖ 1
φ‖L∞

[0,T ]×R
+ ‖φ‖B3

T
+ ‖∂tφ‖L∞

T
≤ C(C0, δ) with CN from (A1)–(A3).

Suppose that φ(x, t) is a gauge. Define

v = φ−1u.

Definition 3.3 implies that v ∈ C1
[0,T ]L

2 ∩ C0
[0,T ]H

3 if and only if u ∈ C1
[0,T ]L

2 ∩
C0

[0,T ]H
3 and substitution of v into (3.1) gives{

∂tv + Lφv = φ−1f,

v(x, 0) = φ−1u0,
(3.4)

where

Lφ = a3∂
3
x +

(
a2 + φ−13a3∂xφ

)
∂2
x +

(
a1 + φ−1(2a2∂xφ+ 3a3∂

2
xφ)

)
∂x

+
(
a0 + φ−1(∂tφ+ a1∂xφ+ a2∂

2
xφ+ a3∂

3
xφ)

)
I + φ−1A0(φ ).

Lemma 3.4. From the definition of the gauge,

‖u‖L2 ≈ ‖v‖L2 and
1∑

j=0

‖〈x〉−δ ∂j
xu‖L2

[0,T ]×x
≈

1∑
j=0

‖〈x〉−δ ∂j
xv‖L2

[0,T ]×x
(3.5)

with comparability constants dependent only on the constant in Definition 3.3.
Therefore, to prove Proposition 3.1 it suffices to prove (3.2) and (3.3) for v satis-
fying (3.4).

Proof. It suffices to show one-sided inequalities in (3.5) as φ−1 satisfies the same
estimates as φ. The first comparability follows from ‖u‖L2 ≤ ‖φ‖L∞‖v‖L2 . For the
second, a similar computation and Cauchy-Schwartz implies

(
1∑

j=0

‖〈x〉−δ ∂j
xu‖L2

[0,T ]×x
)2 ≤ 2(‖φ‖2L∞

T
+ ‖∂xφ‖2L∞

T
)(

1∑
j=0

‖〈x〉−δ ∂j
xv‖L2

[0,T ]×x
)2.

It is clear from (3.5) that (3.2) is equivalent for u and v, whereas using (3.5) for
the estimate

‖〈x〉−δ ∂xu‖L2
[0,T ]×x

≤ C(
√
T sup

0≤t≤T
‖v(t)‖L2

x
+ ‖〈x〉−δ ∂xv‖L2

[0,T ]×x
)

implies (3.3) for u if (3.2) and (3.3) hold for v. �
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The energy method involves multiplying (3.4) by v to estimate ∂t‖v‖2L2 by ‖v‖2L2 :

∂t

∫
|v|2 = −2Re(Lφv, v) + (f, φv).

The following lemma summarizes the energy estimates for L or Lφ:

Lemma 3.5. Consider an operator L = a3∂
3
x + a2∂

2
x + a1∂x + a0, where a3–a0

satisfy (A2). Then for v ∈ C0
[0,T ]H

3,

Re(Lv, v) = (

[
−a2 +

3

2
∂xa3

]
∂xv, ∂xv) + (b0v, v)

for b0 = a0 − 1
2 (∂xa1 − ∂2

xa2 + ∂3
xa3), where (u, v) is an L2

x pairing.

Proof of Lemma 3.5. The computation is immediate by computing the adjoint L∗

of L using the calculus of PDO. Alternatively, as L is a differential operator, the
same computation can also be done by a repeated integration by parts. Indeed,
the operator ∂k

x is skew-adjoint for odd k, which implies that principal parts of odd
order terms are eliminated by integration by parts. For example,

(a1∂xv, v) = −(v, a1 ∂xv)− (∂xa1 v, v) = −(a1 ∂xv, v)− (∂xa1 v, v).

An identical computation shows

Re(a3∂
2
xv, ∂xv) = −1

2
(∂xa3∂xv, ∂xv) and Re(∂2

xa3∂xv, v) = −1

2
(∂3

x a3v, v).

Using these identities and more integration by parts establishes

Re(a3∂
3
xv, v) =

3

2
(∂xa3 ∂xv, ∂xv)−

1

2
(∂3

x a3v, v).

A similar analysis for Re(a2 ∂
2
xv, v) completes the proof. �

Applying Lemma 3.5 to Lφ shows that the only term of order higher than 0 is(
[2a2 +

6a3∂xφ
φ − 3∂xa3]∂xv, ∂xv

)
. Thus, if this term were negative, an a priori

estimate would be obtained for v. This motivates the choice of a gauge φ that
should satisfy

2a2 + φ−16a3∂xφ− 3∂xa3 ≤ 0.

A choice of equality in this equation can be made, and this choice is enough for the
estimate (3.2), but by exploiting the inequality the local smoothing estimate (3.3)
is proved. The exact choice of a gauge is summarized in the following lemma.

Lemma 3.6. For δ > 1
2 , let φ(x, t) be a solution of the ODE{

6a3∂xφ =
(
3∂xa3 − cδ〈x〉−2δ − 2a2

)
φ,

φ(t, 0) = 1,

where cδ = 0 or 1. Then φ is a gauge in the sense of Definition 3.3 and is inde-
pendent of δ if cδ = 0.

Proof. The ODE for φ is solved explicitly as

φ(x, t) =

√
a3(x, t)

a3(t, 0)
e
−

∫ x
0

a2(y,t)

3a3(y,t)dye
−

∫ x
0

cδdy

6a3(y,t)〈y〉2δ .

By (A3) e
−

∫ x
0

a2(y,t)

3a3(y,t)
dy ≈ 1. (A1) implies

√
a3(x,t)
a3(t,0)

≈ 1.
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Finally, as δ > 1
2 ,

e
−

∫ x
0

cδdy

6a3(y,t)〈y〉2δ =

{
1, if cδ = 0,

function in BN , if cδ = 1.

A computation for ∂tφ and ∂j
xφ for j = 1, 2 and 3 and using (A1)–(A3) finishes the

proof. �
Proof of Proposition 3.1. By Lemma 3.4 it suffices to prove the proposition for v
satisfying (3.4).

Applying Lemma 3.5 for Lφ implies that

∂t

∫
|v|2dx = (

[
2a2 +

6a3∂xφ

φ
− 3∂xa3

]
∂xv, ∂xv) + (b̃0v, v)

− 2Re(A0(φv), φv) + (f, φv),

where b̃0 is obtained from Lemma 3.5 applied to Lφ. With φ chosen from Lemma 3.6,
this implies

∂t

∫
|v|2dx ≤ −cδ(〈x〉−2δ v, v) + (b̃0v, v)− 2Re(A0(φv), φv) + (f, φv).

By (A4), A0 : L2 → L2 is bounded. Moreover, by Definition 3.3 and (A2), φ ∈ L∞

and b̃0 ∈ L∞. Hence

∂t

∫
|v|2 ≤ C(

∫
|v|2dx+ ‖v‖L2‖f‖L2)− ‖〈x〉−δ ∂xv‖2L2 .

For cδ = 0 an application of the Grownwall Lemma implies (3.2) for v.
Moreover, moving the ∂xv term to the left hand side for cδ = 1 and integrating

in time give∫ T

0

‖〈x〉−δ
∂xv‖2dt ≤ C

∫ T

0

(

∫
|v|2dx+ ‖v‖L2‖f‖L2)dt+ ‖v0‖2L2 − ‖v‖2L2

≤ (C(1 + T )− 1) sup
0≤t≤T

‖v(t)‖2L2 + ‖v0‖2L2 + (

∫ T

0

‖f(t)‖L2dt)2.

Using (3.2) completes the proof of (3.3). �
Proposition 3.1 can be strengthened to an Hs estimate.

Proposition 3.7. Let L be as in (1.1), whose coefficients aj satisfy (A1)–(A3).

Then for any s ∈ R there exist constants C(s) and C̃(s, δ) for any δ > 1
2 such that

for any u ∈ C1
[0,T ]H

s ∩ C0
[0,T ]H

s+3 the following estimates hold:

sup
0≤t≤T

‖u(t)‖Hs
x
≤ CeCT (‖u(0)‖Hs

x
+

∫ T

0

‖∂tu+ Lu‖Hs
x
dt),(3.6)

sup
0≤t≤T

‖u(t)‖Hs
x
≤ CeCT (‖u(T )‖Hs

x
+

∫ T

0

‖−∂tu+ L∗u‖Hs
x
dt),

where L∗ is the adjoint of L. Moreover,

‖〈x〉−δ
∂xu‖L2

[0,T ]
Hs

x
≤ C̃(1 +

√
T )eC̃T (‖u0‖Hs +

∫ T

0

‖f(t)‖Hsdt).

Corollary 3.8. By Theorem 23.1.2 on page 387 in [7], the proof of Theorem 2.1
reduces to Proposition 3.7.
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Proposition 3.7 is reduced to Proposition 3.1. Observe that

f = ∂tu+ Lu if and only if Jsf = ∂tJ
su+ LJsu+ [JsL]J−sJsu,

where Js is a pseudo differential operator with the symbol 〈ξ〉s. Therefore to prove

(3.6) it suffices to show that Proposition 3.1 applies to the operator L̃ = L +
[JsL]J−s.

Lemma 3.9. Let L̃ = L+[JsL]J−s with L from (1.1) that satisfies (A1) and (A2).
Then

L̃ = a3∂
3
x + a0 +

2∑
i=1

(aj + ãj)∂
j
x +As(t, x, ∂x)

with ã2 = s∂xa3 and ã1 = s∂xa2 +
s(s− 1)

2
∂2
xa3,

(3.7)

where As ∈ S0, whose semi-norms depend on the coefficient bounds (A2) for N =
N(s) and hence satisfies (A4).

Furthermore, the coefficients ãj for i = 1, 2 satisfy (A2)–(A3).

Proof. From the first term in the calculus of PDO, [JsL]J−s ∈ S2. A further
expansion of [Js, a3∂

3
x] gives

σ([Js, a3∂
3
x]) =

∑
1≤|α|≤2

i−|α|

α!
∂α
ξ 〈ξ〉

s
∂α
x (a3(iξ)

3) mod Ss

= s∂xa3(iξ)
2〈ξ〉s + s(s− 1)

2
∂2
xa3iξ〈ξ〉

s mod Ss,

where the substitution ξ2 =〈ξ〉2−1 was used and the terms of order s were absorbed
into the remainder. Performing a similar computation for the remaining terms in
[JsL] and composition with J−s verifies (3.7).

It is immediate from (3.7) that ãj satisfies (A2). To verify (A3) observe that∫ x

0

ã2(y, t)

|a3(y, t)|
dy = s sign(a3) log

a3(x, t)

a3(0, t)
∈ C1

[0,T ]L
∞
x

by (A1) and (A2). �

Remark 3.10. A simple computation shows that the adjoint L∗ of the operator L
from (1.1) is

L∗ =− a3∂
3
x + (a2 − 3∂xa3)∂

2
x + (a1 + 2∂xa2 − 3∂2

xa3)∂x

+ (a0 − ∂xa1 + ∂2
xa2 − ∂3

xa3),

whereas a substitution t → T − t transforms (1.1) to{
−∂tu(T − t) + Lu(T − t) = f(T − t),

u(T − t) |t=0= u(T ).

Both L∗ and L(T − t) satisfy (A1)–(A3).

Corollary 3.11. Lemma 3.9, Remark 3.10 and Proposition 3.1 imply Proposi-
tion 3.7.

This completes the proof of Theorem 2.1 by Corollary 3.8.
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4. Ill-posedness

Ill-posedness is proved by justifying the formal geometrical optics argument
(cf. [4]) for a special choice of initial data. It is instructive to first consider the
case of constant dispersion a3 ≡ 1:

∂tv + ∂3
xv +

2∑
j=0

c2(x, t)∂
j
xv = g.(4.1)

Then condition (A3N ′) is equivalent to

sup
N>0,x0

∫ x0

x0−N

c2(x
′, 0)dx′ = ∞.

The general case of (1.1) is later reduced to ill-posedness for (4.1). For this reduction
it is desirable to relax condition (A2) to smooth, but not necessarily bounded,
coefficients:

(A2′): Assume that c2 ∈ C1
t C

0
x ∩ C0

t C
2
x and c1, c0 ∈ C0

t,x.

From now on, the notation C = C(α) means that there exists a constant C ≥ 1 that
depends continuously α and may depend on the norms of coefficients cj evaluated
on some compact set, whose size also depends on α. The constants required to be
small are reciprocal to the large constants.

The proof of the ill-posedness for (4.1) rests on the following explicit construction

that violates estimate (2.1) for s = 0. Let ψ(x) = η−
1
2ψ0(

x−x0

η ), where ψ0 ∈
C∞

0 ([−1, 1]), ‖ψ0‖L2 = 1 and the small parameter 0 < η ≤ 1 is to be chosen. Then

suppψ ⊂ [x0 − η, x0 + η], ‖ψ‖L2 = 1 and ‖ψ‖Hk ≤ Cη−k for k ≥ 0.(4.2)

Define

v(x, t) := eiSw, with S = xξ + tξ3, and w = e
1
3

∫ x0
x

c2(x
′,t)dx′

ψ(x+ 3ξ2t),

(4.3)

with parameters ξ ≥ 1, x0, 0 < η ≤ 1 to be chosen. It is immediate from (A2′)
that w ∈ C1

t C
0
x ∩ C0

t C
3
x. A substitution of the ansatz v = eiSw into (4.1) gives

g =
1

3

∫ x0

x

∂tc2(x
′, t)dx′ · v + eiS

{
(3iξ∂2

xw + ∂3
xw) + 2c2iξ∂xw

}
+ eiS

{
c2∂

2
xw + c1(iξ · w + ∂xw) + c0w

}
.

Taking absolute values gives

|g(x, t)| ≤ ξ

3∑
j=0

gj(x, t)|∂j
xw(x, t)|,(4.4)

where gj(x, t) are continuous non-negative functions independent of ξ.
Observe from (4.2) and (4.3) that suppx w(x, t) ⊂ [x0 − 3ξ2t− η, x0 − 3ξ2t+ η].

Therefore, ∫ x0

x

c2(x
′, t)dx′ =

∫ x0

x0−3ξ2t

c2(x
′, t)dx′ + I(x, t),

where on the support of w(x, t), |I(x, t)| ≤ C(x0 − 3ξ2t)η.
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Using (4.3), (4.2) and the estimate above implies that 0 < η ≤ 1
C(x0−3ξ2t) gives

‖vn(t)‖L2
x
≈2 e

1
3

∫ x0
x0−3ξ2t

c2(x
′,t)dx′

(4.5)

with comparability constant chosen to be 2. The estimates (4.4) and (4.5) are the
main ingredients for the proof of the following theorem.

Theorem 4.1. Suppose

sup
N>0,x0

∫ x0

x0−N

c2(x
′, 0)dx′ = ∞.(4.6)

Then there exists a sequence tn → 0 and sequences xn
0 and ξn, ηn such that vn

defined by (4.3) is in C1
t L

2
x ∩ C0

t H
3
x and gn from (4.1) satisfies

‖vn(tn)‖L2
x
≥ n(‖vn(0)‖L2

x
+

∫ tn

0

‖gn(t)‖L2
x
dt) > 0,(4.7) ∫ tn

0

‖vn(t)‖L2
x
≤ 1

n
‖vn(0)‖L2 .(4.8)

Proof. By (4.6), there exist x0 ∈ R and N > 0 such that

e
1
3

∫ x0
x0−N c2(x

′,0)dx′
≥ 16n.(4.9)

Let tn =
N

3ξ2
with ξ = ξ(x0, N) to be chosen below. From now on only t such

that 0 ≤ t ≤ tn will be considered. For this range of t, the small parameter
η = η(x0 − 3ξ2t) > 0 can be chosen to depend only on (x0, N). As the choice of x0

and η completely determines ψ, ψ is independent of ξ.
To estimate the right hand side of (4.7), observe from (4.5) that

1

2
≤ ‖vn(0)‖L2

x
≤ 2.

Furthermore, (4.2) and (4.3) imply that suppx w(x, t) ⊂ [x0 − N − 1, x0 + 1] for
0 ≤ t ≤ tn. Hence, w, v and g have compact supports independent of ξ and are
bounded. More precisely, (4.2), (4.3) and (4.4) imply

‖g(t)‖L2 ≤ C(N, x0)ξ.

Integrating this inequality in time gives∫ tn

0

‖g(t)‖L2dt ≤ C(N, x0)

ξ
.(4.10)

Therefore, for ξ ≥ C(N, x0),
∫ tn
0

‖g(t)‖L2 ≤ 1. This finishes the analysis of the right
hand side of (4.7).

Similarly, (4.5) implies that for 0 ≤ t ≤ tn, ‖v(t)‖L2
x
≤ C(x0, N). Hence, for

ξ ≥ C(x0, N), ∫ tn

0

‖vn(t)‖L2dt ≤ 1

2n
≤ 1

n
‖vn(0)‖L2

x
.

To finish the proof it suffices to show that there exists ξ = ξn(x0, N) ≥ C(x0, N)
such that

‖vn(tn)‖L2
x
≥ 4n.(4.11)
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This estimate requires a comparison of (4.5) and (4.9). To this end, by (4.5) and
the Fundamental Theorem of Calculus,

‖vn(tn)‖L2
x
≥ 1

2
e

1
3

∫ x0
x0−3ξ2tn

c2(x
′,0)dx′

e
1
3

∫ x0
x0−3ξ2tn

∫ tn
0

∂tc2(x
′,t)dx′dt

,

whereas, using tn = N
3ξ2 ,

|
∫ x0

x0−N

∫ N
3ξ2

0

∂tc2(x
′, t)dtdx′| ≤ C(x0, N)

ξ2
≤ log 2

for ξ ≥ C(x0, N)+1. Combining the last two estimates and (4.9) implies (4.11). �
4.1. Reduction to constant dispersion. Ill-posedness for (1.1) relies on a change
of variables to reduce to (4.1).

Definition 4.2. For a3 satisfying (A1) and (A2) define

y(x, t) =

∫ x

0

a
− 1

3
3 (x′, t)dx′.(4.12)

This construction allows us to replace the roles of x and y as follows.

Lemma 4.3. Consider

y − y(x, t) = 0(4.13)

with y(x, t) from (4.12). Then there exists a unique smooth function x = x(y, t)
that satisfies (4.13). Moreover,

∂x

∂y
=

1
∂y
∂x

= a
1
3
3 (x, t).

Proof. By (A1) and the Fundamental Theorem of Calculus, ∂y
∂x (x, t) = a

− 1
3

3 (x, t) �=
0 for all (x, t). An application of the Implicit Function Theorem for (4.13) completes
the proof. �

Define

v(y, t) = a
− 1

3
3 (x(y, t), t)u(x(y, t), t)

using the Lemma 4.3. Equivalently

u(x, t) =
1
∂y
∂x

v(y, t).(4.14)

From this definition, L2 norms of u and v are comparable by (A1):

‖u(t)‖2L2
x
=

∫
a3(x, t)|v(y, t)|2dy ≈λ,Λ ‖v(t)‖2L2

y
.(4.15)

A computation shows that

∂tu =
1
∂y
∂x

(∂tv +
∂y

∂t
∂yv −

∂t
∂y
∂x

∂y
∂x

v), ∂xu = ∂yv − v
∂2
xy

( ∂y∂x )
2
,

∂2
xu = ∂2

yv
∂y

∂x
+

1∑
j=0

bj(∂xy, ∂
2
xy)∂

j
yv,

∂3
xu = ∂3

yv(
∂y

∂x
)2 +

1∑
j=0

b̃j(∂xy, ∂
2
xy, ∂

3
xy)∂

j
yv
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for smooth functions bj and b̃j . Using this computation and a3(x, t)(
∂y
∂x )

3 ≡ 1,
substitute (4.14) into (1.1) to get

∂tv + ∂3
yv +

2∑
j=0

cj(y, t)∂
j
yv = g,(4.16)

where the coefficients cj satisfy (A2′) and, in particular,

c2(y, t) = a2(x, t)a
− 2

3
3 (x, t), g(y, t) =

∂y

∂x
f(x, t).(4.17)

The relationship between f and g is identical to (4.14); thus (4.15) implies

‖f(t)‖L2
x
≈λ,Λ ‖g(t)‖L2

y
.(4.18)

Therefore, (1.1) can be reduced to (4.1), which was analyzed in Theorem 4.1.

Lemma 4.4. Suppose (A1), (A2) and (A3N ′) hold. Let s ∈ R. Then there exists
a sequence wn ∈ C1Hs ∩ C0

t H
s+3 and tn → 0 such that

‖wn(tn)‖Hs � n(‖wn(0)‖Hs
x
+

∫ tn

0

‖(∂t + L)wn(t)‖Hs
x
dt) > 0.(4.19)

Note that (4.6) for c2(y, t) defined by (4.17) is equivalent to (A3N ′). Therefore,
Theorem 4.1 applies to (4.16). Define un by applying (4.14) to vn from Theorem 4.1,
which can be written explicitly as

un(x, t) = a
1
3
3 (x, t)e

iyξn+itξ3ne
1
3

∫ x0
x

a2
a3

(x′,t)dx′
ψn(y + 3ξ2nt).(4.20)

Let fn = ∂tun + Lun and gn be defined by (4.17). Then (4.7), (4.15) and (4.18)
imply up to a constant

‖un(tn)‖L2
x

� n(‖un(0)‖L2
x
+

∫ tn

0

‖(∂t + L)un(t)‖L2
x
dt) > 0.(4.21)

Likewise, (4.8) holds for un instead of vn. This completes the proof of (4.19) for
s = 0 by taking wn := un.

For the general s ∈ R, commute Js with L as in Lemma 3.9: Js(∂t + L) =

(∂t + L̃)Js, where L̃ = L+ [JsL]J−s. By Lemma 3.9, L̃ = P + As(x, t, ∂x), where
As ∈ S0 and the differential operator P satisfies (A1), (A2) and (A3N ′). Define ũn

via (4.20) with L replaced by P ; i.e. ũn differs from un by a factor of (a3(x0,t)
a3(x,t)

)s.

Further, define

wn(x, t) = J−sũn(x, t).

Hence ‖wn(t)‖Hs = ‖ũn(t)‖L2 . Applying (4.21) to ũn implies

‖wn(tn)‖Hs � n(‖wn(0)‖Hs
x
+

∫ tn

0

‖(∂t + P )ũn(t)‖L2
x
dt) > 0.

By (4.8) for n � ‖As‖L2→L2 ,∫ tn

0

‖Asũn‖L2 � ‖wn(0)‖Hs
x
.

As Jsf = (∂t + P )ũn + Asũn, combining the last two estimates implies that wn

satisfies (4.19) up to a constant.
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4.2. Proof of ill-posedness.

Corollary 4.5. Lemma 4.4 implies that (2.1) fails, or, more generally, for any
T > 0 there is no non-decreasing function C(T ′) : [0, T ] → R such that

sup
0≤t≤T ′

‖u(t)‖Hs ≤ C(T ′)(‖u0‖Hs +

∫ T ′

0

‖f(t)‖Hsdt)(4.22)

holds for all u ∈ C0
[0,T ]H

s solving (1.1).

Proof. Assuming (4.22), for the sake of contradiction, and using (4.19) imply that
C(tn) ≥ n for all n ∈ N. As tn → 0 and C(t) is non-decreasing in t, C(t) ≥ n for
all 0 < t ≤ T and n ∈ N. This is a contradiction. �

Corollary 4.6. Assuming (A1), (A2) and (A3N) implies that (1.1) is ill-posed in
Hs the sense of Theorem 2.4.

Proof. Suppose, for the sake of contradiction, that (2.3) holds for some [0, T ] and
some continuous function C(t0, t) for 0 ≤ t0 ≤ t ≤ T . Define a non-decreasing
function C(T ′) = sup0≤t0≤t≤T ′ C(t0, t). Then by the Duhamel principle every
solution of (1.1) satisfies

u(t) = S(t, 0)u0 +

∫ t

0

S(t, t0)f(t0)dt0,

where u(t) = S(t, t0)g solves (1.1) on [t0, T ] with data u(t0) = g and f ≡ 0.
Moreover,

sup
0≤t0≤t≤T ′

‖S(t, t0)‖ ≤ C(T ′).

Thus the Duhamel principle implies (4.22) for all u ∈ C0
[0,T ]H

s solutions of (1.1),

which contradicts Corollary 4.5. �
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