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A SHARP FORM OF THE MOSER-TRUDINGER INEQUALITY
ON A COMPACT RIEMANNIAN SURFACE

YUNYAN YANG

Abstract. In this paper, a sharp form of the Moser-Trudinger inequality
is established on a compact Riemannian surface via the method of blow-up
analysis, and the existence of an extremal function for such an inequality is
proved.

1. Introduction and main results

Let Ω ⊂ R
2 be a smooth bounded domain and H1

0 (Ω) be the Sobolev space
consisting of functions which vanish on the boundary of Ω and whose gradient is
in L2(Ω). The famous Moser-Trudinger inequality (see Moser [14]; Trudinger [17])
states the following:

(1.1) sup
u∈H1

0 (Ω), ‖∇u‖2=1

∫
Ω

e4πu2
dx < +∞.

For any p > 4π, there exists a sequence {uε}ε>0 ⊂ H1
0 (Ω) with ‖∇uε‖2 = 1 verifying

that
∫
Ω

epu2
ε dx → +∞. On the other hand, ∀u ∈ H1

0 (Ω),
∫
Ω

epu2
dx < +∞ for any

p > 0. Furthermore, P. L. Lions [13] obtained the following:

Theorem A (Lions). Let {uε}ε>0 ⊂ H1
0 (Ω) with ‖∇uε‖2 = 1 such that uε ⇀ u0

weakly in H1
0 (Ω). Then for any p < 1/(1 − ‖∇u0‖2

2),

(1.2) lim sup
ε→0

∫
Ω

e4πpu2
ε dx < +∞.

When uε ⇀ u0 weakly in H1
0 (Ω) and u0 �= 0, (1.2) gives more precise information

than (1.1). But if u0 = 0, (1.2) is a consequence of (1.1). However Adimurthi and
Druet [1] proved the following:

Theorem B (Adimurthi-Druet). Let Ω be a smooth bounded domain in R
2 and let

λ1(Ω) > 0 be the first eigenvalue of the Laplacian with Dirichlet boundary condition
in Ω. Then we have (i) for any 0 ≤ α < λ1(Ω),

sup
u∈H1

0 (Ω), ‖∇u‖2=1

∫
Ω

e4πu2(1+α‖u‖2
2)dx < +∞,

and (ii) for any α ≥ λ1(Ω),

sup
u∈H1

0 (Ω), ‖∇u‖2=1

∫
Ω

e4πu2(1+α‖u‖2
2)dx = +∞.
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This result is of a different nature from Theorem A. When uε ⇀ u0 weakly in
H1

0 (Ω) and u0 �= 0, the inequality in Theorem B is a consequence of Theorem A.
But Theorem B gives new information when uε ⇀ 0 weakly in H1

0 (Ω).
In this paper, we consider the same inequalities as that of Theorem B on a

compact Riemannian surface. Let (Σ, g) be a compact Riemannian surface without
boundary, H1,2(Σ) the completion of C∞(Σ) in the norm

‖u‖2
H1,2(Σ) =

∫
Σ

(|u|2 + |∇u|2)dVg < +∞.

Denote

H =
{

u ∈ H1,2(Σ) : ‖∇u‖2 = 1,

∫
Σ

udVg = 0
}

;

here and in the sequel, ‖ · ‖p denotes the Lp-norm (
∫
Σ
| · |pdVg)1/p. Recall that the

first eigenvalue of the Laplacian on Σ is defined by

(1.3) λ1(Σ) = inf
u∈H1,2(Σ),

∫
Σ udVg=0, u �=0

‖∇u‖2
2

‖u‖2
2

.

Write

(1.4) Cα(Σ) = sup
u∈H

∫
Σ

e4πu2(1+α‖u‖2
2)dVg.

For simplicity, we denote

(1.5) Jα
β (u) =

∫
Σ

eβu2(1+α‖u‖2
2)dVg.

Then we can state our main results as follows:

Theorem 1.1. Let (Σ, g) be a compact Riemannian surface without boundary.
Then we have

(1) For any 0 ≤ α < λ1(Σ), Cα(Σ) < +∞.
(2) For any α ≥ λ1(Σ), Cα = +∞.
(3) For sufficiently small α > 0, there exists a uα ∈ H such that Cα(Σ) =

Jα
4π(uα).

As we have explained before, this result gives more information than the usual
Moser-Trudinger inequality on a compact Riemannian surface (see for example [9],
[10]). We follow the lines of the proof of Adimurthi and Druet [1]. First, we choose
test functions to prove (2). Then we use blow-up analysis to prove (1), and finally
use the capacity technique to prove (3).

Similarly, we have the following:

Theorem 1.2. Let (Σ, g) be a compact Riemannian surface without boundary.
Denote

H1 = {u ∈ H1,2(Σ) :
∫

Σ

(|u|2 + |∇u|2)dVg = 1}

and

C1
α(Σ) = sup

u∈H1

∫
Σ

e4πu2(1+α‖u‖2
2)dVg.

Then we have
(1) For any 0 ≤ α < λ1(Σ), C1

α(Σ) < +∞.
(2) For any α ≥ λ1(Σ), C1

α(Σ) = +∞.
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(3) For sufficiently small α > 0, there exists a uα ∈ H1 such that C1
α(Σ) =

Jα
4π(uα).

Since the proof of Theorem 1.2 is completely analogous to that of Theorem 1.1,
we omit it in this paper.

Extremal functions for critical functionals can be obtained by the method of
blow-up analysis. In 1984, Schoen [15] solved the Yamabe problem. In 1986,
Escobar and Schoen [7] found conformal metrics with prescribed curvatures in high
dimensions. In 1997, Ding, Jost, Li and Wang [5] proved the solvability of the
equation �u = 8π − he8πu on a compact Riemannian surface. For the existence
of extremal functions for the classical Moser-Trudinger inequality, we would like
to mention Carleson and Chang [3], Flucher [8], Lin [12], Li [10] and Li–Liu [11].
About extremals for optimal Sobolev inequalities on Riemannian manifolds, we
refer the reader to Druet and Hebey [6] and the references therein.

Throughout this paper we denote the Laplacian and the gradient on Σ by � and
∇ , those on R

2 by �R2 and ∇R2 respectively.
We organize this paper as follows: In section 2, we construct test functions to

prove point (2) of Theorem 1.1. In section 3, we prove the existence of a maximizer
of a subcritical functional Jα

4π−ε, and give the corresponding Euler–Lagrange equa-
tion. Section 4 contributes to the asymptotic behavior of the maximizers through
blow-up analysis. An upper bound of Jα

4π is derived in section 5 under the assump-
tion that blow-up occurs. In the last section, we construct a sequence of functions
to show that the upper bound of Jα

4π is in fact greater than the one we derived in
section 5.

2. The test functions

In this section, following Adimurthi and Druet [1], we choose test functions to
prove point (2) of Theorem 1.1. Let u0 be a weak solution of{

−�u0 = λ1(Σ)u0 in Σ,∫
Σ

u0dVg = 0, ‖u0‖2
2 = 1.

By elliptic estimates, u0 ∈ C∞(Σ). The fact that
∫
Σ

u0dVg = 0 implies that there
exists some p ∈ Σ such that u0(p) > 0, and a domain U ⊂ Σ such that p ∈ U
and u0 ≥ u0(p)/2 in U . Choose an isothermal coordinate system (V, ψ) around p
such that V ⊂ U , ψ : V → Bδ = {x ∈ R

2 : |x| ≤ δ}, ψ(p) = 0. In this coordinate
system, the metric g can be represented by g = e2f (dx2

1 +dx2
2), where f is a smooth

function with f(0) = 0.
For any x ∈ Bδ, let

mε(x) =

⎧⎨
⎩

√
1
4π log 1

ε , |x| ≤ δ
√

ε,

1√
π log 1

ε

log δ
|x| , δ

√
ε < |x| ≤ δ.

We set

uε =

{
mε ◦ ψ in ψ−1(Bδ),

lεϕ in Σ \ ψ−1(Bδ),

where ϕ ∈ C∞
0 (Σ \ ψ−1(Bδ)) and lε is a real number such that

∫
Σ

uεdVg = 0.
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It is not difficult to check that

lε = O(1/(log 1
ε )1/2), ‖∇uε‖2

2 = 1 + O(1/log
1
ε
),

‖uε‖1 = O(1/(log 1
ε )1/2), ‖uε‖2

2 = O(1/ log
1
ε
).

Setting vε = uε + tεu0 with tε → 0, we get t2ε log 1
ε → +∞ and t2ε (log 1

ε )1/2 → 0.
Then we have

‖vε‖2
2 = ‖uε‖2

2 + t2ε‖u0‖2
2 + 2tε

∫
Σ

uεu0dVg

= t2ε + 2tε

∫
Σ

uεu0dVg + O(1/ log
1
ε
),

‖∇vε‖2
2 = ‖∇uε‖2

2 + t2ε‖∇u0‖2
2 + 2tε

∫
Σ

∇uε∇u0dVg

= 1 + 2λ1(Σ)tε
∫

Σ

uεu0dVg + λ1(Σ)t2ε + O(1/ log
1
ε
),

1
‖∇vε‖2

2

(
1 + α

‖vε‖2
2

‖∇vε‖2
2

)
= 1 + (α − λ1(Σ))

(
t2ε + 2tε

∫
Σ

uεu0dVg

)

+ o(tε/(log
1
ε
)1/2).

We have for α ≥ λ1(Σ),

1
‖∇vε‖2

2

(
1 + α

‖vε‖2
2

‖∇vε‖2
2

)
≥ 1 + o(tε/(log

1
ε
)1/2).

Note that on ψ−1(Bδ
√

ε),

4π
v2

ε

‖∇vε‖2
2

(
1 + α

‖vε‖2
2

‖∇vε‖2
2

)
≥ 4π

(
t2εu

2
0 +

1
4π

log
1
ε

+ 2tε(
1
4π

log
1
ε
)1/2u0

)

×(1 + o(tε/(log
1
ε
)1/2))

≥ log
1
ε

+ tε(log
1
ε
)1/2(4

√
πu0 + o(1)).

Hence∫
Σ

e
4π

v2
ε

‖∇vε‖2
2

(
1+α

‖vε‖2
2

‖∇vε‖2
2

)
dVg ≥

∫
ψ−1(Bδ

√
ε)

1
ε
etε

√
log 1

ε (4
√

πu0+o(1))dVg

≥ C(δ)etε

√
log 1

ε (2
√

πu0(p)+o(1)).

Since u0(p) > 0, then
∫
Σ

e
4π

v2
ε

‖∇vε‖2
2

(
1+α

‖vε‖2
2

‖∇vε‖2
2

)
dVg → +∞ as ε → 0. This completes

the proof of (2) of Theorem 1.1. �

3. Existence of maximizers for subcritical functionals

In this section, we will prove the existence of maximizers of subcritical function-
als. Similar to P. L. Lions [13], we have the following:

Lemma 3.1. Let {uε}ε>0 be a sequence of functions in H with uε ⇀ u0 weakly in
H1,2(Σ). Then for any p < 1/(1 − ‖∇u0‖2

2), lim sup
ε→0

∫
Σ

e4πpu2
ε dVg < +∞.
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Proof. Clearly we have
∫
Σ

u0dVg = 0. If u0 �= 0, then one can see that

‖∇(uε − u0)‖2
2 → 1 − ‖∇u0‖2

2 < 1.

Hence we have for p < 1/(1 − ‖∇u0‖2
2),∫

Σ

e4πpu2
ε dVg ≤

∫
Σ

e4πp(1+δ)(uε−u0)
2+4πp(1+1/δ)u2

0dVg

≤
(∫

Σ

e
4π

(uε−u0)2

‖∇(uε−u0)‖2
2 dVg

)1/r (∫
Σ

e4πp′u2
0dVg

)1/s

for some δ > 0 and p′ > p provided that ε is sufficiently small , where 1/r+1/s = 1.
By the Orlicz embedding, eu2

0 is bounded in Lq(Σ) for any q > 1. A result of Fontana
[9] gives supu∈H

∫
Σ

e4πu2
dVg < +∞. Hence

(3.1) lim sup
ε→0

∫
Σ

e4πpu2
ε dVg < +∞.

If u0 = 0, (3.1) is an immediate corollary of Fontana’s result. �

Lemma 3.2. Let 0 ≤ α < λ1(Σ). For any ε > 0, there exists a uε ∈ C∞(Σ) ∩ H
such that

Jα
4π−ε(uε) = sup

u∈H
Jα

4π−ε(u).

Proof. For any fixed ε > 0, we choose a maximizing sequence {ui} ⊂ H such that

Jα
4π−ε(ui) → sup

u∈H
Jα

4π−ε(u) as i → +∞.

Since {ui} is bounded in H1,2(Σ), we have

ui ⇀ uε weakly in H1,2(Σ),
ui → uε strongly in L2(Σ),
ui → uε a.e. in Σ.

Hence

fi = e(4π−ε)u2
i (1+α‖ui‖2

2) → fε = e(4π−ε)u2
ε(1+α‖uε‖2

2) a.e. in Σ.

If we suppose uε = 0, then we have 1 + α‖ui‖2
2 → 1. Since

∫
Σ

e4πu2
i dVg < +∞,

we have fi is bounded in Lp(Σ) for some p > 1 and fi → 1 in L1(Σ). Hence
Vol(Σ) = supu∈H Jα

4π−ε(u), which is impossible. Therefore uε �= 0. By Lemma 3.1,
we have for p < 1/(1 − ‖∇uε‖2

2),

lim sup
i→+∞

∫
Σ

e4πpu2
i dVg < +∞.

Since 0 ≤ α < λ1(Σ), we have

1 + α‖ui‖2
2 → 1 + α‖uε‖2

2 <
1

1 − ‖∇uε‖2
2

.

Hence fi is bounded in Lp(Σ) for some p > 1. Since fi → fε a.e. in Σ, then fi → fε

strongly in L1(Σ). Therefore
∫
Σ

fεdVg = supu∈H Jα
4π−ε(u), and uε ∈ H. �
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It is not difficult to check that uε satisfies

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�uε = βε

λε
uεe

αεu2
ε + γεuε − µε

λε∫
Σ

uεdVg = 0, ‖∇uε‖2 = 1

αε = (4π − ε)(1 + α‖uε‖2
2)

βε = (1 + α‖uε‖2
2)/(1 + 2α‖uε‖2

2)

γε = α/(1 + 2α‖uε‖2
2)

λε =
∫
Σ

u2
εe

αεu2
ε dVg

µε = βε

∫
Σ

uεe
αεu2

ε dVg.

4. Blow-up analysis

In this section, we will use blow-up analysis to understand the asymptotic be-
havior of the maximizers uε. We proceed as Adimurthi and Druet did in [1]. Firstly
we have

Lemma 4.1. lim infε→0 λε > 0.

Proof. Using the elementary inequality et ≤ 1 + tet for t ≥ 0, one has∫
Σ

eαεu2
ε dVg ≤ V ol(Σ) + αελε.

On the other hand,

lim
ε→0

∫
Σ

eαεu2
ε dVg = sup

u∈H

∫
Σ

e4πu2(1+α‖u‖2
2)dVg > V ol(Σ).

The above two inequalities, together with the fact that αε is bounded, imply the
result. �

Lemma 4.2. µε/λε is bounded.

Proof. By (3.2), we have

|µε|
λε

≤ βε

∫
|uε|≥1

|uε|
λε

eαεu2
ε dVg + βε

∫
|uε|<1

|uε|
λε

eαεu2
ε dVg

≤ 1 +
eαε

λε
V ol(Σ) ≤ C;

here we have used Lemma 4.1 and βε ≤ 1. �

Let cε = |uε(xε)| = maxΣ |uε|. If cε is bounded, by the standard elliptic es-
timates, Theorem 1.1 holds. Without loss of generality, we may assume in the
following that

(4.2) xε → p, uε(xε) → +∞

as ε → 0. Here and in the sequel, we do not distinguish sequence and subsequence;
the reader can understand it easily from the context.

Lemma 4.3. uε ⇀ 0 weakly in H1,2(Σ), uε → 0 strongly in L2(Σ), and |∇uε|2dx ⇀
δp in the sense of measure, where δp is the Dirac measure at p.
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Proof. We may assume uε ⇀ u0 weakly in H1,2(Σ). Obviously
∫
Σ

u0dVg = 0. If we
suppose u0 �= 0, then we have

1 + α‖uε‖2
2 → 1 + α‖u0‖2

2 ≤ 1 + ‖∇u0‖2 <
1

1 − ‖∇u0‖2
2

.

By Lemma 3.1, one has eαεu2
ε is bounded in Lp(Σ) for some p > 1 provided that

ε is sufficiently small. Applying the elliptic estimates to equation (3.2), one gets
cε is bounded, and a contradiction. Hence u0 = 0, whence αε → 4π, βε → 1 and
γε → α. Assume |∇uε|2dVg ⇀ µ in the sense of measure. If µ �= δp for all p ∈ Σ,
then the usual truncation and covering arguments imply that eαεu2

ε is bounded in
Lq(Σ) for some q > 1. Applying elliptic estimates again to equation (3.2), we have
uε is bounded in L∞(Σ), which contradicts (4.2). �

Take an isothermal coordinate system (Ω, φ) near p such that φ(p) = 0. In such
coordinates, the metric g has the representation g = e2f (dx2

1 + dx2
2) with f(0) = 0.

Let r2
ε = λε

βεc2
ε
e−αεc2

ε and Ωε = {x ∈ R
2 : xε + rεx ∈ Ω}. Let ψε(x) = u(xε + rεx)/cε

and
ϕε(x) = cε(uε(xε + rεx) − cε), x ∈ Ωε.

Then we have the following:

Lemma 4.4. For any 0 < α < 4π, we have r2
ε eαc2

ε → 0.

Proof. A straightforward calculation shows that, for 0 < α < 4π,

r2
ε eαc2

ε =
e(α−αε)c

2
ε

βεc2
ε

∫
Σ

u2
εe

αεu2
ε dVg

≤ 1
βεc2

ε

∫
Σ

u2
εe

αu2
ε dVg

for sufficiently small ε. Obviously u2
εe

αu2
ε is bounded in L1(Σ), which gives the

result immediately. �

By (3.2), we have

(4.3)

{
−�ψε = 1

c2
ε
ψεe

αε(u
2
ε−c2

ε) + r2
ε γεψε − r2

ε
µε

cελε
,

−�ϕε = ψεe
αεϕε(1+ψε) + cεr

2
ε γεuε(xε + rεx) − cεr

2
ε µε/λε.

It is easy to see that �ψε → 0 in L2(BR(0)), |ψε| ≤ 1 and ψε(0) = 1. Elliptic
estimates and Liouville’s theorem give ψε → 1 in C2(BR/2(0)). Applying elliptic
estimates to (4.3), we obtain ϕε → ϕ in C2

loc(R
2), where ϕ satisfies

(4.4)

⎧⎪⎨
⎪⎩

−∆R2ϕ = e8πϕ in R
2,

ϕ(0) = sup
R2 ϕ = 0,∫

R2 e8πϕdx ≤ 1.

By the uniqueness result of Chen and Li [4], we have ϕ(x) = − 1
4π log(1 + π|x|2)

and
∫

R2 e8πϕdx = 1.

Define uε,β = min{βcε, uε}. Then we have

Lemma 4.5. ∀0 < β < 1, lim supε→0 ‖∇uε,β‖2
2 = β.
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Proof. By the fact that ψε → 1 in C2
loc(R

2), we have

BRrε
(xε) ⊂ {x ∈ Σ : uε(x) ≥ βcε}

for any fixed R > 0 and sufficiently small ε. Using the divergence theorem and
equation (3.2), we have∫

Σ

|∇(uε − βcε)+|2dVg = −
∫

Σ

(uε − βcε)+�uεdVg

=
∫

uε≥βcε

(uε − βcε)
1
λε

uεe
αεu2

ε dVg + oε(1)

≥
∫

BRrε (xε)

(uε − βcε)
1
λε

uεe
αεu2

ε dVg + oε(1)

= (1 − β)
∫

BR(0)

e8πϕdx + oε(1) + oε(R),

where oε(1) → 0 as ε → 0, and oε(R) → 0 for any fixed R as ε → 0. Letting ε → 0
first, then R → +∞, we obtain

lim inf
ε→0

∫
Σ

|∇(uε − βcε)+|2dVg ≥ 1 − β.

Using the divergence theorem, equation (3.2), Lemma 4.2, Lemma 4.3 and the
fact that ϕε → ϕ in C2

loc(R
2), we have∫

Σ

|∇uε,β |2dVg = −
∫

Σ

uε,β�uεdVg

=
∫

Σ

uε,β
1
λε

uεe
αεu2

ε dVg + oε(1)

≥
∫

BRε(xε)

1
λε

βcεuεe
αεu2

ε dVg + oε(1)

= β

∫
BR(0)

e8πϕdx + oε(1) + oε(R).

Letting ε → 0 first, then R → +∞, we have lim inf
ε→0

∫
Σ
|∇uε,β |2dVg ≥ β. Noting that

∫
Σ

|∇(uε − βcε)+|2dVg +
∫

Σ

|∇uε,β |2dVg = 1,

we get the result. �

Lemma 4.6. lim supε→0 Jα
4π−ε(uε) ≤ V ol(Σ) + lim supε→0

λε

c2
ε
.

Proof. For any 0 < β < 1, an elementary computation gives

Jα
4π−ε(uε) =

∫
uε<βcε

eαεu2
ε dVg +

∫
uε≥βcε

e(αε)u
2
ε dVg

≤
∫

Σ

eαεu2
ε,βdVg +

λε

β2c2
ε

.
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By Lemma 4.5, we can see that eαεu2
ε,β is bounded in Lp(Σ) for some p > 1, whence∫

Σ
eαεu2

ε,βdVg → V ol(Σ) as ε → 0. Therefore

Jα
4π−ε(uε) ≤ V ol(Σ) +

λε

β2c2
ε

+ oε(1),

where oε(1) → 0 as ε → 0. Letting ε → 0 first, then β → 1, we obtain the result. �

Similar to [1] and [10], we have the following:

Lemma 4.7. For any φ ∈ C∞(Σ) we have

(4.5) lim
ε→0

∫
Σ

φ
βε

λε
cεuεe

αεu2
ε dx = φ(p).

Proof. We divide Σ into three parts:

Σ = ({uε > βcε} \ BRrε
(xε)) ∪ ({uε ≤ βcε} \ BRrε

(xε)) ∪ BRrε
(xε),

for some 0 < β < 1. Denote the integrals on the left side of (4.5) on the above
three domains by I1, I2 and I3 respectively. Then

|I1| ≤ 1
β

sup
Σ

|φ|
∫
{uε>βcε}\BRrε (xε)

1
λε

u2
εe

αεu2
ε dVg

≤ 1
β

sup
Σ

|φ|
(

1 −
∫

BRrε (xε)

1
λε

u2
εe

αεu2
ε dVg

)

≤ 1
β

sup
Σ

|φ|
(

1 −
∫

BR(0)

e8πϕdx + oε(R)

)
,

where oε(R) → 0 as ε → 0 for any fixed R. Letting ε → 0 first, and then R → +∞,
one has I1 → 0. Then

|I2| ≤ sup
Σ

|φ| cε

λε

∫
Σ

|uε|eαεu2
ε,βdVg

≤ sup
Ω

|φ| cε

λε
‖ uε ‖

L
1+β
1−β (Σ)

‖ e(4π−ε)u2
ε,β ‖

L
1+β
2β (Σ)

≤ C
cε

λε

for some constant C depending only on β and Σ; here we have used the Hölder
inequality and the Sobolev imbedding theorem. Lemma 4.6 implies that λε/cε →
+∞, whence cε/λε → 0. Hence we have I2 → 0 as ε → 0. Then

I3 =
∫

BRrε (xε)

φ
cε

λε
uεe

αεu2
ε dVg

= φ(xε + rεξ)

(∫
BR(0)

e8πϕdx + oε(R)

)
,

where ξ ∈ BR(0). As before, letting ε → 0 first, then R → +∞, we get I3 → ϕ(p).
Combining all the above estimates gives (4.5). �
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We need a result of Brezis and Merle [2]:

Theorem C (Brezis-Merle). Assume Ω ⊂ R
2 is a bounded domain and let u ∈

H1
0 (Ω) be a weak solution of −�u = f(x) in Ω, with f ∈ L1(Ω). Then for any

δ ∈ (0, 4π), ∫
Ω

exp
[
(4π − δ)|u(x)|

‖f‖1

]
dx ≤ 4π2

δ
(diamΩ).

Modifying the argument of Struwe [16], we have the following:

Lemma 4.8. Assume u ∈ C∞(Σ) is a solution of

(4.6)

{
−�u = f(x) in Σ,

‖u‖1 ≤ c0‖f‖1.

Then for any 1 < q < 2, ‖∇u‖q ≤ C(q, c0, Σ)‖f‖1.

Proof. Without loss of generality, we assume ‖f‖1 = 1. ∀p ∈ Σ, take an isothermal
coordinate system (Ω, φ) near p such that φ(p) = 0, and g = e2h(dx2

1 + dx2
2) with

h(0) = 0. In this coordinate system, � = e−2h�R2 , and then

(4.7) −�R2u = e2hf in Ω.

Let v ∈ H1
0 (Ω) be a solution of (4.7). Then we have by Theorem C that e|v| is

bounded in Ls(Ω) for some s > 0, whence v is bounded in L1(Ω). Clearly u − v

is harmonic in Ω. By the mean value theorem, ∀Ω̃ � Ω, ∀x ∈ Ω̃, we have for
r < dist(∂Ω, ∂Ω̃),

|(u − v)(x)| =
1

V ol(Br(x))
|
∫

Br(x)

(u − v)(x)dx|

≤ 1
πr2

(
∫

Σ

|u|dVg +
∫

Ω

|v|dx),

which implies that u − v is bounded in Ω̃. Therefore∫
Ω̃

es|u(x)|dx ≤
∫

Ω̃

es|v(x)|+s|(u−v)(x)|dx ≤ C.

A covering argument implies that e|u| is bounded in Ls0(Σ) for some s0 > 0.
Define u+(x) = max{u(x), 0} and u−(x) = −min{u(x), 0} for x ∈ Σ. Testing

equation (4.6) by log 1+2u+

1+u+ , we have∫
Σ

|∇u+|2
(1 + 2u+)(1 + u+)

dVg ≤ log 2.

The same inequality holds for u−. Hence∫
Σ

|∇u|2
(1 + 2|u|)(1 + |u|)dVg ≤ log 2.

Thus we have∫
Σ

|∇u|qdVg ≤
∫

Σ

|∇u|2
(1 + 2|u|)2 dVg +

∫
Σ

(1 + 2|u|)
2q

2−q dVg

≤
∫

Σ

|∇u|2
(1 + 2|u|)(1 + |u|)dVg +

∫
Σ

es0|u|dVg + C

≤ C
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for some constant C depending only on q, c0 and Σ. Here we use the same C to
denote various constants. This completes the proof of the lemma. �
Lemma 4.9. cεuε ⇀ G weakly in H1,q(Σ) and cεuε → G strongly in L2(Σ) for any
1 < q < 2, where G is a Green function satisfying the following:

(4.8)

{
−∆G = δp + αG − 1

V ol(Σ) ,∫
Σ

GdVg = 0.

Furthermore, cεuε → G in C2
loc(Σ \ {p}).

Proof. By (3.2), we have

(4.9) −�(cεuε) =
βε

λε
cεuεe

αεu2
ε + γεcεuε − cε

µε

λε
.

Integration on both sides of the above equation gives cεµε/λε → 1/V ol(Σ). Let vε

be a solution of

(4.10)

{
−�vε = βε

λε
cεuεe

αεu2
ε − cε

µε

λε
− Aε,∫

Σ
vεdVg = 0,

where
Aε =

1
V ol(Σ)

∫
Σ

βε

λε
cεuεe

αεu2
ε dVg − cε

µε

λε
.

By Lemma 4.2 and Lemma 4.7, Aε is bounded. Applying the Green representation
formula to (4.10), we get the L1(Σ)-bound of vε. By Lemma 4.8, vε is bounded
in H1,q(Σ) for any 1 < q < 2, whence vε is bounded in Ls(Σ) for any s > 1.
Subtracting (4.10) from (4.9), we have

(4.11) −�(cεuε − vε) = γε(cεuε − vε) + γεvε + Aε.

Testing equation (4.11) by cεuε − vε, we have

(4.12)
∫

Σ

|∇(cεuε − vε)|2dVg = γε

∫
Σ

(cεuε − vε)2dVg + γε

∫
Σ

vε(cεuε − vε)dVg.

Note that γε → α < λ1(Σ) and |vε(cεuε − vε)| ≤ δ(cεuε − vε)2 + 1
4δ v2

ε for any δ > 0,
one can choose δ < (λ1(Σ) − α)/2 and get by (4.12),

(4.13)
∫

Σ

|∇(cεuε − vε)|2dVg ≤ C

∫
Σ

v2
ε dVg

for some constant C depending only on λ1(Σ) − α, provided that ε is sufficiently
small. (4.13), together with the Poincaré inequality, gives that cεuε −vε is bounded
in H1,2(Σ). Since vε is bounded in H1,q(Σ) for any 1 < q < 2, we have cεuε is also
bounded in H1,q(Σ). Passing to a subsequence, we can assume

cεuε ⇀ G weakly in H1,q(Σ),

cεuε → G strongly in L2(Σ)

for some G ∈ H1,q(Σ). Testing (4.9) by φ ∈ C∞(Σ), we have∫
Σ

∇φ∇(cεuε)dVg =
∫

Σ

φ
βε

λε
cεuεe

αεu2
ε dVg +

∫
Σ

φγεcεuεdVg − cε
µε

λε

∫
Σ

φdVg

→ φ(p) + α

∫
Σ

φGdVg − 1
V ol(Σ)

∫
Σ

φdVg.

Hence (4.8) holds.
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For any fixed δ > 0, choose a cut-off function η ∈ C∞
0 (Σ\Bδ(p)) such that η ≡ 1

on Σ \ B2δ(p). By Lemma 4.3, we have ‖∇(ηuε)‖2 → 0 as ε → 0. Hence eη2u2
ε is

bounded in Lq(Σ \Bδ(p)), whence eu2
ε is bounded in Lq(Σ \B2δ(p)) for any q > 1.

Note that cεµε/λε → 1/V ol(Σ) as ε → 0, and cεuε is bounded in Lr(Σ) for any
r > 2 by the Sobolev embedding theorem. We can see from (4.9) that −�(cεuε)
is bounded in Lq0(Σ \ B2δ(p)) for some q0 > 2. Applying the elliptic estimates
to (4.9), we have cεuε → G in C1(Σ \ B3δ(p)). Again by the elliptic estimates,
cεuε → G in C2(Σ \ B4δ(p)). Hence the second assertion of the lemma holds. �

The proof of (1) of Theorem 1.1 follows immediately from Lemma 4.9.

5. Upper bound estimates

In this section, we use the capacity technique to derive an upper bound of Jα
4π

under the assumption that cε → +∞. The fact that capacity technique can be used
here was first discovered by Li [10].

Let (Ω, φ) be an isothermal coordinate system near p such that φ(p) = 0 as
in section 4; we still denote φ(xε) by xε for simplicity. In such coordinates, g =
e2f (dx2

1 + dx2
2) with f(0) = 0. Then we have

|∇uε|2dVg = |∇R2(uε ◦ φ−1)|2dx1dx2.

Let Br = Br(xε) ⊂ R
2 be the standard ball centered at xε with radius r.

In section 4, we have proved that cε(uε(xε + rεx) − cε) → ϕ in C2
loc(R

2), and
cεuε → G in C2

loc(Σ \ {p}). Denote sε = sup∂Bδ
uε ◦ φ−1 and iε = inf∂BRrε

uε ◦ φ−1.
Then we obtain

sε =
1
cε

(
− 1

2π
log δ + Ap + oδ(1) + oε(1)

)
,

iε = cε +
1
cε

(
− 1

4π
log(1 + πR2) + oε(R) + oε(1)

)
,

where oε(1) → 0 as ε → 0, oδ(1) → 0 as δ → 0, and oε(R) → 0 for any fixed R > 0
as ε → 0. Define a function space

Tε = {u ∈ H1,2(Bδ \ BRrε
) : u|∂Bδ

= sε, u|∂BRrε
= iε}.

It is not difficult to see that

inf
u∈Tε

∫
Bδ\BRrε

|∇R2u|2dx1dx2

is attained by w(x) satisfying⎧⎨
⎩

�R2w = 0 in Bδ \ BRrε
,

w|∂Bδ
= sε,

w|∂BRrε
= iε.

One can check that

w(x) =
sε(log |x − xε| − log(Rrε)) + iε(log δ − log |x − xε|)

log δ − log(Rrε)
,

whence

(5.1)
∫

Bδ\BRrε

|∇R2w|2dx1dx2 =
2π(sε − iε)2

log δ − log(Rrε)
.
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Let ũε = max{sε, min{uε, iε}}. Then ũε ◦ φ−1 ∈ Tε, whence

(5.2)

∫
Bδ\BRrε

|∇R2w|2dx1dx2

≤
∫

Bδ\BRrε

|∇R2(ũε ◦ φ−1)|2dx1dx2

=
∫

φ−1(Bδ)\φ−1(BRrε )

|∇ũε|2dVg

≤ 1 −
∫

Σ\φ−1(Bδ)

|∇uε|2dVg −
∫

φ−1(BRrε )

|∇uε|2dVg.

Now we compute
∫

φ−1(BRrε )
|∇uε|2dVg and

∫
Σ\φ−1(Bδ)

|∇uε|2dVg. Recall that G =

− log r
2π + β, where β = Ap + O(r) and β ∈ C1(Σ). Using equation (4.8) and the

divergence theorem, we have∫
Σ\φ−1(Bδ)

|∇G|2dVg = − 1
2π

log δ + Ap + α‖G‖2
2 + oε(δ) + oε(1) + oδ(1),

where oε(δ) → 0 for any fixed δ > 0 as ε → 0. By Lemma 4.9, cεuε → G in
C2

loc(Ω \ {p}), and we obtain
(5.3)∫

Σ\φ−1(Bδ)

|∇uε|2dVg =
1
c2
ε

(
− log δ

2π
+ Ap + α‖G‖2

2 + oε(δ) + oε(1) + oδ(1)
)

.

On the other hand,∫
BR(0)

|∇ϕ|2dx =
1
4π

log(1 + πR2) − 1
4π

+ oR(1),

where oR(1) → 0 as R → +∞. Hence by the fact that

cε(uε(xε + rεx) − cε) → ϕ(x) in C2
loc(R

2),

we have
(5.4)∫

φ−1(BRrε )

|∇uε|2dVg =
1
c2
ε

(
1
4π

log(1 + πR2) − 1
4π

+ oR(1) + oε(R) + oε(1)
)

.

Recalling r2
ε = λε/(βεc

2
ε )e

−αεc2
ε , one gets

(5.5)
1
2π

(log(δ) − log(Rrε)) =
log δ − log R

2π
− 1

4π
log

1
βε

− 1
4π

log
λε

c2
ε

+
αεc

2
ε

4π
.

From (5.1) to (5.5), we obtain

c2
ε + 2(− 1

4π
log(1 + πR2) +

1
2π

log δ − Ap) + oε(δ) + oε(R) + oε(1)

≤
(

log δ − log R

2π
− 1

4π
log

λε

c2
ε

+
αε

4π
c2
ε + oε(1)

)
×

(
1−

1
4π log(1+πR2)− 1

4π −
1
2π log δ+Ap+α‖G‖2

2+oε(δ)+oε(R)+oδ(1)+oR(1)
c2
ε

)
,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5774 YUNYAN YANG

which implies that

(5.6)
log λε

c2
ε

≤ 4παc2
ε‖uε‖2

2 + 4πAp + 1 + log π − 4πα‖G‖2
2

+ oε(δ) + oε(R) + oε(1) + oδ(1) + oR(1).

By Lemma 4.9,
lim
ε→0

c2
ε‖uε‖2

2 = ‖G‖2
2.

Letting ε → 0 first, then R → +∞ and δ → 0, we obtain by (5.6),

lim sup
ε→0

λε

c2
ε

≤ πe1+4πAp ,

whence by Lemma 4.6,

sup
u∈H

Jα
4π(u) = lim sup

ε→0

∫
Σ

eαεu2
ε dVg ≤ V ol(Σ) + πe1+4πAp .

In fact we have proved the following:

Proposition 5.1. Under the assumption that cε → +∞, it follows that

sup
u∈H

Jα
4π(u) ≤ V ol(Σ) + πe1+4πAp .

6. The existence result

In this section, we will construct a blow-up sequence φε such that ‖∇φε‖2 = 1
and

(6.1)
∫

Σ

e4π(φε−φ̄ε)
2(1+α‖φε−φ̄ε‖2

2)dVg > V ol(Σ) + πe1+4πAp

for sufficiently small α, ε > 0, where φ̄ε = 1
V ol(Σ)

∫
Σ

φεdVg. The contradiction
between (6.1) and Proposition 5.1 implies that cε is bounded. Applying elliptic
estimates to equation (3.2), we have uε → uα in C∞(Σ) for some uα ∈ C∞(Σ)∩H.
Hence the point (3) of Theorem 1.1 holds.

To prove (6.1), we set β̃ = G + 1
2π log r − Ap; hence β̃ = O(r). Here r(x) =

dist(x, p). Set

φε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c+ 1
c

(
− 1

4π log(1+π r2

ε2
)+B

)
√

1+ α
c2

‖G‖2
2

for r ≤ Rε,

1√
c2+α‖G‖2

2

(G − ηβ̃) for Rε < r < 2Rε,

1√
c2+α‖G‖2

2

G for r ≥ 2Rε,

where η ∈ C∞
0 (B2Rε(p)) is a cutoff function, η = 1 on BRε(p), ‖∇η‖L∞ = O( 1

Rε),
B is a constant to be determined later, and R, c depending on ε will also be chosen
later such that Rε → 0 and R → +∞. In order to ensure that φε ∈ H1,2(Σ), we set

c +
1
c

(
− 1

4π
log(1 + πR2) + B

)
=

1
c
(− 1

2π
log(Rε) + Ap),

which gives

(6.2) 2πc2 = −2 log ε − 2πB + 2πAp +
1
2

log π + O(
1

R2
).
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By a direct calculation,∫
Σ

|∇φε|2dVg =
1

c2 + α‖G‖2
2

(
− log ε

2π
+

log π

4π
− 1

4π
+ Ap + α‖G‖2

2

+O(
1

R2
) + O(Rε log(Rε))

)
.

To ensure ‖∇φε‖2 = 1, we set

(6.3) c2 = − log ε

2π
+

log π

4π
− 1

4π
+ Ap + O(

1
R2

) + O(Rε log(Rε)).

By (6.2) and (6.3), we have

B =
1
4π

+ O(
1

R2
) + O(Rε log(Rε)).

Setting R = − log ε, one gets φ̄ε = O((Rε)2 log ε). A straightforward calculation
shows∫

BRε(p)

e4π(φε−φ̄ε)
2(1+α‖φε−φ̄ε‖2

2)dVg ≥ πe1+4πAp + α2‖G‖4
2O

( 1
log ε

)
+ O

( log log ε

(log ε)2
)
.

On the other hand,∫
Σ\BRε(p)

e4π(φε−φ̄ε)
2(1+α‖φε−φ̄ε‖2

2)dVg ≥
∫

Σ\B2Rε(p)

(1 + 4π(φε − φ̄ε)2)dVg

≥ V ol(Σ) +
8π2

log 1
ε

∫
Σ

G2dx + o(
1

log ε
).

Hence, we have
Jα

4π(φε − φ̄ε) > V ol(Σ) + πe1+4πAp

for sufficiently small α, ε > 0, and (6.1) holds. �
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