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Abstract: A new lower bound on the largest eigenvalue of the signless Laplacian spectra for graphs with
at least one (κ, τ)-regular set is introduced and applied to the recognition of non-Hamiltonian graphs or
graphs without a perfect matching. Furthermore, computational experiments revealed that the introduced
lower bound is better than the known ones. The paper also gives su�cient condition for a graph to be non
Hamiltonian (or without a perfect matching).
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1 Introduction
This paper presents a new lower bound on the signless Laplacian index of graphs with at least one (κ, τ)-
regular set. Such graphs appear often, since they are closely related to the Hamiltonian graphs and also to
graphs with a perfect matching. On the other hand, the signless Laplacian index has gained special attention
in spectral graph theory over the last decade. Several upper bounds on the signless Laplacian index aswell as
its relations with the classical combinatorial invariant parameters of graphs have been developed (see [7, 8]).
However, regarding lower bounds, only a few results are known. The next lemma states twomostly exploited
in the literature.

Lemma 1.1. [3, 4] Let G be a graph with maximum vertex degree ∆. Then

q1(G) ≥ ∆ + 1, (1.1)
q1(G) ≥ min

i∼j
(di + dj). (1.2)

The lower bound on the signless Laplacian index of a graphwith a (κ, τ)-regular set, introduced in this paper,
is considered as a necessary condition for the existence of a (κ, τ)-regular set. It is applied to the recognition
of graphswithout such type of combinatorial structure as it is the case for the line graphs of non-Hamiltonian
graphs or the line graphs of graphs without a perfect matching. According to the performed computational
tests, the introduced lower bound has successful application in the recognition of many non-Hamiltonian
graphs.
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Throughout the text we consider simple graphs G = (V(G), E(G)) with vertex set V(G) and edge set E(G).
The order and the size of G are denoted by n(=

∣∣V(G)
∣∣) andm(=

∣∣E(G)
∣∣), respectively.Wewrite u ∼ vwhenever

two vertices u and v are adjacent, and AG stands for the (0, 1)-adjacencymatrix of G. The neighborhood NG(i)
of a vertex i ∈ V(G) is the set of vertices adjacent to i; the degree of i is di =

∣∣NG(i)
∣∣; the average vertex degree

d̄ = 2m
n and DG stands for the diagonal matrix of vertex degrees. The signless Laplacian matrix QG is equal

to AG + DG; it is symmetric, hence all the zeros of its characteristic polynomial are real and then they can be
considered in non-increasing order

q1(G) ≥ q2(G) ≥ · · · ≥ qn(G).

The largest eigenvalue of QG, is called the signless Laplacian index of G.
The subgraph of G induced by the vertex subset T ⊂ V(G) is denoted by G[T]. A (κ, τ)-regular set S is a

subset of V(G), inducing a κ-regular subgraph such that every vertex not in the subset has τ neighbors in it.
By de�nition, the vertex set of a κ-regular graph is considered to be (κ, 0)-regular.

The paper is organized in the following way. In Section 2 a lower bound for the signless Laplacian index
of graphs with at least one (κ, τ)-regular set is deduced under di�erent suitable hypotheses. In Section 3 a
few numerical examples to illustrate the quality of the introduced bound and independence of some known
results are given. Afterwards, this bound is comparedwith the bounds (1.1) and (1.2). In section 4 the obtained
results are applied to the recognition of non-Hamiltonian graphs or graphs without a perfect matching.

2 A lower bound on the signless Laplacian index of a graph with a
(κ, τ)-regular set

Through several computational experiments we arrived at the conclusion that the signless Laplacian index
of a connected graph with a (κ, τ)-regular set is usually greater than or equal to κ + τ. However, there exist
some graphs not satisfying this inequality as shown in the next example.

Example 2.1. The brokenwheel graphW(7, 6), depicted in Figure 2.1, consists of cycle C7 and one outer vertex
connected to 6 vertices of the cycle. Its signless Laplacian index is q1 ≈ 7.92186 < κ + τ = 8.
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Figure 2.1: The graphW(7, 6) with a (2, 6)-regular set S = {1, 2, 3, 4, 5, 6, 7}.

Note that for a κ-regular graph G, q1(G) = 2κ and the vertex set V(G) is (κ, 0)-regular. Therefore, κ + τ is a
trivial lower bound on the index of the signless Laplacian matrix of a regular graph.

We �rst state a su�cient condition on a connected graph G with a (κ, τ)-regular set S under which the
inequality q1(G) ≥ κ + τ holds provided τ > 0. Let S̄ = V(G) \ S,

a = |S̄||S| and b = 2|E(G[S̄])|
|S̄|

, (2.1)

Brought to you by | Universidade de Aveiro
Authenticated

Download Date | 3/3/18 7:06 PM



70 | Milica Anđelić, Domingos M. Cardoso, and António Pereira

i.e., b is the average vertex degree of the induced subgraph G[S]. Regarding the vertex partition V(G) = S ∪ S̄

which de�nes the corresponding block subdivision of QG =
(
Q11 Q12
Q21 Q22

)
, the quotient matrix BG has the

following form

BG =

2κ + τa τa
τ 2 2|E(G[S])|

|S| + τ

 . (2.2)

The entries of BG are the average row sums of the corresponding blocks. The eigenvalues of BG are equal to

γ1/2 = 2κ + 2b + τ(1 + a) ±
√

(2κ + 2b + τ(1 + a))2 − 8(κτ + 2κb + τab)
2 .

These eigenvalues interlace the eigenvalues ofQG (see [6, Corollary 2.3]), andhence q1(G) ≥ γ1. Nextwe check
when γ1 < κ + τ, i.e., when

γ1 − (κ + τ) = b + τ(a − 1) +
√

(2κ + 2b + τ(1 + a))2 − 8(κτ + 2κb + τab)
2 < 0.

The previous inequality reduces to√
(2κ + 2b + τ(1 + a))2 − 8(κτ + 2κb + τab) < τ(1 − a) − 2b. (2.3)

We assume τ(1 − a) − 2b > 0, i.e,
b < τ(1 − a)

2 , (2.4)

since otherwise (2.3) does not hold. Under the assumption (2.4), the inequality (2.3) is equivalent to

κ2 − κ(2b − τ(a − 1)) + aτ2 − 2bτ(a − 1) < 0. (2.5)

The inequality (2.5) holds (considering the left hand side as a quadratic function in κ) i� its discriminant is
positive, i.e., when

(2b + τ(a − 1) − 2
√
aτ)(2b + τ(a − 1) + 2

√
aτ) > 0 (2.6)

and κ ∈ (κ1, κ2), where κ1, κ2 are the roots of the corresponding equation.
From (2.4), it follows 2b + τ(a − 1) − 2

√
aτ < 0 and therefore (2.6) holds i�

b < τ1 − a − 2
√
a

2 .

It is easy to verify that 1 − a − 2
√
a

2 > 0 i� a ∈ (0, 3 − 2
√

2). Therefore, for a ∈ (0, 3 − 2
√

2),

b < τ1 − a − 2
√
a

2 and κ ∈ (κ1, κ2) where κ1/2 are the roots of the corresponding quadratic polynomial in
(2.5), γ1 < κ + τ holds. The previous observations are summarized in the following theorem.

Theorem 2.1. Let G be a connected graph with a (κ, τ)-regular set S ⊂ V(G), S̄ = V(G) \ S, a = |S̄||S| , b =

2|E(G[S̄])|
|S̄|

and

g(a, b) = 2b + τ(a − 1) +
√

(2κ + 2b + τ(1 + a))2 − 8(κτ + 2κb + τab)
2 .

If each of the following conditions
(a) 0 < a < 3 − 2

√
2,

(b) b < τ1 − a − 2
√
a

2 ,

(c) κ ∈ ( 2b + τ(1 − a) −
√
D

2 , 2b + τ(1 − a) +
√
D

2 ), where D = 4b2 + 4bτ(a − 1) + τ2(a2 − 6a + 1),
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is satis�ed, then q1(G) > κ + τ −
∣∣g(a, b)

∣∣. Otherwise,

q1(G) ≥ κ + τ +
∣∣g(a, b)

∣∣ . (2.7)

For at least two graph classes (2.7) holds as equality. Those are bidegreed graphs having at least one (κ, τ)-
regular set S such that all vertices in S have the same vertex degree ∆S, while all vertices in S have the same
vertex degree δS, ∆S ≠ δS i.e. the partition V(G) = S ∪ S induces an equitable partition of G (for more details
about equitable partitions see [5, p. 83]). The second class consists of regular graphs having at least one (κ, τ)-
regular set S.

Corollary 2.2. Let G be a graph with (κi , τi)-regular sets Si, τi > 0, 1 ≤ i ≤ t. Then q1(G) ≥ max{κi + τi +
gi(ai , bi) : 1 ≤ i ≤ t}.

Theorem 2.1 reads that if a ≥ 3 − 2
√

2 or b ≥ τ1 − a − 2
√
a

2 or κ /∈ (κ1, κ2), then q1(G) ≥ κ + τ +
∣∣g(a, b)

∣∣.
However it turns out that a di�erent type of constraints, mainly on a, imply the same inequality. The next
lemma consider a weaker one, but more convenient for checking .

Lemma 2.3. Let G be a connected graph with a (κ, τ)-regular set S ⊂ V(G), S = V(G) \ S and a =
∣∣S̄∣∣
|S| . If

a ≥ 1 − κτ , then the inequality (2.7) holds.

Proof. Let γ1 be the largest eigenvalue of the quotient matrix BG (see (2.2)). We check whether g(a, b) =
γ1 − (κ + τ) ≥ 0 if a ≥ 1 − κτ . The proof is divided into two cases.

1. If a ≥ 1 (notice 1 ≥ 1 − κτ ), then it is immediate that

g(a, b) = b + 1
2

(
τ(a − 1) +

√
(aτ + 2b + 2κ + τ)2 − 8(abτ + 2bκ + κτ)

)
≥ 0.

2. If 1 > a ≥ 1 − κτ , then setting s = |S| we may write
∣∣S∣∣ = s − ϵ, for some integer ϵ ∈ {1, . . . , s − 1}. Let

e =
∣∣E(G

[
S
]
)
∣∣, then by replacing a and b (see (2.1)) in the expression for g(a, b), we obtain

g(a, b) = 4es − sτϵ + τϵ2 +
√
d

2s(s − ϵ) , (2.8)

where d = (4es + (s − ϵ)(2s(κ + τ)− τϵ))2 + 8s(s − ϵ)(−4eκs − τ(s − ϵ)(2e + κs)). Clearly, g(a, b) is non-negative
if 4es − sτϵ + τϵ2 ≥ 0. Therefore, in what follows, we assume 4es − sτϵ + τϵ2 < 0, i.e.,

e =
∣∣E(G

[
S
]
)
∣∣ < ϵτ(s − ϵ)

4s . (2.9)

In this case g(a, b) ≥ 0 if and only if d ≥
(

4es − sτϵ + τϵ2)2, which gives

4s(s − ϵ)
(
e(4τϵ − 4κs) + (s − ϵ)

(
s
(
κ2 + τ2

)
− τϵ(κ + τ)

))
≥ 0.

Since s and s − ϵ are both positive, the above inequality holds i� y ≥ 0, where

y = 4(τϵ − κs)e + (s − ϵ)
(
s
(
κ2 + τ2

)
− τϵ(κ + τ)

)
. (2.10)

The inequality a ≥ 1 − κτ is equivalent to τϵ − κs ≤ 0, i.e., ϵ ≤ κτ s. Bearing in mind (2.9), we obtain

y ≥ (s − ϵ) (τϵ − sκ)2 + sτ2(s − ϵ)
s ≥ 0,

since s − ϵ > 0.
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The inequality q1(G) ≥ κ + τ +
∣∣g(a, b)

∣∣ straightforwardly holds for any connected graph with (κ, τ)-regular
set such that κ ≥ τ, since a ≥ 1 − κτ . In the next theorem we focus on graphs with a (κ, τ)-regular set, where

κ < τ, taking into account that κ < τ is equivalent to 1 − κ2 + τ2

τ(κ + τ) < 1 − κτ .

Theorem 2.4. Let G be a connected graph with a (κ, τ)-regular set S such that κ < τ. If a ≥ 1 − κ2 + τ2

τ(κ + τ) , then
the inequality (2.7) holds.

Proof. If a ≥ 1 − κτ then (2.7) holds by Lemma 2.3. Otherwise, if a < 1 − κτ , then τϵ − κs > 0, i.e., ϵ > κ
τ s,

where ϵ and s are de�ned in the same way as in the proof of Lemma 2.3. Having in mind e ≥ 0 from (2.10) it
follows that y ≥ (s − ϵ)

(
s
(
κ2 + τ2) − τϵ(κ + τ)

)
. Since s > ϵ, we have y ≥ 0 if

(
κ2 + τ2) s − τ(κ + τ)ϵ ≥ 0. The

last inequality is equivalent to

ϵ ≤ κ
2 + τ2

τ(κ + τ) s .

Since ϵ = 2s −
∣∣V(G)

∣∣, from the above inequality, we conclude that y ≥ 0 if

a ≥ 1 − κ2 + τ2

τ(κ + τ) .

Remark 2.1. For κ = 0 the inequality q1 ≥ κ + τ +
∣∣g(a, b)

∣∣ holds independently of the values of a and b. This

conclusion follows directly fromTheorem 2.4, taking into account that under such conditions, a ≥ 1− κ
2 + τ2

τ(κ + τ)
is equivalent to a ≥ 0.

Example 2.2. A star Sn, a tree with n − 1 vertices of degree 1 and one vertex of degree n − 1, has a (0, n − 1)-
regular set S. By direct application of Theorem 2.4 we conclude that q1(Sn) ≥ n. In this case the inequality
holds as an equality since stars are bidegreed graphs and V(G) = S ∪ S̄ induces an equitable partition.

3 Numerical examples
In what follows we give a few numerical examples to illustrate the quality of the lower bound (2.7) and we
compare the values obtained by (2.7) and by the lower bounds (1.1) and (1.2).

Example 3.1. The graph H of order 20, depicted in Figure 3.1, has a (2, 3)-regular set S with cardinality 18.

Since a = 1
9 , b = 1 > 1 − a − 2

√
a

2 = 1
9 , the condition (b) in Theorem 2.1 is not satis�ed and thus, applying

this theorem,
q1(H) ≥ κ + τ +

∣∣g(a, b)
∣∣ = 5.7208.

In fact the signless Laplacian index is q1(H) ≈ 6.28853.
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Figure 3.1: The graph H with a (2, 3)-regular set.
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Example 3.2. The broken wheel graphW(6, 5) depicted in Figure 3.2 has a (2, 5)-regular set with cardinality
6. Since b = 0 and a = 1

6 , all conditions (a)-(c) in Theorem 2.1 are satis�ed and hence

q1(W(6, 5)) ≥ κ + τ −
∣∣g(a, b)

∣∣ = 6.95961.

In fact the signless Laplacian index is q1(W(6, 5)) ≈ 7.12783.

7 1

23

4

5 6

Figure 3.2: The graphW(6, 5) with a (2, 5)-regular set S = {1, 2, 3, 4, 5, 6}.

We point out that, in Examples 3.1 and 3.2, neither the hypothesis of Theorem 2.4 nor the hypothesis of
Lemma 2.3 are satis�ed.

Example 3.3. Consider a graph F of order 20 having a (8, 10)-regular set Swith cardinality 18 (see Figure 3.3).

Since a = 1
9 ≥ 1 − κ2 + τ2

τ(κ + τ) = 0.088889, we may apply Theorem 2.4 and thus

q1(F) ≥ κ + τ +
∣∣g(a, b)

∣∣ = 18.7558.

In fact its signless Laplacian index is q1(F) ≈ 18.9646. Since b = 1 the condition (c) in Theorem 1.1 fails to
hold. Despite Theorems 2.3 and 2.4 provide the same bound, it is clear that the assumption in Theorem 2.4 is
easier to check.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3.3: The adjacency matrix plot of graph F with a (8, 10)-regular set of Example 3.3.

Table 3.1 presents the lower bounds on the signless Laplacian index obtained in the previous examples by
(2.7) as well as those obtained by applying (1.1) and (1.2). As we can see, in all the cases (2.7) gives the best
approximation to q1(G).

We �nish this section by comparing the bound (2.7) with the bounds (1.1) and (1.2) for a large number of
randomly generated graphs with (κ, τ)-regular sets and orders up to 20.

For each graph G, obtained by Algorithm 1, we have computed its signless Laplacian index, q1, and the
relative errors q1 − q̄1

q1
, where q̄1 is one of the lower bounds given by Theorem 2.1, (1.1) and (1.2).
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Table 3.1: Comparison of the bounds.

G q1(G) κ + τ ±
∣∣g(a, b)

∣∣ ∆ + 1 mini∼j(di + dj)

W(7, 6) 7.92186 7.76724 7 5
H 6.28853 5.72076 5 4

W(6, 5) 7.12783 6.95961 6 5
F 18.9646 18.7558 12 16

Algorithm 1 (random generation of a graph with a (κ, τ)-regular set).

1: generate a random κ-regular graph GS of order 1 ≤ |S| ≤ 10;

2: generate a random graph GS with 1 ≤
∣∣S∣∣ ≤ 10 vertices and 0 ≤ e ≤

(∣∣S∣∣
2

)
edges;

3: randomly connect each vertex of GS with τ vertices of GS, 1 ≤ τ ≤ |S|;
4: check if the resulting graph is connected.

Table 3.2 presents the average relative errors of the three bounds when compared with the exact values
of the signless Laplacian index q1.

Table 3.2: Average relative errors of the lower bounds on the signless Laplacian index of the randomly generated graphs by the
Algorithm 1.

Num. graphs ERR(Th. 2.1) ERR(1.1) ERR(1.2)

45369 0.03 0.31 0.32

4 Computational experiments and relations with some well known
combinatorial structures in graphs

Several well known combinatorial structures in graphs can be characterized by (κ, τ)-regular sets, as is the
case of Hamiltonian cycles and perfect matchings whose edge sets correspond in the line graph to (2, 4)-
regular sets and (0, 2)-regular sets, respectively.

In this section we deduce lower bounds on the signless Laplacian index of the line graph of a graph with
a Hamiltonian cycle or a graph with a perfect matching. These bounds are then applied to the recognition of
non-Hamiltonian graphs and graphs without a perfect matching.

4.1 Applications to the recognition of non-Hamiltonian graphs

A line graph L(G) of a graph G, is a graph whose vertex set corresponds to the set of edges of G and two
vertices of L(G) are adjacent if the corresponding edges in G are adjacent, i.e., share a common vertex.

The line graph L(G) of every Hamiltonian graph G has a (2, 4)-regular set S consisting of vertices that
correspond to the edges of a Hamiltonian cycle in G (see [1]). We apply Theorem 2.4 to L(G) in order to obtain
a necessary condition for a graph to be Hamiltonian. Then
– 2m = 2

∣∣E(L(G))
∣∣ =
∑

ij∈E(G)(di + dj − 2);
– |S| = n;

– a = m − n
n = d̄

2 − 1, where d̄ denotes the average vertex degree of vertices in G;
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– b = 2m − nm − n − 8.

Proposition 4.1. Let G be a connected graph of order nwith the edge set E(G) such that
∣∣E(G)

∣∣ = ̸ n and assume

that its average degree d̄ ≥ 7
3 . If G is Hamiltonian, then

q1(L(G)) ≥ 2m − nm − n + d̄ − 6 +
√(

2m − nm − n − d̄ − 10
)2 + 8(2m − nm − n − 10). (4.1)

Proof. If G is a Hamiltonian graph, then L(G) has a (2, 4)-regular set S of cardinality n. Since 1 − κ2 + τ2

τ(κ + τ) =

1 − 22 + 42

4(2 + 4) = 1
6 , it follows that the assumption of Theorem 2.4 is satis�ed, that is, κ < τ and

a ≥ 1 − κ2 + τ2

τ(κ + τ) ⇔
d̄
2 − 1 ≥ 1

6 ⇔ d̄ ≥ 7
3 .

Therefore, taking into account the values of the parameters a and b determined above, the inequality (4.1)
follows as direct application of Theorem 2.4.

The next example highlights the application of Proposition 4.1.

Example 4.1. Considering the non-Hamiltonian complete bipartite graph K2,3 depicted in Figure 4.1, it is im-
mediate that the inequality (4.1) does not hold. In fact q1(L(K2,3)) = 8, while the right hand side of (4.1) gives
9.3333.

1

2

3

4

5

6

Figure 4.1: Non-Hamiltonian graph K2,3 for which the inequality (4.1) does not hold.

Remark 4.1. Proposition 4.1 can be used for the recognition of non-Hamiltonian graphs.

We tested the inequality (4.1) for all non-Hamiltonian graphs of orders n ranging from n = 4 up to n = 40
produced by the GraphData library of Mathematica [9] with average vertex degree not less than 7/3. Over a
total of 1167 graphs, 34% have violated the inequality (4.1) and thus the Proposition 4.1 con�rms that they
are non-Hamiltonian.

4.2 Applications to the recognition of graphs without a perfect matching

Astable or independent set is a subset of pairwise non-adjacent vertices. AmatchingM inG is a set of pairwise
non-adjacent edges, that is, no two edges share a common vertex. A perfect matching is a matching which
matches all vertices of the graph.

In [2] it was proven that a graph G has a perfect matching M i� the line graph L(G) has a vertex subset
S = L(M) which is (0, 2)-regular. Assuming that

∣∣V(G)
∣∣ = n,

∣∣E(G)
∣∣ = m and 2m = ̸ n, it follows that

– |S| = n
2 ;

– a =
m − n2
n
2

= d̄ − 1;

– b = 2
m − 2(m − n2 )

m − n2
= 2( 2m

2m − n − 2).
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Proposition 4.2. Let G be a graph of order n and size m with a perfect matching. If m ≠ 2n, then

q1(L(G)) ≥ 4m
2m − n + d̄ − 4 +

√
( 4m

2m − n + d̄ − 4)2 − 8( 2m
2m − n − 2)(d̄ − 1). (4.2)

Proof. Since L(G) has a (0, 2)-regular set, the assumption of Theorem 2.4 is satis�ed. Therefore, taking into
account the computed values for a and b, the inequality (4.2) is obtained by direct application of Theorem 2.4.

It is worth mentioning that from Remark 2.1, in this case the lower bound is always greater than 2.

Example 4.2. For the complete bipartite graph K2,3 depicted in Figure 4.1, q1(L(K2,3)) = 8 while the right
hand side of (4.2) gives ≈ 8.17651.

The inequality (4.2) was also tested for all graphs of even order n with no perfect matching ranging from
n = 4 up to n = 60 produced by the GraphData library of Mathematica [9]. Over a total of 165 graphs, 55%
violated the inequality (4.2). We point out that odd order graphs have no perfect matching and each even
order Hamiltonian graph has a perfect matching. Therefore, every even order graphwith no perfect matching
is non-Hamiltonian and thus the Proposition 4.2 con�rms that at least 55% of the 165 tested graphs are also
non-Hamiltonian.

We are aware that for large graphs calculation of q1(G) can be a computationally di�cult task. However,
one possibility to relax it, would be to consider some upper bound on q1(L(G)) instead, bearing inmind that,
inmost of the cases, upper bounds on q1(G) are expressedusing vertex degrees (see [8]). Since, vertex degrees
in a line graph of G are related to vertex degrees in G (if e = ij then de = di + dj − 2), we can end up with
inequalities including only parameters of G and thus the computational e�ort can be signi�cantly reduced.
The price to be paid is a smaller number of non Hamiltonian graphs (or graphs without perfect matching)
that would be recognized.
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