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A Sharp Estimate for the Weighted Hilbert
Transform via Bellman Functions

S. Petermichl & J. Wittwer

1. Introduction

It has long been of interest to find sharp estimates for the norm for the Hilbert trans-
form and related operators inLp(ω). In this paper we look at the estimates of the
Hilbert transform in weighted spacesL2(ω). Buckley [1] proved that the Hilbert
transform is bounded by the square of the classicalA2 constant of the weight. In
[8], Petermichl and Pott improved this estimate to the 3/2 power. Their result is
the best currently known but is probably not sharp. Here we consider a different
A2 constant that seems more natural to the unit disk: the invariantA2 constant. The
invariantA2 constant is defined using Poisson averages instead of box averages.

We obtain the sharp estimate for the weighted Hilbert transform in terms of in-
variantA2 by the method of Bellman functions. We estimate the norm using duality
and then split the quantity to be estimated into four integrals, each of which can
be estimated using a Bellman function. Our proof follows the outline of the sharp
uniform estimates for dyadic martingales in [6] and [10].

The Hilbert transform can be considered the continuous analog of the dyadic
martingale transforms, and theA2 invariant constant can be viewed as the con-
tinuous analog of the regularA2 constant. We also include a bilinear embedding
theorem of Sawyer type. A two-weighted version was used by Nazarov, Volberg,
and Treil [7], who referred to it as a bilinear Carleson embedding theorem. We
change the assumptions to fit the one-weighted situation; they are no longer nec-
essary but do allow for a concise statement. This change of conditions leads to a
different choice of variables in our Bellman function and a set of conditions that
is much simpler to check. In [7], the key assumption was boundedness of a cer-
tain positive operator on test functions. In our version, this assumption has been
replaced by estimates for three simple sums.

2. Definitions and Statements

We consider the spaceL2
T(ω), whereω is a positiveL1 function known as a

weight. Letm be normalized Lebesgue measure onT. The norm off ∈L2
T(ω) is( ∫

T|f |2ω dm
)1/2

and is denoted by‖f ‖ω. We are concerned with a special class
of weights calledA2. We sayω ∈A2 if
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sup
I

〈ω〉I 〈ω−1〉I = Q2(ω) <∞. (2.1)

Here the supremum is taken over all subarcsI ⊂ T. The notation〈ω〉I means the
average of the functionω overI.

In this paper, we will mostly use a different constant associated to eachω ∈A2.

DefineQ inv
2 (ω) by

sup
z∈D

ω(z)ω−1(z) = Q inv
2 (ω), (2.2)

whereω(z) denotes the harmonic extension ofω; that is,

ω(z) =
∫
ω(t)Pz(t) dm(t),

wherePz(t) = (1− |z|2)/|1− z̄t |2. Note that, in general,ω−1(z) andω(z)−1 have
different meanings:ω−1(z) denotes the extension of the reciprocal ofω, whereas
ω(z)−1 is the reciprocal of the extension.Q inv

2 (ω) is finite iff Q2(ω) is finite. In
[4], the following exact sharp relationship between the two differentA2 constants
was proven:

c1Q2(ω) ≤ Q inv
2 (ω) ≤ c2Q2(ω)

2.

Because it involves only harmonic extensions, the invariantA2 constantQ inv
2 (ω)

considered in (2.2) is invariant under Möbius transforms.
In what follows,H stands for Hilbert transform on the circleT. (In some texts,

the Hilbert transform is defined as the operator we denote byH0.) This transform
H acts on trigonometric polynomials as follows:

H
(∑

ak e
iθk
)
= −i

∑
k≥0

ak e
iθk + i

∑
k<0

ak e
iθk.

Let H0 be the operatorH + iP0, whereP0 : f 7→ f(0). Our main result is the
following.

Theorem 2.1. H : L2
T(ω) → L2

T(ω) has operator norm‖H‖ ≤ cQ inv
2 (ω),

wherec does not depend onQ inv
2 (ω).

Observe that, in our notation,Q inv
2 (ω) = supz∈D ω(z)ω−1(z).We will show sharp-

ness of this result in Section 5.

3. Proof of Theorem 2.1

Recall that, forf(t) a function onT,we usef(z) to denote its harmonic extension
to the disk.

We have‖P0‖L2(ω)→L2(ω) ≤
√
Q inv

2 (ω), since

‖P0(f )‖2ω = |f(0)|2ω(0) ≤ (|f |2ω)(0)ω−1(0)ω(0) ≤ Q inv
2 (ω)‖f ‖2ω.

Since‖H‖ ≤ ‖H0‖ + ‖P0‖ andQ inv
2 (ω) ≥ 1, it suffices to show that‖H0‖ ≤

cQ inv
2 (ω).We estimate‖H0‖L2

T(ω)→L2
T(ω)

by duality. Since(H0tf, g/t)= (H0f, g),
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it is enough to show that|(H0f, g)| ≤ cQ inv
2 (ω)(‖f ‖2ω+‖g‖2ω−1) for all f ∈L2

T(ω)

andg ∈ L2
T(ω

−1) ( just uset = √‖g‖ω−1/‖f ‖ω if f 6= 0). It suffices to consider
real-valued and positive functionsf andg. Assuming positivity will both abbrevi-
ate notation and allow for a smaller domain of our Bellman functions. We polarize
the formula in [3, p. 236], which is a simple consequence of Green’s formula, and
obtain∫

T
(H0f −H0f(0))(g − g(0)) dm = 1

2π

∫
D
(∇H0f )(∇g) log

1

|z| dA(z).
BecauseH0f(0) = 0, the left-hand side equals(H0f, g). We have|∇H0f | =
|∇f | by the Cauchy–Riemann equations, sincef + iH0f is holomorphic. There-
fore,

|(H0f, g)| ≤ 1

2π

∫
D
|∇f ||∇g| log

1

|z| dA(z). (3.3)

Note that, forf real-valued,|∇f | = 2|∂f/∂z|, where the latter denotes the deriv-
ative of the harmonic extension off defined by∂f/∂z = 1/2(∂f/∂x − i∂f/∂y).
We will write f(z)′ for the holomorphic function∂f/∂z.

We can now add and subtract terms to the integrand and then use the triangle
inequality to split the integral into the following four parts:∫

D
|f(z)′||g(z)′| log

1

|z| dA(z)

≤
∫
D
|f(z)||g(z)|

∣∣∣∣f(z)′f(z)
− ω

−1(z)′

ω−1(z)

∣∣∣∣∣∣∣∣g(z)′g(z)
− ω(z)

′

ω(z)

∣∣∣∣ log
1

|z| dA(z)

+
∫
D
|f(z)||g(z)|

∣∣∣∣ω−1(z)′

ω−1(z)

∣∣∣∣∣∣∣∣g(z)′g(z)
− ω(z)

′

ω(z)

∣∣∣∣ log
1

|z| dA(z)

+
∫
D
|f(z)||g(z)|

∣∣∣∣ω(z)′ω(z)

∣∣∣∣∣∣∣∣f(z)′f(z)
− ω

−1(z)′

ω−1(z)

∣∣∣∣ log
1

|z| dA(z)

+
∫
D
|f(z)||g(z)|

∣∣∣∣ω−1(z)′

ω−1(z)

∣∣∣∣∣∣∣∣ω(z)′ω(z)

∣∣∣∣ log
1

|z| dA(z).
Readers who are familiar with [7] will immediately see the resemblance to the
four sums in the dyadic setting.

Equation (3.3) gives us some intuition as to why we can prove our result in a
manner very similar to [7]: the Hilbert transform can be estimated via an expres-
sion involving absolute values of derivatives of the harmonic extensions. These
are an obvious analog of dyadic martingale differences. The rest of the proof fol-
lows Bellman function methods. The first integral can be controlled in the same
way as done in [7]; in fact, the proofs are identical. For the second and third in-
tegral we need to proceed in two steps. Again, we want to use the same proof as
in [7], but in order to do so we must have an estimate for a certain Green’s poten-
tial function involving the weight. But there is a dyadic analog for this estimate,
which showed up in the proof for sharp bounds for the dyadic square function in
L2(ω) and was proven by a Bellman function technique (see [5]). We will use the
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same Bellman function to obtain estimates for the Green’s potential. The fourth
integral requires what is known as a bilinear harmonic embedding theorem. It is
closely related to Sawyer’s embedding theorems with weights. But it is a bilinear
version of weighted embedding theorems and the most important ingredient of our
proof. It gives an efficient and relatively simple sufficient condition for our bilinear
estimate to hold. The use of this simpler sufficient condition for the bilinear em-
bedding theorem is quite different from the approach in [7]. We observed that one
can omit the most difficult part of [7] by inventing the aforementioned sufficient
conditions. We formulate a version with relatively simple embedding conditions,
again Green’s potentials. The appropriate Bellman function is constructed, and
we give an explicit expression for this function. We find the appropriate bounds
for the embedding conditions using Bellman functions found in [7] and [10].

Before we start to estimate the four integrals, we need the following lemma to
relate Laplacians to second differentials. This lemma is an elementary but crucial
key to translating dyadic Bellman function methods to the continuous setting.

Lemma 3.1. If b(z) = B(h(z)), whereh = (fi)i : C → Rn andB : Rn → R
withB andh sufficiently smooth, then

1b(z) = 4

(
d2B(h(z))

(
∂fi

∂z

)
i

,

(
∂fi

∂z

)
i

)
+ 4(∇B)(h(z))

(
∂2fi

∂z∂z̄

)
i

. (3.4)

In particular, if all fi are harmonic, then

1b(z) = 4

(
d2B(h(z))

(
∂fi

∂z

)
i

,

(
∂fi

∂z

)
i

)
. (3.5)

Proof. The proof is by elementary computation, using harmonicity for (3.5). Also
note that1 = 4∂2/∂z∂z̄.

We will bound all integrals using Bellman functions. Each variable carries mean-
ing, usually harmonic extensions of functions or Green’s potentials for some fixed
z. The following variables show up frequently:

X = f 2ω(z), Y = g2ω−1(z),

x = f(z), y = g(z),
r = ω−1(z), s = ω(z).

Recall thatf 2ω(z) denotes the harmonic extension of the productf 2(t)w(t).

If we assumef, g to be real and positive, then all variables will be positive. Fur-
thermore, using

∫
h(t)Pz(t) dm(t) =

∫
h(t)w(t)1/2w(t)−1/2Pz(t) dm(t) together

with the Cauchy–Schwarz inequality yields the following natural estimates:

1≤ rs ≤ Q (if we write Q for Q inv
2 (ω)); (3.6)

x 2 ≤ Xr and y2 ≤ Ys. (3.7)

These restrictions give a natural domain for our Bellman functions.
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3.1. The First Integral

Consider the following function of six real variables:

B(X, x, r, Y, y, s) = X − x
2

r
+ Y − y

2

s
.

We get the following size estimate within the natural domain ofB:

0 ≤ B ≤ X + Y.
Direct computation of the second differential yields

−d2B = 2x 2

r

∣∣∣∣dxx − drr
∣∣∣∣2 + 2y2

s

∣∣∣∣dyy − dss
∣∣∣∣2. (3.8)

Also consider the functionb : C→ R, where

b(z) = B(h(z)) = B(f 2ω(z), f(z), ω−1(z), g2ω−1(z), g(z), ω(z)).

Then we obtain the following estimate for−1b(z) using (3.5) and (3.8):

−1b(z) = 8
|f(z)|2
ω−1(z)

∣∣∣∣f(z)′f(z)
− ω

−1(z)′

ω−1(z)

∣∣∣∣2 + 8
|g(z)|2
ω(z)

∣∣∣∣g(z)′g(z)
− ω(z)

′

ω(z)

∣∣∣∣2
≥ 16

|f(z)g(z)|√
ω−1(z)ω(z)

∣∣∣∣f(z)′f(z)
− ω

−1(z)′

ω−1(z)

∣∣∣∣∣∣∣∣g(z)′g(z)
− ω(z)

′

ω(z)

∣∣∣∣
≥ 16
|f(z)g(z)|√

Q

∣∣∣∣f(z)′f(z)
− ω

−1(z)′

ω−1(z)

∣∣∣∣∣∣∣∣g(z)′g(z)
− ω(z)

′

ω(z)

∣∣∣∣.
To estimate the first integral, we use the previous estimate for−1b(z) and Green’s
second identity ∫

O

(u1v − v1u) dA =
∫
∂O

(
u
∂v

∂n
− v ∂u

∂n

)
ds

for the annulusD \ εD with ε arbitrarily small:∫
D
|f(z)g(z)|

∣∣∣∣f(z)′f(z)
− ω

−1(z)′

ω−1(z)

∣∣∣∣∣∣∣∣g(z)′g(z)
− ω(z)

′

ω(z)

∣∣∣∣ log
1

|z| dA(z)

≤ cQ inv
2 (ω)

1/2
∫
D
−1b(z) log

1

|z| dA(z)

= cQ inv
2 (ω)

1/2

(
b(0)−

∫
T
b dm

)
≤ cQ inv

2 (ω)
1/2(‖f ‖2ω + ‖g‖2ω−1).

The last step uses thatb ≡ 0 onT and that the size estimateB ≤ X + Y means
b(0) ≤ ‖f ‖2ω + ‖g‖2ω−1.
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3.2. The Second and Third Integral

The second and the third integral are analogous, so let us only prove the estimate
for the second one.

We consider the function

B(r, s) = r
(
−4Q2

rs
− rs + 4Q2 +1

)
from [5]. This function has the following properties:

1≤ rs ≤ Q H⇒ 0 ≤ B(r, s) ≤ cQ2r,

1≤ rs ≤ Q H⇒ −d2B ≥ Cs(dr)2.
Let us also consider the functionb : C→ R, where

b(z) = B(h(z)) = B(ω−1(z), ω(z)),

0 ≤ b(z) ≤ cQ2ω−1(z),

−1b(z) ≥ cω(z)|ω−1(z)′|2.
This function will help us to estimate the following Green’s potential:

G(|ω−1′|2ω)(z) =
∫
D

log
1

|Sz(ξ)| |ω
−1(ξ)′|2ω(ξ) dA(ξ)

≤ c
∫
D
−1b(ξ) log

1

|Sz(ξ)| dA(ξ)

(?)= c
∫
D
−1b(S−z(ξ)) log

1

|ξ| dA(ξ)

= c
(
b(z)−

∫
T
b dm

)
≤ cQ2ω−1(z),

whereSz(ξ) = ξ−z
1−z̄ξ , a Möbius transform. The equality(?) follows from a change

of variablesξ 7→ S−z(ξ). Hence we have proved that

G(|ω−1′|2ω)(z) ≤ cQ inv
2 (ω)

2ω−1(z)

and, analogously,
G(|ω ′|2ω−1)(z) ≤ cQ inv

2 (ω)
2ω(z).

The reader should note the similarity between the estimate for the Green’s poten-
tial and its dyadic analog found in [5]:

1

|J |
∑
I⊂J
|〈ω〉I+ − 〈ω〉I−|2〈ω−1〉I |I | ≤ cQ2(ω)

2〈ω〉J .
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Let us introduce a new variable,

G = G(|ω−1′|2ω)(z).
Now we are ready to steal the Bellman function used to prove weighted dyadic
embedding theorem from [7]. We let

B(X, x, r,G, Y, y, s) = X − x 2

r +G/Q2
+ Y − y

2

s
.

Proposition 3.2. The function

f(w, x, y, z) = w − x 2

y + z (3.9)

is concave in the domain{y > 0 andz ≥ 0}.
Proof. The matrix

−d2f =



0 0 0 0

0 2
y+z

−2x
(y+z)2

−2x
(y+z)2

0 −2x
(y+z)2

2x2

(y+z)3
2x2

(y+z)3

0 −2x
(y+z)2

2x2

(y+z)3
2x2

(y+z)3


is positive semidefinite.

HenceB, as a sum of concave functions, is concave. Consider

b(z) = B(h(z)) = B(f 2ω(z), f(z), ω−1(z),G(|ω−1′|2ω)(z), g2ω−1(z), ω(z)).

We use equation (3.4) to estimate the part involvingX, x, r,G, where the con-
cavity of B allows us to drop the part involving the second differential. We
need only consider partial derivatives in the “nonharmonic variable”G. Note
that−1G(|ω−1′|2ω) = |ω−1′|2ω. We use (3.5) and (3.8) for the part involving
Y, y, s. This yields

−1b(z) ≥ Q−2 f(z)2(−1G(|ω−1′|2ω)(z))
(ω−1(z)+Q−2G(|ω−1′|2ω)(z))2 + 8

g(z)2

ω(z)

∣∣∣∣g(z)′g(z)
− ω(z)

′

ω(z)

∣∣∣∣2
≥ cQ−2 f(z)2|ω−1(z)′|2ω(z)

(ω−1(z)+Q−2G(|ω−1′|2ω)(z))2 + c
g(z)2

ω(z)

∣∣∣∣g(z)′g(z)
− ω(z)

′

ω(z)

∣∣∣∣2
≥ cQ−2f(z)

2|ω−1(z)′|2ω(z)
ω−1(z)2

+ cg(z)
2

ω(z)

∣∣∣∣g(z)′g(z)
− ω(z)

′

ω(z)

∣∣∣∣2
≥ cQ−1|f(z)g(z)|

∣∣∣∣ω−1(z)′

ω−1(z)

∣∣∣∣∣∣∣∣g(z)′g(z)
− ω(z)

′

ω(z)

∣∣∣∣.
Now we use Green’s second identity, the fact thatb ≥ 0 on T, and b(0) ≤
‖f ‖2ω + ‖g‖2ω−1 to estimate the second integral:
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D
|f(z)||g(z)|

∣∣∣∣ω−1(z)′

ω−1(z)

∣∣∣∣∣∣∣∣g(z)′g(z)
− ω(z)

′

ω(z)

∣∣∣∣ log
1

|z| dA(z)

≤ cQ inv
2 (ω)

∫
D
−1b(z) log

1

|z| dA(z)

≤ cQ inv
2 (ω)(‖f ‖2ω + ‖g‖2ω−1).

3.3. The Fourth Integral

We will apply the following harmonic bilinear embedding theorem. Its proof can
be found in Section 4.

Lemma 3.3. Letα(z) ≥ 0and letω, υ be two weights such that1≤ ω(z)υ(z) ≤
Q for all z∈D and ∫

D
α(ξ)ω(ξ) log

1

|Sz(ξ)| dA(ξ) ≤ Qω(z),∫
D
α(ξ)υ(ξ) log

1

|Sz(ξ)| dA(ξ) ≤ Qυ(z),∫
D
α(η)ω(η)υ(η) log

1

|Sξ (η)| dA(η) ≤ Q.

Then, forf, g ≥ 0∈L2(T), we have∫
D
α(z)f(z)g(z) log

1

|z| dA(z) ≤ cQ‖f ‖υ−1‖g‖ω−1.

We will apply Lemma 3.3 to the weightsω andυ = ω−1 with Q inv
2 (ω) = Q and

(up to a normalization constant not depending onQ)

α(z) = |ω(z)
′||ω−1(z)′|

ω(z)ω−1(z)
.

We need to find the estimates forM, N, andK. Consider the function

B(s, r) = s
(
−4Q

rs
− rs

4Q
+ 4Q+1

)
from [10]. This function has the following properties:

1≤ rs ≤ Q H⇒ 0 ≤ B(r, s) ≤ cQs,

1≤ rs ≤ Q H⇒ −d2B ≥ Cs
∣∣∣∣dsdrsr

∣∣∣∣.
Let us also consider the functionb : C→ R, where

b(z) = B(h(z)) = B(ω(z), ω−1(z)).

Then 0≤ b(z) ≤ cQω(z) and
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−1b(z) ≥ 4Cω(z)
|ω(z)′||ω−1(z)′|
ω(z)ω−1(z)

= 4Cω(z)α(z).

This function will help us to estimate the following integral:∫
D

log
1

|Sz(ξ)|α(ξ)ω(ξ) dA(ξ) ≤ c
∫
D
−1b(ξ) log

1

|Sz(ξ)| dA(ξ)

= c
∫
D
−1b(S−z(ξ)) log

1

|ξ| dA(ξ)

= c
(
b(z)−

∫
T
b dm

)
≤ cQω(z).

Similarly, we obtain∫
D

log
1

|Sz(ξ)|α(ξ)ω
−1(ξ) dA(ξ) ≤ cQω−1(z),

which gives the desired estimates for the outer integrals ofM andN. We are left
to show the bound forK—namely, that∫

D
log

1

|Sz(ξ)|α(ξ)ω(ξ)ω
−1(ξ) dA(ξ) ≤ cQ.

Consider the function
B(s, r) = 4

√
Q
√
sr − sr

from [7]. This function has the following properties:

1≤ rs ≤ Q H⇒ 0 ≤ B(r, s) ≤ 4Q,

1≤ rs ≤ Q H⇒ −d2B ≥ c|dsdr|.
Let us also consider the functionb : C→ R, where

b(z) = B(h(z)) = B(ω(z), ω−1(z)).

Then 0≤ b(z) ≤ cQ and

−1b(z) ≥ 4Cω(z)ω−1(z)
|ω(z)′||ω−1(z)′|
ω(z)ω−1(z)

= 4Cω(z)ω−1(z)α(z).

This function will take care of the following integral:∫
D

log
1

|Sz(ξ)|α(ξ)ω(ξ)ω
−1(ξ) dA(ξ) ≤ c

∫
D
−1b(ξ) log

1

|Sz(ξ)| dA(ξ)

= c
∫
D
−1b(S−z(ξ)) log

1

|ξ| dA(ξ)

= c
(
b(z)−

∫
T
b dm

)
≤ cQ.
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4. Bilinear Carleson Embedding Theorem

Recall that the Möbius transform is given bySz(ξ) = ξ−z
1−z̄ξ .

Lemma 4.1. Letα(z) ≥ 0 and letω, υ be two weights such that1≤ ω(z)υ(z) ≤
Q for all z∈D and ∫

D
α(ξ)ω(ξ) log

1

|Sz(ξ)| dA(ξ) ≤ Qω(z),∫
D
α(ξ)υ(ξ) log

1

|Sz(ξ)| dA(ξ) ≤ Qυ(z),∫
D
α(η)ω(η)υ(η) log

1

|Sξ (η)| dA(η) ≤ Q.

Then, forf, g ≥ 0∈L2(T), we have∫
D
α(z)f(z)g(z) log

1

|z| dA(z) ≤ cQ‖f ‖υ−1‖g‖ω−1.

Proof. As before, it is more convenient to switch toYoung’s inequality. It suffices
to show that∫

D
α(z)f(z)g(z) log

1

|z| dA(z) ≤ cQ(‖f ‖
2
υ−1 + ‖g‖2ω−1).

Let us consider the variables

X = f 2υ−1(z), x = f(z), r = υ(z),
Y = g2ω−1(z), y = g(z), s = ω(z),

as well as the nonharmonic variables

M =
∫
D
α(ξ)υ(ξ) log

1

|Sz(ξ)|
∫
D
α(η)υ(η)ω(η) log

1

|Sξ (η)| dA(η) dA(ξ),

N =
∫
D
α(ξ)ω(ξ) log

1

|Sz(ξ)|
∫
D
α(η)ω(η)υ(η) log

1

|Sξ (η)| dA(η) dA(ξ),

K =
∫
D
α(η)υ(η)ω(η) log

1

|Sz(η)| dA(η).

We then have the following natural estimates:

1≤ rs ≤ Q,
x 2 ≤ Xr and y2 ≤ Ys (by Jensen’s inequality),

M ≤ Q2r and N ≤ Q2s (by combining assumptions),

K ≤ Q (by assumption).
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Furthermore, we may assume that all variables are strictly positive:X, Y, x, y,

r, s are harmonic extensions of positive functions, and inK,M,N the integrands
are strictly positive (forα = 0 there is nothing to prove). This suggests the domain

K = {(X, x, r, Y, y, s,M,N,K) : X, x, r, Y, y, s,M,N,K > 0;
1≤ rs ≤ Q; x 2 ≤ Xr; y2 ≤ Ys; M ≤ Q2r; N ≤ Q2s; K ≤ Q}.

Let us consider the following function of nine (!) real variables:

B(X, x, r, Y, y, s,M,N,K)

= B1(X, x, r,M)+ B2(Y, y, s, N )+ B3(X, x, r, Y, y, s,K),

where

B1(X, x, r,M) = X − x 2

r +M/Q2
,

B2(Y, y, s, N ) = Y − y2

s +N/Q2
,

B3(X, x, r, Y, y, s,K)

=



X + Y − x2s−2xy(K/Q)+y2r

rs−K2/Q2 if yr − x K
Q
> 0

andxs − y K
Q
> 0,

X + Y − y2/s otherwise, andx
2

r
≥ y2

s
,

X + Y − x 2/r otherwise, andx
2

r
≤ y2

s
.

As before,b(z), b1(z), b2(z), b3(z) are the corresponding functions onD.We now
discuss the various properties ofB.

Derivative estimates:

∂B1

∂M
≥ 1

4Q2

x 2

r 2
,

∂B2

∂N
≥ 1

4Q2

y2

s2
,

∂B3

∂K
≥
{ c

Q

xy

rs
if K ≤ Qyr

4x andK ≤ Qxs
4y ,

0 otherwise.

For the derivative estimate ofB1, note thatM ≤ Q2r; useN ≤ Q2s for B2.

The weaker derivative estimate forB3 (nonnegativity) holds everywhere and is
easy to check. Harder is the stronger estimate that we will only need for “small”
K, that is,

{
K ≤ Qyr

4x andK ≤ Qxs
4y

}
. By exchangingx andy, we need only

consider the casex 2/r ≥ y2/s. Let us point out thatB3 was taken from an early
version of [7], where it was written (up to normalization) in the following form:

B3(X, x, r, Y, y, s,K) = X + Y − sup
a>0

β(a,X, x, r, Y, y, s,K);
here
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β(a,X, x, r, Y, y, s,K) = x 2

r + aK
Q

+ y2

s + a−1
K

Q

.

Note thatβ is continuously differentiable ina for a > 0. Testing for critical points
yields

∂β

∂a
= − x 2K̃

(r + aK̃)2 +
y2K̃

(as + K̃)2 ,
and

∂β

∂a
= 0 ⇐⇒ a = yr − xK̃

xs − yK̃ ,

provided this fraction is finite and different from 0. We see that∂β/∂a changes
sign from positive to negative ata = am := (yr − xK̃)/(xs− yK̃) if both numer-
ator and denominator are positive, so in this caseβ attains its maximum at this
point. If am is negative then the supremum is “attained” at 0 or∞. One can also
see that if bothyr − xK̃ andxs − yK̃ are negative then the extremum is a min-
imum, so again the supremum is attained at 0 or∞. We found ourB3 by letting
a = am = (yr − xK̃)/(xs − yK̃) when bothyr − xK̃ andxs − yK̃ are positive
and by settinga = 0 ora = ∞ in all other cases.

Recall that, for the derivative estimate ofB3, only the case whereβ attains its
maximum atam = (yr − xK̃)/(xs − yK̃) is relevant because we only need the
estimate for smallK—namely,K ≤ Qyr

4x andK ≤ Qxs
4y .

Let us writeK̃ for K/Q. It was shown in an early version of [7] that, ifK is
small, then

β(a0, X, x, r, Y, y, s,K) ≥ x
2

r
+ 1

2

y2

s
for a0 = yr

xs
. (4.10)

We will include the proof for the sake of completeness. Let us first observe that

x 2

r + aK̃ ≥
x 2

r
− aK̃ x

2

r 2
and

y2

s + a−1K̃
≥ y

2

s
− a−1K̃

y2

s2
;

hence

β(a,X, x, r, Y, y, s,K) ≥ x
2

r
+ y

2

s
−
(
aK̃

x 2

r 2
+ a−1K̃

y2

s2

)
. (4.11)

The part in parentheses fora = a0 = yr/xs is

yr

xs
K̃
x 2

r 2
+ xs
yr
K̃
y2

s2
= 2

xy

rs
K̃ ≤ y2

2s
, (4.12)

where we use the assumptioñK ≤ yr/4x. Now we obtain the required estimate
from below forβ ata0:

β(a0, X, x, r, Y, y, s,K) ≥ x
2

r
+ y

2

s
− y

2

2s
= x 2

r
+ 1

2

y2

s
,
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where we use (4.11) fora0 together with (4.12). Thus, taking supremum in the first
variable yields

sup
a>0

β(a,X, x, r, Y, y, s,K) ≥ x
2

r
+ 1

2

y2

s
.

We now consider the parameter family of functions

Ba
3(X, x, r, Y, y, s,K) := X + Y − β(a,X, x, r, Y, y, s,K).

In an early version of [7], the following derivative estimate was proved for smallK:

∂Ba
3

∂K̃

∣∣∣∣
a=am
≥ cxy

rs
where am = yr − xK̃

xs − yK̃ . (4.13)

ButB3(X, x, r, Y, y, s,K) = Bam
3 (X, x, r, Y, y, s,K), so

∂B3

∂K̃
= ∂Ba

3

∂a

∣∣∣∣
a=am
· ∂a
∂K̃
+ ∂B

a
3

∂K̃

∣∣∣∣
a=am

.

Note that
∂Ba

3

∂a

∣∣∣∣
a=am
= −∂β

∂a

∣∣∣∣
a=am
= 0,

sinceβ attains its maximum inam. Provided thatK is small, we have the deriva-
tive estimate

∂B3

∂K
≥ c

Q

xy

rs
.

We include the proof of (4.13). First observe that, according to (4.10), we have

x 2

r + amK̃
+ y2

s + a−1
m K̃
≥ x

2

r
+ 1

2

y2

s
.

This impliesy2/(s + a−1
m K̃) ≥ y2/2s and hences ≥ a−1

m K̃. But sincex 2/r ≥
y2/s, (4.10) implies also that

x 2

r + amK̃
+ y2

s + a−1
m K̃
≥ y

2

s
+ 1

2

x 2

r
.

Thus, similarly we obtainr ≥ amK̃. Consequently,

∂Ba
3

∂K̃
= ax 2

(r + aK̃)2 +
a−1y2

(s + a−1K̃)2
≥ 2

xy

(r + aK̃)(s + a−1K̃)
.

Usingr ≥ amK̃ ands ≥ a−1
m K̃ yields (4.13).

Size:We have the following obvious size estimates forBi :

0 ≤ B1 ≤ X, 0 ≤ B2 ≤ Y, 0 ≤ B3 ≤ X + Y.
Here 0≤ B3 follows from the fact thatX − x 2/(r + aK̃) ≥ 0 andY − y2/

(s + a−1K̃) ≥ 0 for positivea.
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Concavity: BothB1 andB2 are of the form (3.2), so

−d2B1 ≥ 0 and − d2B2 ≥ 0.

Sinceβ is convex for all parametersa, it follows thatB3, as the infimum of a fam-
ily of concave functions, is also concave. To useB3 in a Green’s formula it needs
to be sufficiently smooth. Forδ < 1 we consider the setK δ = {v(z) : z ≤ δ},
wherev(z) = (X(z), x(z), r(z), Y(z), y(z), s(z),M(z),N(z),K(z)). It is easy
to see that the setK δ is a compact subset of the domainK of B. Let us pickε(δ)
to be the distance betweenK δ and the hyperplanesX = 0, x = 0, r = 0, Y = 0,
y = 0, s = 0, M = 0, N = 0, andK = 0. We pickφε(δ) to be aC∞ approximate
identity inR9 with radiusε(δ)/2. By this we mean a smooth, radial, and nonneg-
ative bump function supported by a disk around 0 of radiusε(δ)/2 and normalized
to
∫
φε(δ) = 1. We consider the convolutioñBδ3 = B3 ∗ φε(δ). The resulting func-

tion is smooth inK δ and has size, derivative, and concavity properties similar to
B3. It is easy to see that only the constants change by a factor of 3/2 for the size
estimate and by 1/9 in case of the derivative estimate for all choices ofδ. The de-
rivative estimate of̃B3 will only hold for smallerK, namely

{
K ≤ Q yr

18x andK ≤
Q xs

18y

}
. In this sense,

−d2B̃ δ3 ≥ 0 in K δ.
As before, we plug in our variables and call the resulting functionb̃δ3(z). The sum
b1+ b2+ b̃δ3 is denoted bỹbδ. This function is defined onδD only, so we estimate
our integral on a slightly smaller region first and then pass to the limit. We divide
δD into three parts:

A1=
{
z∈ δD : K(z) ≥ Qg(z)υ(z)

18f(z)

}
,

A2 =
{
z∈ δD : K(z) ≥ Qf(z)ω(z)

18g(z)

}
,

A3 = δD \ (A1∪ A2).

If z∈A1, then

−1b1(z) ≥ ∂B1

∂M
(−1M)

≥ 1

4Q2

f(z)2

υ(z)2
α(z)υ(z)K(z)

≥ 1

4Q2

f(z)2

υ(z)2
α(z)υ(z)Q

g(z)υ(z)

18f(z)

= 1

72Q
α(z)f(z)g(z).

Similarly, if z∈A2 then

−1b2(z) ≥ 1

72Q
α(z)f(z)g(z).
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If z∈A3, then

−1b̃δ3(z) ≥
∂B̃ δ3

∂K
(−1K)

≥ c

Q

f(z)g(z)

ω(z)υ(z)
α(z)ω(z)υ(z)

= c

Q
α(z)f(z)g(z).

Since−1b1,2,−1b̃δ3 ≥ 0 on all ofδD, we have all together

−cQ1b̃δ(z) ≥ α(z)f(z)g(z),
with c not depending onδ. We are now ready to run the Green’s formula trick:∫

δD
α(z)f(z)g(z) log

1

|z| dA(z) ≤ cQ
∫
rD
−1b̃δ(z) log

1

|z| dA(z)

= cQ
(
b̃δ(0)−

∫
δT
b̃δ(t) dm

)
≤ cQ(‖f ‖2

υ−1 + ‖g‖2ω−1).

Passing to the limitδ→ 1− delivers the desired estimate.

5. Sharpness of the Result

In this section, we demonstrate thatQ inv
2 (ω) is indeed the best possible bound for

the Hilbert transform. First, we will create an example onR (see [2]).
The definition ofA2 onR is very similar to that onT: We sayω ∈A2 (onR) if

sup
I

〈ω〉I 〈ω−1〉I = QR
2 (ω) <∞, (5.14)

where the supremum is taken over all intervalsI in R.
DefineQR,inv

2 (ω) by

sup
z∈R2+

ω(z)ω−1(z) = QR,inv
2 (ω), (5.15)

whereω(z) denotes the harmonic extension ofω onto the upper half-plane. (Note
thatω(z) = w(x, y) = Py ∗ w(x), wherePy(x) = cy/(|x|2 + y2) and(x, y) ∈
R2+.)

In this section, we will use the symbol∼ to denote comparable size; that is,
u ∼ v if there exist positive constantsc, C such thatcu ≤ v ≤ Cu.

Let v = |x|α. Such weights are called power weights, and a simple calculation
shows thatv ∈A2 (onR) iff α ∈ (−1,1) and that

QR
2 (v) ∼

1

1− α2
.

For power weights it is known thatQR,inv
2 (v) ∼ 1/(1− α2) also, and thus

Q
R,inv
2 (v) ∼ QR

2 (v) (see [4, Chap. 3]). We now use power weights to demonstrate
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that the main theorem is sharp. Lets be a fixed number in(0,1), and letvs(x) =
|x|(1−s) andfs(x) = |x|s−1χ[0,1]. ThenQR,inv

2 (vs) ∼ 1/s and‖fs‖2L2(vs )
= 1/s.

LetH denote the Hilbert transform onR. Then, forx > 2,

Hfs(x) =
∫ 1

0

y s−1

x − y dy ∼
1

x

∫ 1

0
y s−1dy = 1

sx
,

since2
x
≥ 1

x−y ≥ 1
x

for x > 2 andy ∈ [0,1]. Therefore,∫ ∞
2
|Hfs |2vs ∼ s−3

and so
‖Hfs‖vs ≥ cs−3/2 ∼ s−1‖fs‖vs ∼ QR,inv

2 (vs)‖fs‖vs .
Here we see that the first power of theA2 constant is sharp if we lets → 0+.

To transform this example to one onT, we use the Möbius transformation that
maps the real line to the circle,i−x

i+x . Specifically, let

Jh(x) = 1√
π(i + x)h

(
i − x
i + x

)
.

Then

J−1k(z) = √π 2i

z+1
k

(
z−1

iz+ i
)
.

Let ṽs(z) = vs
(
z−1
iz+i

)
. Recall that theA2,inv constant is invariant under Möbius

transforms and thusQR,inv
2 (vs) = Q inv

2 (ṽs). A calculation shows thatJ is an isom-
etry fromL2

T(ṽs) toL2
R(vs). Furthermore (cf. [9]),

H = cJ−1HJ.
Let g(z) = J−1f. We have

‖Hg‖ṽs ∼ ‖J−1HJg‖ṽs = ‖Hf ‖vs ≤ cQR,inv
2 (vs)‖f ‖vs = cQ inv

2 (ṽs)‖g‖ṽs .
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