Applicable Analysis and Discrete Mathematics

available online at http://pefmath.etf.bg.ac.yu

Appl. Anal. Discrete Math. 3 (2009), 379–385.

doi:10.2298/AADM0902379H

A SHARP LOWER BOUND OF THE SPECTRAL RADIUS OF SIMPLE GRAPHS

Shengbiao Hu

Let G be a simple connected graph with n vertices and let $\rho(G)$ be its spectral radius. The 2-degree of vertex i is denoted by t_i , which is the sum of degrees of the vertices adjacent to i. Let $N_i = \sum_{j \sim i} t_j$ and $M_i = \sum_{j \sim i} N_j$. We find a sharp lower bound of $\rho(G)$, which only contains two parameter N_i and M_i . Our result extends recent known results.

1. INTRODUCTION

Let G be a simple connected graph with vertex set $V = \{1, 2, ..., n\}$. Let d(i, j) denote the distance between vertices i and j. For $i \in V$, the degree of i and the average of the degree of the vertices adjacent to i are denoted by d_i and m_i , respectively. The 2-degree of vertex i is denoted by t_i , which is the sum of degrees of the vertices adjacent to i, that is $t_i = m_i d_i$. Let N_i be the sum of the 2-degree of vertices adjacent to i.

Let A(G) be the adjacency matrix of G. By the Perron-Frobenius theorem [1, 2], the spectral radius $\rho(G)$ is simple and there is a unique positive unit eigenvector.

Since A(G) is a real symmetric matrix, its eigenvalues must be real, and may ordered as $\lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G)$. The sequence of *n* eigenvalues is called the spectrum of *G*, the largest eigenvalue $\lambda_1(G)$ is often called the spectral radius of *G*, denoted by $\rho(G) = \lambda_1(G)$.

In this paper, we give a sharp lower bound on the spectral radius of simple graphs. For some recent surveys of the known results about this problem and related topics, we refer the reader to [3, 4, 7] and references therein.

²⁰⁰⁰ Mathematics Subject Classification. 05C50.

Keywords and Phrases. Eigenvalues, spectral radius, lower bound, trees.

2. MAIN RESULTS

Lemma 1. Let G be a bipartite graph with $V = V_1 \cup V_2$, $V_1 = \{1, 2, ..., s\}$ and $V_2 = \{s+1, s+2, ..., n\}$. Let $Y_1 = (y_1, y_2, ..., y_s)^T$ and $Y_2 = (y_{s+1}, y_{s+2}, ..., y_n)^T$. If $Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$ is an eigenvector of A(G) corresponding to $\rho(G)$, then $||Y_1|| = ||Y_2||$.

Proof. Let $A(G) = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}$, where B is an $s \times (n-s)$ matrix. We have

$$\begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \rho(A(G)) \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix},$$
$$BY_2 = \rho(A(G))Y_1 \Rightarrow Y_1^T BY_2 = \rho(A(G))Y_1^T Y_1,$$

and

$$B^T Y_1 = \rho(A(G)) Y_2 \Rightarrow Y_2^T B^T Y_1 = \rho(A(G)) Y_2^T Y_2.$$

Since $(Y_1^T B Y_2)^T = Y_2^T B^T Y_1$, we have that $Y_1^T Y_1 = Y_2^T Y_2$, that is

$$|| Y_1 || = || Y_2 || . \Box$$

Theorem 2. Let G be a simple connected graph of order n and $\rho(G)$ be the spectral radius of G. Then

(1)
$$\rho(G) \ge \sqrt{\left(\sum_{i=1}^{n} M_i^2\right) / \left(\sum_{i=1}^{n} N_i^2\right)},$$

where $N_i = \sum_{j \sim i} t_j$ and $M_i = \sum_{j \sim i} N_j$. The equality in (1) holds if and only if

$$\frac{M_1}{N_1} = \frac{M_2}{N_2} = \dots = \frac{M_n}{N_n}$$

or G is a bipartite graph with $V = V_1 \cup V_2$, $V_1 = \{1, 2, ..., s\}$ and $V_2 = \{s + 1, s + 2, ..., n\}$, such that

$$\frac{M_1}{N_1} = \frac{M_2}{N_2} = \dots = \frac{M_s}{N_s} \text{ and } \frac{M_{s+1}}{N_{s+1}} = \frac{M_{s+2}}{N_{s+2}} = \dots = \frac{M_n}{N_n}.$$

Proof. By Rayleigh quotient, we have

$$\rho(G)^{2} = \rho(A(G)^{2}) = \max_{x \neq 0} \frac{x^{T} A(G)^{2} x}{x^{T} x}.$$

Let $A(G)^2 = (a_{ij}^{(2)})$, where $a_{ij}^{(2)}$ is the number of (i, j)-walks of length 2 in G. Clearly, $a_{ii}^{(2)} = d_i$ and $a_{ij}^{(2)} = a_{ji}^{(2)}$. For a fixed (i, j)-walk in G, denote by w(i, j) the length of this walk. Then $a_{ij}^{(2)} \neq 0$ if w(i, j) = 2, and $a_{ij}^{(2)} = 0$ otherwise. If $X = (N_1, N_2, \ldots, N_n)^T$, we have

$$X^{T}A(G)^{2}X = \sum_{i=1}^{n} N_{i} \left(\sum_{j=1}^{n} a_{ij}^{(2)} N_{j}\right) = \sum_{i=1}^{n} N_{i} \sum_{w(j,i)=2} a_{ij}^{(2)} N_{j} = \sum_{w(i,j)=2}^{n} a_{ij}^{(2)} N_{i} N_{j}$$
$$= \sum_{i=1}^{n} d_{i} N_{i}^{2} + \sum_{w(i,j)=2, i \neq j} a_{ij}^{(2)} N_{i} N_{j} = \sum_{i=1}^{n} \left(\sum_{j \sim i} N_{j}\right)^{2} = \sum_{i=1}^{n} M_{i}^{2}$$

and $X^T X = \sum_{i=1}^n N_i^2$. So $\rho(G) = \sqrt{\max_{x \neq 0} \frac{x^T A(G)^2 x}{x^T x}} \ge \sqrt{\left(\sum_{i=1}^n M_i^2\right) / \left(\sum_{i=1}^n N_i^2\right)}.$

If the equality holds, then X is a positive eigenvector of $A(G)^2$ corresponding to $\rho(G)^2$. Moreover, if the eigenvalue $\rho(A(G)^2)$ of $A(G)^2$ has the multiplicity one, then by the Perron-Frobenius theorem, X is an eigenvector of A(G) corresponding to $\rho(A(G))$, therefore $A(G)X = \rho(G)X$. For all i = 1, 2, ..., n, we have $(A(G)X)_i = (\rho(G)X)_i$, that is $\sum_{i > i} N_j = \rho(G)N_i$. Since $\sum_{i > i} N_j = M_i$, we get

$$\frac{M_i}{N_i} = \rho(G) \qquad i = 1, 2, \dots, n,$$

and therefore

$$\frac{M_1}{N_1} = \frac{M_2}{N_2} = \dots = \frac{M_n}{N_n} = \rho(G).$$

If the eigenvalue $\rho(A(G)^2)$ of $A(G)^2$ has the multiplicity two, it is well known that $-\rho(A(G))$ is an eigenvalue of A(G). Hence G is a bipartite graph. Without loss of generality, we assume that

$$A = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix},$$

hence

$$\mathbf{A}^2 = \begin{pmatrix} BB^T & \mathbf{0} \\ \mathbf{0} & B^TB \end{pmatrix}$$

Let $X_1 = (N_1, N_2, \dots, N_s)^T$ and $X_2 = (N_{s+1}, N_{s+2}, \dots, N_n)^T$, we have

$$\begin{pmatrix} BB^T & 0\\ 0 & B^TB \end{pmatrix} \begin{pmatrix} X_1\\ X_2 \end{pmatrix} = \rho \left(A(G)^2 \right) \begin{pmatrix} X_1\\ X_2 \end{pmatrix},$$

$$BB^T X_1 = \rho(A(G)^2) X_1$$
 and $B^T B X_2 = \rho(A(G)^2) X_2$

Let $Y = (y_1, y_2, \ldots, y_n)^T$ be a positive eigenvector of A(G) corresponding to $\rho(G)$. Let $Y_1 = (y_1, y_2, \ldots, y_s)^T$ and $Y_2 = (y_{s+1}, y_{s+2}, \ldots, y_n)^T$. Thus

$$BB^{T}Y_{1} = \rho(A(G)^{2})Y_{1}$$
 and $B^{T}BY_{2} = \rho(A(G)^{2})Y_{2}$

Since BB^T and B^TB have the same nonzero eigenvalues, BB^T and B^TB have eigenvalues $\rho(A(G)^2)$ with multiplicity one, respectively. Hence by the Perron-Frobenius theorem, we have $Y_1 = aX_1(a \neq 0)$ and $Y_2 = bX_2$ ($b \neq 0$). Now, it follows from $A(G)Y = \rho(G)Y$ that

$$\sum_{j \sim i} bN_j = \rho(G)aN_i, \quad i = 1, 2, \dots, s$$

and

$$\sum_{j \sim i} aN_j = \rho(G)bN_i, \quad i = s+1, s+2, \dots, n.$$

Since

$$\sum_{j \sim i} N_j = M_i$$

thus we have

$$\frac{M_i}{N_i} = \frac{a}{b} \rho(G) \qquad i = 1, 2, \dots, s$$

and

$$\frac{M_i}{N_i} = \frac{b}{a} \rho(G) \qquad i = s+1, s+2, \dots, n.$$

Therefore,

$$\frac{M_1}{N_1} = \frac{M_2}{N_2} = \dots = \frac{M_s}{N_s} = \frac{a}{b} \rho(G)$$
 $i = 1, 2, \dots s$

and

$$\frac{M_{s+1}}{N_{s+1}} = \frac{M_{s+2}}{N_{s+2}} = \dots = \frac{M_n}{N_n} = \frac{b}{a} \rho(G) \qquad i = s+1, s+2, \dots, n.$$

In addition, by Lemma 1 we have

(2)
$$a^2(N_1^2 + \dots + N_s^2) = b^2(N_{s+1}^2 + \dots + N_n^2).$$

Conversely, we have: M

(i) If
$$\frac{M_1}{N_1} = \frac{M_2}{N_2} = \dots = \frac{M_n}{N_n}$$
, then
 $\sqrt{\left(\sum_{i=1}^n M_i^2\right) / \left(\sum_{i=1}^n N_i^2\right)} = \rho(G).$

(ii) If G is a bipartite graph with $\frac{M_1}{N_1} = \frac{M_2}{N_2} = \cdots = \frac{M_s}{N_s} = \frac{a}{b}\rho(G)$ $i = 1, 2, \ldots, s$ and $\frac{M_{s+1}}{N_{s+1}} = \frac{M_{s+2}}{N_{s+2}} = \cdots = \frac{M_n}{N_n} = \frac{b}{a}\rho(G)$ $i = s+1, s+2, \ldots, n$. Then by (2) we have

$$\sqrt{\frac{\sum\limits_{i=1}^{n} M_i^2}{\sum\limits_{i=1}^{n} N_i^2}} = \sqrt{\frac{\rho(G)^2 \left(\frac{a^2}{b^2} \left(N_1^2 + \ldots + N_s^2\right) + \frac{b^2}{a^2} \left(N_{s+1}^2 + \cdots + N_n^2\right)\right)}{N_1^2 + N_2^2 + \cdots + N_n^2}} = \rho(G),$$

and the proof follows.

We now show that our bound improves the bound of HONG and ZHANG [6]. Corollary 3 (HONG and ZHANG [6]). Let G be a simple connected graph of order n, then

(3)
$$\rho(G) \ge \sqrt{\left(\sum_{i=1}^{n} N_i^2\right)} / \left(\sum_{i=1}^{n} t_i^2\right),$$

with equality if and only if

$$\frac{N_1}{t_1} = \frac{N_2}{t_2} = \dots = \frac{N_n}{t_n}$$

or G a bipartite graph with $V = V_1 \cup V_2$, $V_1 = \{1, 2, \ldots, s\}$ and $V_2 = \{s + 1, s + 2, \ldots, n\}$ such that

$$\frac{N_1}{t_1} = \frac{N_2}{t_2} = \dots = \frac{N_s}{t_s} \text{ and } \frac{N_{s+1}}{t_{s+1}} = \frac{N_{s+2}}{t_{s+2}} = \dots = \frac{N_n}{t_n}$$

Proof. By Cauchy-Schwartz inequality, we have

$$\left(\sum_{i=1}^{n} M_i^2\right) \left(\sum_{i=1}^{n} t_i^2\right) \ge \left(\sum_{i=1}^{n} t_i M_i\right)^2 = \left(\sum_{i=1}^{n} t_i \sum_{j \sim i} N_j\right)^2 = \left(\sum_{i=1}^{n} t_i \sum_{j \sim i} \left(\sum_{k \sim j} t_k\right)\right)^2$$
$$= \left(\sum_{i=1}^{n} t_i \sum_{w(k,i)=2} t_k\right)^2 = \left(\sum_{w(i,j)=2} t_i t_j\right)^2$$
$$= \left(\sum_{i=1}^{n} d_i t_i^2 + \sum_{w(i,j)=2, i \neq j} t_i t_j\right)^2$$
$$= \left(\sum_{i=1}^{n} \left(\sum_{j \sim i} t_j\right)^2\right)^2 = \left(\sum_{i=1}^{n} N_i^2\right)^2.$$

The equality holds if and only if

$$\frac{M_1}{N_1} = \frac{M_2}{N_2} = \dots = \frac{M_n}{N_n}.$$

Hence

$$\frac{\sum_{i=1}^{n} M_i^2}{\sum_{i=1}^{n} N_i^2} \ge \frac{\sum_{i=1}^{n} N_i^2}{\sum_{i=1}^{n} t_i^2}.$$

Therefore it follows from Theorem 1 that the result holds.

A graph is called *pseudo-semiregular* if its vertices have the same average degree. A bipartite graph is called *pseudo-semiregular* if all vertices in the same part of a bipartition have the same average degree.

Corollary 4 (YU et al. [8]). Let G be a simple connected graph of order n. Then

(4)
$$\rho(G) \ge \sqrt{\left(\sum_{i=1}^{n} t_i^2\right)} / \left(\sum_{i=1}^{n} d_i^2\right),$$

with equality if and only if G is either a pseudo-regular graph or a pseudo-semiregular graph.

Proof. This corollary follows from Corollary 3 (See [3]).

Corollary 5 (HOFMEISTER [5]). Let G be a simple connected graph with degree sequence d_1, d_2, \ldots, d_n . Then

(5)
$$\rho(G) \ge \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2}.$$

Proof. This corollary follows from Corollary 4 (See [6].

The lower bound (1) is complicated though it is better than (3). But if G is a tree, then the N_i and the M_i have a simple expression

$$N_i = \sum_{j \sim i} t_j = \sum_{j \sim i} \left(\sum_{k \sim j} d_k\right) = d_i^2 + \sum_{d(j,i)=2} d_j$$

and

$$M_{i} = \sum_{j \sim i} N_{j} = \sum_{j \sim i} \left(d_{j}^{2} + \sum_{d(k,j)=2} d_{k} \right) = \sum_{j \sim i} d_{j}^{2} + (d_{i} - 1) \sum_{j \sim i} d_{j} + \sum_{d(j,i)=3} d_{j}.$$

Hence we have

Corollary 6. Let T be a tree of order n and $\rho(T)$ be the spectral radius of T. Then

(6)
$$\rho(T) \ge \sqrt{\frac{\sum_{i=1}^{n} \left(\sum_{j \sim i} d_j^2 + (d_i - 1) \sum_{j \sim i} d_j + \sum_{d(j,i)=3} d_j\right)^2}{\sum_{i=1}^{n} \left(d_i^2 + \sum_{d(j,i)=2} d_j\right)^2}}$$

The equality holds if and only if

$$\frac{M_1}{N_1} = \frac{M_2}{N_2} = \dots = \frac{M_n}{N_n}$$

or for the bipartite graph T with $V = V_1 \cup V_2$, $V_1 = \{1, 2, \ldots, s\}$ and $V_2 = \{s + 1, s + 2, \ldots, n\}$ such that

$$\frac{M_1}{N_1} = \frac{M_2}{N_2} = \dots = \frac{M_s}{N_s} \text{ and } \frac{M_{s+1}}{N_{s+1}} = \frac{M_{s+2}}{N_{s+2}} = \dots = \frac{M_n}{N_n},$$

where

$$M_{i} = \sum_{j \sim i} d_{j}^{2} + (d_{i} - 1) \sum_{j \sim i} d_{j} + \sum_{d(j,i)=3} d_{j}$$

and

$$N_i = d_i^2 + \sum_{d(j,i)=2} d_j.$$

Proof. This corollary follows from Theorem 2.

Acknowledgements. The author wish to thanks the referee for the comments, corrections and suggestions. This work was supported by NNSF of China (No. 10861009).

REFERENCES

- 1. A. BERMAN, R. J. PLEMMONS: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York, 1979. SIAM, Philadelphia, PA, 1994.
- N. BIGGS: Algebraic Graph Theory, second ed. Cambridge University Prees, Cambridge, 1995.
- 3. D. CVETKOVIĆ, M. DOOB, H. SACHS: Spectra of Graphs Theory and Application. Academic Press, New York, 1980.
- D. CVETKOVIĆ, P. ROWLINSON: The largest eigenvalue of a graph: A survey. Linear and Multilinear Algebra, 28 (1990), 3–33.
- M. HOFMEISTER: Spectral radius and degree sequence. Math. Nachr., 139 (1988), 37–44.
- YUAN HONG, XIAO-DONG ZHANG: Sharp upper and lower bounds for the Laplacian matrices of trees. Discrete Mathematics, 296 (2005), 187–197.
- V. NIKIFOROV: Some inequalities for the largest eigenvalue of a graph. Combinatorics, Probability and Computing, 11 (2002), 179–189.
- A. M. YU, M. LU, F. TIAN: On the spectral radius of graphs. Linear Algebra Appl., 387 (2004), 41–49.

Department of Mathematics, Qinghai Nationalities University, Xining, Qinghai 810007, P. R. China E-mail: shengbiaohu@yahoo.com.cn (Received February 15, 2009) (Revised May 28, 2009)