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Abstract

We study the almost everywhere pointwise convergence of the solutions to Schrödinger equations in R
2. It

is shown that limt→0 e
it∆f(x) = f(x) almost everywhere for all f ∈ Hs(R2) provided that s > 1/3.

This result is sharp up to the endpoint. It comes from the following Schrödinger maximal estimate:

∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
L3(B(0,1))

≤ Cs‖f‖Hs(R2) ,

for any s > 1/3 and any function f ∈ Hs(R2). The proof uses polynomial partitioning and decoupling.
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Chapter 1

Introduction

This dissertation is based on our joint work with Larry Guth and Xiaochun Li [8].

1.1 Background and main results of the Thesis

The formal solution to the free Schrödinger equation





iut +∆u = 0, (x, t) ∈ R
n × R

u(x, 0) = f(x), x ∈ R
n

is given by

eit∆f(x) = (2π)−n

∫
ei(x·ξ−t|ξ|2)f̂(ξ) dξ , (1.1)

where f̂ is the Fourier transform of f defined by f̂(ξ) =
∫
e−ix·ξf(x) dx.

We consider the following problem posed by Carleson in [5]: determine the optimal s for which

lim
t→0

eit∆f(x) = f(x) almost everywhere (1.2)

whenever f ∈ Hs(Rn). Recall that Hs(Rn) is the L2 Sobolev space which is defined by

Hs(Rn) :=

{
f ∈ S ′ : ‖f‖Hs =

(∫
(1 + |ξ|2)s

∣∣∣f̂(ξ)
∣∣∣
2

dξ

)1/2

<∞
}
.

Our main result is the following:

Theorem 1.1 For every f ∈ Hs(R2) with s > 1/3, limt→0 e
it∆f(x) = f(x) almost everywhere.

Recently, Bourgain [3] gave examples showing that such convergence can fail for any s < 1/3, and so Theorem

1.1 is sharp up to the endpoint.

1



This problem originates from Carleson [5], who proved convergence for s ≥ 1/4 when n = 1. Dahlberg

and Kenig [6] showed that the convergence does not hold for s < 1/4 in any dimension. Sjölin [19] and

Vega [21] proved independently the convergence for s > 1/2 in all dimensions. The sufficient condition for

pointwise convergence was improved by Bourgain [1], Moyua-Vargas-Vega [17], and Tao-Vargas [20]. The

best known sufficient condition in dimension n = 2 was s > 3/8 , due to Lee [14] using Tao-Wolff’s bilinear

restriction method. In general dimension n ≥ 2, Bourgain [2] showed the convergence for s > 1/2− 1/(4n),

using multilinear methods. When n = 2, this approach gives a different proof of Lee’s result for s > 3/8.

For many years, it had seemed plausible that convergence actually holds for s > 1/4 in every dimension.

Only in 2012, Bourgain [2] gave a counterexample showing that this is false in sufficiently high dimensions.

Improved counterexamples were given by Lucá-Rogers [15] and Demeter-Guo [7]. Very recently, in [3],

Bourgain gave counterexamples showing that convergence can fail if s < n
2(n+1) . In particular, for n = 2,

convergence can fail if s < 1/3.

We will follow the standard method by bounding the associated maximal function. We call such bounds

Schrödinger maximal estimates. In Section 2.3 we will review in details how to approach the pointwise

convergence problem via Schrödinger maximal estimates.

We use Bn(c, r) to represent the ball centered at c with radius r in R
n, and use χE to denote the

characteristic function of any measurable set E. For brevity, B(c, r) represents B2(c, r), a ball in R
2.

For any Schwartz function f , we have that eit∆f(x) → f(x) uniformly on R
n. Given any function f ∈ Hs,

we approximate f by Schwartz functions, and the pointwise convergence result in Theorem 1.1 follows from

the following Schödinger maximal estimate (see Lemma 2.3):

Theorem 1.2 For any s > 1/3, the following bound holds: for any function f ∈ Hs(R2),

∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
L3(B(0,1))

≤ Cs‖f‖Hs(R2). (1.3)

If the support of f̂ lies in A(R) = {ξ ∈ R
2 : |ξ| ∼ R}, then Theorem 1.2 boils down to the bound

∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
L3(B(0,1))

≤ CǫR
1/3+ǫ‖f‖L2 . (1.4)

Via a Littlewood-Paley decomposition and parabolic rescaling, Theorem 1.2 reduces to the following Schrödinger

maximal estimate for functions f with f̂ supported in B(0, 1) (see Lemma 2.5):
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Theorem 1.3 For any ǫ > 0, there exists a constant Cǫ such that

∥∥ sup
0<t≤R

|eit∆f |
∥∥
L3(B(0,R))

≤ CǫR
ǫ‖f‖2 (1.5)

holds for all R ≥ 1 and all f ∈ L2(R2) with suppf̂ ⊂ B(0, 1).

Remark 1.4 By the local bound (1.5) from Theorem 1.3 and Hölder’s inequality, for 2 ≤ p ≤ 3,

∥∥ sup
0<t≤R

|eit∆f |
∥∥
Lp(B(0,R))

≤ CǫR
2
p− 2

3+ǫ‖f‖2 (1.6)

holds for all R ≥ 1 and all f ∈ L2(R2) with suppf̂ ⊂ B(0, 1).

Note that for functions f with suppf̂ ⊂ B(0, 1), we have a trivial bound

|eit∆f(x)| . ‖f‖2 .

Therefore, it follows from (1.5) that for 3 < p ≤ ∞,

∥∥ sup
0<t≤R

|eit∆f |
∥∥
Lp(B(0,R))

≤ CǫR
ǫ‖f‖2 (1.7)

holds for all R ≥ 1 and all f ∈ L2(R2) with suppf̂ ⊂ B(0, 1).

By Proposition 2.6, the local bounds (1.6) and (1.7) imply that the following estimate

∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
Lp(B(0,1))

≤ Cs‖f‖Hs(R2) , ∀f ∈ Hs(R2) (1.8)

holds for s > 1/3 when 2 ≤ p ≤ 3, and for s > 1− 2
p when 3 < p ≤ ∞.

Given Bourgain’s conterexample, for 2 ≤ p ≤ 3, the exponent of R in (1.6) is sharp up to a factor Rε,

and the range of s in (1.8) is sharp up to the endpoint.

For 3 < p ≤ ∞, the exponent of R in (1.7) is sharp up to a factor Rε, and the range of s in (1.8) is

sharp up to the endpoint. This sharpness follows from a simple example:

Consider the function f̂ = η, where η ≥ 0, supp η ⊂ B(0, 1) and η = 1 on B(0, 1/2). Then for 0 < t < c

and |x| < c, where c < 1 is chosen to be a small constant, we have

|eit∆f(x)| ∼ C .

We also remark that the local bound (1.5) from Theorem 1.3 can be used to derive immediately a global

3



estimate (cf. Theorem 10 in [18]), we are indebted to K. Rogers for pointing this out to us.

Theorem 1.5 For any s > 1/3, the following bound holds: for any function f ∈ Hs(R2),

∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
L3(R2)

≤ Cs‖f‖Hs(R2). (1.9)

In Section 2.4, we will show that the global estimate (1.9) in Theorem 1.5 follows from the local bound

(1.5) in Theorem 1.3, via a Littlewood-Paley decomposition, parabolic rescaling and wave packet decompo-

sition.

In summary, we have

Theorem 1.1 ⇐ Theorem 1.2 ⇐ Theorem 1.3 ⇒ Theorem 1.5 .

Our main work is dedicated to a proof of Theorem 1.3, the proof uses inductions. In order to make all

inductions work, we will state Theorem 1.3 in a more general setting (see the statement of our main inductive

theorem - Theorem 1.7 in Section 1.3).

1.2 Key ingredients in the proof of our main result - Theorem

1.3

The proof uses polynomial partitioning. This technique was introduced by Nets Katz and Larry Guth in

[9], where it was applied to incidence geometry. In [10] and [11], Guth applied this technique to restriction

estimates in Fourier analysis. Polynomial partitioning is a divide and conquer technique. We begin by

finding a polynomial whose zero set divides some object of interest into equal pieces. For instance, in [9], it

was proven that for any finite volume set E ⊂ R
3 and any degree D ≥ 1, there is a polynomial P of degree

at most D so that R3 \Z(P ) is a union of ∼ D3 disjoint open sets Oi, and the volumes |Oi∩E| are all equal.

Hence for any i, |E| . D3|Oi ∩ E|. In our paper, we choose the polynomial P to behave well with respect

to the Lp
xL

q
t norm of eit∆f . For any R ≥ 1, any f ∈ L2 with compact Fourier support, any p ≤ q < ∞ and

any degree D ≥ 1, we show that there is a polynomial P of degree at most D so that R3 \ Z(P ) is a union

of ∼ D3 disjoint open sets Oi, and for any i,

‖eit∆f‖p
Lp

xL
q
t (B(0,R)×[0,R])

. D3‖χOie
it∆f‖p

Lp
xL

q
t (B(0,R)×[0,R])

. (1.10)

(To prove Theorem 1.3, we will use q finite but very large and p close to 3. The degree D will be a tiny

4



power of R, so D is large compared to 1, but very small compared to R). We would like to point out that

we are unable prove (1.10) for q = ∞. The polynomial partitioning involves a topological argument, which

requires some continuity, and it does not work well with the L∞-norm.

Breaking spacetime into cells Oi is useful because of the way it interacts with the wave packet decompo-

sition of eit∆f , which we now recall. We decompose f into pieces that are localized in both physical space

and frequency space. We tile the physical space B(0, R) with R1/2-cubes ν, and we tile the frequency space

B(0, 1) with R−1/2-cubes θ. Then we decompose f as f =
∑

θ,ν fθ,ν , where fθ,ν is essentially supported

on ν in physical space and essentially supported on θ in frequency space. Each function eit∆fθ,ν is called

a wave packet. The restriction of eit∆fθ,ν to the domain B(0, R)× [0, R] is essentially supported on a tube

Tθ,ν of radius R1/2 and length R. This tube intersects the time slice {t = 0} at ν, and the direction of the

tube depends on θ.

A key fact in the applications of polynomial partitioning in combinatorics is that a line can enter at most

D + 1 of the cells Oi. To see this, we note that the polynomial P can vanish at most D times along a line,

unless it vanishes on the whole line, and so a line can cross Z(P ) at most D times. A wave packet eit∆fθ,ν

is supported on a tube Tθ,ν of radius R1/2. This tube can potentially enter many or even all the cells Oi,

but it cannot penetrate deeply into very many cells. We define W to be the R1/2-neighborhood of Z(P ) in

B(0, R)× [0, R], and we define O′
i to be Oi \W . Now the central line of Tθ,ν can enter at most D+1 of the

original cells Oi, and so the tube Tθ,ν can enter at most D + 1 of the smaller cells O′
i. In other words, each

wave packet eit∆fθ,ν is essentially supported on the union of W and D + 1 cells O′
i.

We can use induction to study eit∆f on each smaller cell O′
i. To study eit∆f on a cell O′

i, we only need

to take account of those wave packets that intersect O′
i. Therefore, we define fi to be the sum of fθ,ν over

those pairs (θ, ν) for which Tθ,ν enters O′
i. On the cell O′

i, e
it∆f is essentially equal to eit∆fi. We can control

the L2 norms of the fi by using the fact that fθ,ν are (approximately) orthogonal and the fact that each

tube Tθ,ν enters . D smaller cells O′
i. In particular, we will prove that

∑

i

‖fi‖22 . D‖f‖22.

We can now use induction to control eit∆f on each cell O′
i. In this way, we get good control of the

contribution to ‖eit∆f‖Lp
xL

q
t (B(0,R)×[0,R]) coming from the union of all smaller cells O′

i. It remains to control

the contribution coming from W .

The most difficult scenario is the following: the tubes Tθ,ν are all contained in W . The polynomial

partitioning method allows us to reduce the original problem to this special scenario. This scenario indeed

occurs in Bourgain’s example in [3]. Let us take a moment to describe this example briefly (in Section 4.1,

5



we will come back to this example and discuss about it in details):

In the example from [3], the zero set Z(P ) can be taken to be a plane 2t = x1. The set W is a planar

slab of thickness R1/2. The solution eit∆f is essentially supported in W . On the plane 2t = x1, e
it∆f is

a solution of the Schrodinger equation in 1 + 1 dimensions. In other words, we can choose coordinates

(y, s) on this plane and an initial data g so that eis∆g is essentially equal to eit∆f on the plane. Also,

|eit∆f(x1, x2)| is approximately constant as we vary x1 within the slab W . The initial data is chosen so

that |eis∆g(y)| is large on a set X of ∼ R3/2 unit squares in [0, R] × [0, R]. It follows that |eit∆f(x)| is

large on a set of ∼ R3/2 3-dimensional rectangles of dimensions R1/2 × 1× 1 in B(0, R)× [0, R]. Moreoever,

the projections of these rectangles are roughly disjoint, and so they cover a positive proportion of B(0, R).

Therefore sup0<t≤R |eit∆f(x)| is large on a positive proportion of B(0, R).

In this construction, the set X needs to be fairly sparse because the projections of the R1/2 × 1 × 1

rectangles need to be disjoint in B(0, R). In particular, there can be at most R1/2 unit squares of X in any

R1/2-ball in [0, R]× [0, R]. In the example of [3], |eis∆g| ∼ R−5/12‖g‖L2 on the set X. During our proof, we

will need to show that this quantity R−5/12‖g‖L2 could not be any larger. In rough terms, we need to show

that a solution eis∆g cannot focus too much on a set X which is sparse and spread out.

We will prove such bounds using the l2 decoupling theorem of Bourgain and Demeter [4]. We think of

these bounds as refinements of the Strichartz inequality. Here is one such estimate:

Theorem 1.6 Let g ∈ L2(R) with supp ĝ ⊂ B1(0, 1). Suppose that Q1, Q2, ... are lattice R1/2-cubes in

[0, R]2, so that

‖eit∆g‖L6(Qj) is essentially constant in j.

Suppose that these cubes are arranged in horizontal strips of the form R×{t0, t0+R1/2}, and that each strip

contains ∼ σ cubes Qj. Let Y denote
⋃

j Qj. Then for any ǫ > 0,

‖eit∆g‖L6(Y ) ≤ CǫR
ǫσ−1/3‖g‖L2 .

The Strichartz inequality says that ‖eit∆g‖L6([0,R]2) . ‖g‖L2 . Theorem 1.6 says that we get a stronger

estimate when the solution eit∆g is spread out in space. To get a sense of what the theorem says, consider

the following example. Suppose that eit∆g is a sum of σ wave packets supported on disjoint R1/2 × R

rectangles. We can take Y to be the union of these rectangles. By scaling, we can suppose that |eit∆g| ∼ 1

on these σ rectangles and negligibly small elsewhere, and then a direct calculation shows that

6
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Figure 1.1: ∼ σ many cubes in a horizontal strip

‖eit∆g‖L6([0,R]2) ∼ ‖eit∆g‖L6(Y ) ∼ (σR3/2)1/6−1/2‖eit∆g‖L2(Y )

∼ (σR3/2)1/6−1/2‖eit∆g‖L2([0,R]2) ∼ (σR3/2)1/6−1/2R1/2‖g‖2 ∼ σ−1/3‖g‖2 .

So Theorem 1.6 roughly says that if eit∆g is “as spread out as” σ disjoint wave packets, then its L6 norm

cannot be much bigger than the L6 norm of σ disjoint wave packets.

This theorem helps us to control the size of eit∆g on a sparse, spread out set X as above. Suppose that

the function eit∆g is evenly spread out on [0, R]2 in the sense that ‖eit∆g‖L6(Q) is roughly constant among

all R1/2-boxes Q ⊂ [0, R]2. In this case, we can take σ = R1/2 in Theorem 1.6, which gives

‖eit∆g‖L6([0,R]2) . R−1/6+ǫ‖g‖L2 .

In the example from [3], X contains ∼ R1/2 unit squares in each R1/2-box of [0, R]2, and each of these boxes

indeed has a roughly equal value of ‖eit∆g‖L6(Q). If |eit∆g| ∼ H on the set X, then Theorem 1.6 gives

H|X|1/6 . ‖eit∆g‖L6([0,R]2) . R−1/6+ǫ‖g‖L2 .

Since |X| ∼ R3/2, we get the bound H . R−5/12+ǫ‖g‖L2 . This upper bound matches the behavior of the

example from [3] up to a factor Rǫ.

Theorem 1.6 lets us deal with the case that Z(P ) is a plane. We need to deal with the more general case

that Z(P ) is a possibly curved surface of degree at most D. We prove a more general version of Theorem

1.6, Theorem 3.5, which covers the case of wave packets concentrated into a curved surface.
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1.3 Main inductive theorem

Our main goal is to prove Theorem 1.3. Here we state it in a slightly more complicated setting. Our proof

uses inductions, and we need the slightly more complicated formulation to make all the inductions work.

First of all, the polynomial partitioning involves a topological argument, and the topological argument does

not work well with the sup appearing in our maximal function. Therefore, we replace the norm Lp
xL

∞
t with

the norm Lp
xL

q
t for q very large. Another technical issue has to do with parabolic rescaling. Suppose that

f̂ is supported in a smaller ball B(ξ0,M
−1) ⊂ B(0, 1). In this situation, one can often apply parabolic

rescaling to reduce the problem at hand to a problem on a smaller ball in physical space. However, the

change of coordinates in such a parabolic rescaling does not interact well with mixed norms of the form

Lp
xL

q
t (see Section 2.2 for details). Therefore, we instead do induction on the size of the ball B(ξ0,M

−1),

proving slightly stronger bounds when the ball is small. Taking account of these small issues, we formulate

our result in the following way:

Theorem 1.7 For p > 3, for any ǫ > 0, there exists a constant Cp,ǫ such that for any q > 1/ǫ4,

∥∥eit∆f
∥∥
Lp

xL
q
t (B(0,R)×[0,R])

≤ Cp,ǫM
−ǫ2Rǫ‖f‖2 (1.11)

holds for all R ≥ 1, any ξ0 ∈ B2(0, 1), any M ≥ 1 and all f ∈ L2(R2) with suppf̂ ⊂ B2(ξ0,M
−1).

Let us explain how Theorem 1.7 implies our main result - Theorem 1.3 in Section 1.1. We note that by

the dominated convergence theorem we have

∥∥ sup
0<t≤R

|eit∆f |
∥∥
Lp(B(0,R))

= lim
q→∞

∥∥eit∆f
∥∥
Lp

xL
q
t (B(0,R)×[0,R])

,

for any L2-function f with compact Fourier support or any Schwartz function f . Therefore, Theorem 1.7

implies that for any R ≥ 1 and any f with the support of f̂ ⊂ B(0, 1), and for any p > 3, we have

∥∥eit∆f
∥∥
Lp

xL
∞
t (B(0,R)×[0,R])

≤ Cp,ǫR
ǫ‖f‖2 . (1.12)

So far we assume p > 3. In the meanwhile, since suppf̂ ⊂ B(0, 1), we have

‖eit∆f‖∞ . ‖f‖2 ,

and it is straightforward to prove a bound of the form
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‖eit∆f‖L2
xL

∞
t (B(0,R)×[0,R]) ≤ RO(1)‖f‖2.

Combining these bounds using Hölder’s inequality, we see that Equation (1.12) holds for p = 3 as well. This

establishes Theorem 1.3.

1.4 Outline of the Thesis

In the rest of the paper, we aim to prove the main inductive theorem - Theorem 1.7.

In Chapter 2, we first review two preliminary tools: wave packet decomposition and parabolic rescaling.

Then using these tools, we show that the almost everywhere pointwise convergence problem (1.2) can be

approached by bounding the associated maximal function, i.e. by Schrödinger maximal estimates. Moreover,

using wave packet decomposition, we prove the global Schrödinger maximal estimate (1.9) in Theorem 1.5,

as a corollary of Theorem 1.3. Finally, we show a polynomial partitioning theorem for mixed norm, which

is one key ingredient in our proof of Theorem 1.7.

In Chapter 3, we prove the main inductive theorem - Theorem 1.7. Utilizing the way how tubes coming

from wave packet decomposition interact with the variety arising from polynomial partitioning, we are able to

reduce the original problem in R
3 to a special scenario, in which case all wave packets are contained in a small

neighborhood of a 2-dimensional variety. We call it the tangent-to-variety case. To deal with this special

scenario, in section 3.3.1 we obtain both linear and bilinear local refinements of the Strichartz inequality,

via the Bourgain-Demeter l2-decoupling theorem. And in section 3.3.4 we use the bilinear refinement of

Strichartz to prove a Schrödinger maximal estimate for a bilinear tangent term, which completes the proof

of our main inductive theorem.

In Chapter 4, we give a few remarks about the Schrödinger maximal estimates in higher dimension. We

first discuss in details about Bourgain’s counterexample from [3], which shows that pointwise convergence

(1.2) can fail for s < n
2(n+1) . We will see that Bourgain’s example fits into a scenario where all wave packets

are contained in a small neighborhood of a hyperplane. In this special scenario, or more generally, in tangent-

to-variety case, where all wave packets are contained in a small neighborhood of a variety, we prove that the

exponent n
2(n+1) is optimal.
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Chapter 2

Preliminaries

2.1 Wave packet decomposition

A (dyadic) rectangle in R
n is a product of (dyadic) intervals with respect to given coordinate axes of Rn. A

rectangle θ =
∏n

j=1 θj in frequency space and a rectangle ν =
∏n

j=1 νj in physical space are said to be dual

if |θj ||νj | = 1 for j = 1, · · · , n. We say that (θ, ν) is a tile if it is a pair of dual (dyadic) rectangles. The

dyadic condition is not essential in our decomposition.

Let ϕ be a Schwartz function from R to R whose Fourier transform is non-negative, supported in a small

interval, of radius κ (κ is a fixed small constant), about the origin in R, and identically 1 on another smaller

interval around the origin. For a (dyadic) rectangular box θ =
∏n

j=1 θj , set

ϕ̂θ(ξ1, · · · , ξn) =
n∏

j=1

1

|θj |1/2
ϕ̂

(
ξj − c(θj)

|θj |

)
. (2.1)

Here c(θj) is the center of the interval θj and hence c(θ) = (c(θ1), · · · , c(θn)) is the center of the rectangle

θ. We also note that ‖ϕθ‖L2 ∼ 1. We let c(ν) denote the center of ν. For a tile (θ, ν) and ξ ∈ R
n, we define

ϕ̂θ,ν(ξ) = e−ic(ν)·ξϕ̂θ(ξ). (2.2)

We say that two tiles (θ, ν) and (θ′, ν′) have the same dimensions if |θj | = |θ′j | for all j, which then implies

that |νj | = |ν′j | for all j. Let T be a collection of all tiles with fixed dimensions and coordinate axes. Then

for any Schwartz function f on R
n, we have the following representation

f(x) = cκ
∑

(θ,ν)∈T

fθ,ν := cκ
∑

(θ,ν)∈T

〈f, ϕθ,ν〉ϕθ,ν(x) , (2.3)

where cκ is an absolute constant. This representation can be proved directly (see [12]) or by employing

inductively the one-dimensional result in [13].
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When the time variable t is restricted to [0, λ], we use wave packet decomposition at scale λ, that

is, we use tiles (θ, ν) where θ is a λ−
1
2 -cube in frequency space and ν is a λ

1
2 -cube in physical space. Indeed,

let θ be a λ−
1
2 -cube (or ball) in Bn(0, 1) ⊂ R

n. Let Tθ be a collection of all tiles (θ′, ν) such that ν’s are

λ
1
2 -cubes and θ′ = θ. Then for any Schwartz function f with suppf̂ ⊂ Bn(0, 1), we have

f(x) = cκ
∑

θ

∑

(θ′,ν)∈Tθ

〈f, ϕθ′,ν〉ϕθ′,ν(x) . (2.4)

Here θ’s range over all possible cubes in suppf̂ . We use T to denote
⋃

θ Tθ. It is clear that

∑

(θ,ν)∈T

∣∣〈f, ϕθ,ν〉
∣∣2 ∼ ‖f‖22 . (2.5)

We set

ψθ,ν(x, t) = eit∆ϕθ,ν(x) . (2.6)

From (2.4), we end up with the following representation for eit∆f :

eit∆f(x) = cκ
∑

(θ,ν)∈T

eit∆fθ,ν(x) = cκ
∑

(θ,ν)∈T

〈f, ϕθ,ν〉ψθ,ν(x, t) . (2.7)

We shall analyze the localization of ψθ,ν in the physical and frequency space.

When t is restricted to the interval [0, λ], the function ψθ,ν is essentially supported on a tube Tθ,ν defined

as follows. Let

Tθ,ν := {(x, t) ∈ R
n × R : 0 ≤ t ≤ λ, |x− c(ν)− 2tc(θ)| ≤ λ1/2+δ} , (2.8)

where δ = ǫ2 is a small positive parameter. We see that Tθ,ν is a tube of length λ, of radius λ1/2+δ, in the

direction G0(θ) = (2c(θ), 1), and intersecting {t = 0} at an λ1/2+δ-ball centered at c(ν). In order to see this,

let ψ be a Schwartz function with Fourier transform supported in [−1, 1] and 2ψ(t) ≥ χ
[0,1](t). Here χ[0,1] is

the characteristic function on [0, 1]. With t restricted to [0, λ], we have |ψθ,ν | ≤ 2|ψ∗
θ,ν |, where

ψ∗
θ,ν(x, t) = ψθ,ν(x, t)ψ

( t
λ

)
. (2.9)

From the definitions of eit∆ and ψθ,ν , we get
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|ψ∗
θ,ν(x, t)| = (2π)−nλ−

n
4 ψ
( t
λ

)
∣∣∣∣∣∣

∫
ei[λ

−1/2(x−c(ν)−2tc(θ))·ξ−λ−1t|ξ|2]
n∏

j=1

ϕ̂(ξj) dξ

∣∣∣∣∣∣

since |t| ≤ λ, by integration by parts, ψ∗
θ,ν is essentially supported in the tube Tθ,ν . More precisely, we have

|ψ∗
θ,ν(x, t)| ≤ λ−n/4 χ∗

Tθ,ν
(x, t) , (2.10)

where χ∗
Tθ,ν

denotes a bump function satisfying that χ∗
Tθ,ν

= 1 on {(x, t) ∈ R
n × R : 0 ≤ t ≤ λ, |x− c(ν)−

2tc(θ)| ≤
√
λ}, and χ∗

Tθ,ν
= O(λ−1000) outside Tθ,ν . We can essentially treat χ∗

Tθ,ν
as χTθ,ν

, the indicator

function on the tube Tθ,ν .

On the other hand, the Fourier transform of ψ∗
θ,ν enjoys

ψ̂∗
θ,ν(ξ1, · · · , ξn, ξn+1) = λϕ̂θ,ν(ξ1, · · · , ξn)ψ̂

(
ξn+1 + (ξ21 + · · ·+ ξ2n)

1/λ

)
. (2.11)

Hence ψ̂∗
θ,ν is supported in a 1

λ -neighborhood of the parabolic cap over θ, that is,

supp ψ̂∗
θ,ν ⊆

{
(ξ1, · · · , ξn, ξn+1) : (ξ1, · · · , ξn) ∈ θ, |ξn+1 + (ξ21 + · · ·+ ξ2n)| ≤

1

λ

}
. (2.12)

We denote this 1
λ -neighborhood of the parabolic cap over θ by θ∗. In the rest of the paper, we can assume

that the function ψθ,ν is essentially localized in Tθ,ν in physical space, and localized in θ∗ in frequency space.

2.2 Parabolic rescaling

For any function f ∈ L2(Rn) with suppf̂ ⊂ Bn(ξ0, ρ), we write ξ = ξ0 + ρζ ∈ Bn(ξ0, ρ), where ζ ∈ Bn(0, 1),

then

∣∣eit∆f(x)
∣∣ = ρn(2π)−n

∣∣∣∣
∫
ei[x·(ξ0+ρζ)−t|ξ0+ρζ|2]f̂(ξ0 + ρζ) dζ

∣∣∣∣

= ρn/2(2π)−n

∣∣∣∣
∫
ei[(ρx−2tρξ0)·ζ−ρ2t|ζ|2]ĝ(ζ) dζ

∣∣∣∣ = ρn/2
∣∣eir∆g(y − 2ρ−1rξ0)

∣∣ ,

where the function g is given by

ĝ(ζ) = ρn/2f̂(ξ0 + ρζ) ,

and ‖g‖2 = ‖f‖2, and the new coordinates (y, r) and old coordinates (x, t) are related by
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y = ρx ,

r = ρ2t .

Therefore, we have

∥∥eit∆f(x)
∥∥
Lp

xL
q
t (B

n(0,L)×[0,M ])
= ρn/2−2/q−n/p

∥∥eir∆g(y − 2ρ−1rξ0)
∥∥
Lp

yL
q
r(Bn(0,ρL)×[0,ρ2M ])

. (2.13)

From the expression (2.13), we see that, in the case ξ0 6= 0, parabolic rescaling does not work well for mixed

norm LpLq, where p 6= q. More precisely, in the case ξ0 6= 0 and p 6= q, after parabolic rescaling, the Lq
r-norm

is taken along the inclined direction (y − 2ρ−1rξ0, r) instead of the vertical direction (y, r). Therefore the

operator is changed by parabolic rescaling and to the new operator we can not apply induction on scales.

When p = q, one can get around the difficulty as in the next lemma.

Here we state two results from parabolic rescaling that are used most commonly:

Lemma 2.1 (a) Let p = q. For any function f ∈ L2(Rn) with supp f̂ ⊂ Bn(ξ0, ρ), where ξ0 ∈ Bn(0, 1), it

follows from parabolic rescaling that

∥∥eit∆f(x)
∥∥
Lp

xL
p
t (B

n(0,L)×[0,L])
≤ ρn/2−(n+2)/p

∥∥eir∆g(y)
∥∥
Lp

yL
p
r(Bn(0,3ρL)×[0,ρ2L])

, (2.14)

for some function g ∈ L2 with supp ĝ ⊂ Bn(0, 1) and ‖g‖2 = ‖f‖2.

(b) For any function f ∈ L2(Rn) with supp f̂ ⊂ Bn(0, ρ), it follows from parabolic rescaling that

∥∥eit∆f(x)
∥∥
Lp

xL
q
t (B

n(0,L)×[0,M ])
= ρn/2−2/q−n/p

∥∥eir∆g(y)
∥∥
Lp

yL
q
r(Bn(0,ρL)×[0,ρ2M ])

, (2.15)

for some function g ∈ L2 with supp ĝ ⊂ Bn(0, 1) and ‖g‖2 = ‖f‖2.

2.3 Approach to a.e. pointwise convergence: Schrödinger

maximal estimates

To approach the almost everywhere pointwise convergence problem of the solutions to Schödinger equations

(1.2), we note that we have uniform convergence eit∆f(x) → f(x) for Schwartz functions f . First we recall

that Schwartz functions are dense in Hs. Then for any f ∈ Hs, we approximate f by Schwartz functions, and
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we control the error terms by bounding the associated maximal function. We call such bounds Schrödinger

maximal estimates.

Lemma 2.2 The Schwartz space S(Rn) is dense in Hs(Rn).

Proof: For any function f ∈ Hs(Rn), we know that (1 + |ξ|2)s/2f̂ ∈ L2. Since C∞
c (Rn), the space of

compactly supported smooth functions, is dense in L2, we can find a sequence of functions gn ∈ C∞
c (Rn)

satisfying that

gn → (1 + |ξ|2)s/2f̂ in L2 .

Note that (1 + |ξ|2)−s/2gn is in C∞
c , hence its inverse Fourier transform fn is a Schwartz function,

f̂n := (1 + |ξ|2)−s/2gn .

Therefore, the sequence of functions fn ∈ S(Rn) converges to f in Hs:

‖fn − f‖Hs =

(∫
(1 + |ξ|2)s

∣∣∣f̂n − f̂
∣∣∣
2

dξ

)1/2

=

(∫ ∣∣∣gn − (1 + |ξ|2)s/2f̂
∣∣∣
2
)1/2

→ 0 .

�

The next lemma says that a.e. pointwise convergence result follows from certain Schrödinger maximal

estimate. In particular, Theorem 1.2 implies Theorem 1.1.

Lemma 2.3 Suppose that for some s > 0, and some p ≥ 1,

∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
Lp(Bn(0,1))

≤ Cs‖f‖Hs(Rn) (2.16)

holds for any function f ∈ Hs(Rn). Then

lim
t→0

eit∆f(x) = f(x) almost everywhere (2.17)

whenever f ∈ Hs(Rn).

Proof: First we show that if f is Schwartz, then eit∆f(x) → f(x) uniformly on R
n, as t→ 0. Note that
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∣∣eit∆f(x)− f(x)
∣∣ = (2π)−n

∣∣∣∣
∫
eix·ξ f̂(ξ)

(
e−it|ξ|2 − 1

)
dξ

∣∣∣∣

. |t| ·
∫

|f̂(ξ)||ξ|2 dξ ≤ |t| ·
∥∥∥f̂(ξ)|ξ|2(1 + |ξ|2)n

∥∥∥
∞

·
∥∥(1 + |ξ|2)−n

∥∥
L1(Rn)

.

For a Schwartz function f , its Fourier transform f̂ is also a Schwartz function, hence

∥∥∥f̂(ξ)|ξ|2(1 + |ξ|2)n
∥∥∥
∞
<∞ ,

and it follows that
∣∣eit∆f(x)− f(x)

∣∣ ≤ C |t|. Therefore, the uniform convergence is justified for Schwartz

functions.

Given any function f ∈ Hs(Rn), since Schwartz functions are dense in Hs, for any ε > 0, we write

f = g + h, where g is Schwartz and ‖h‖Hs < ε. Then we get

¯lim
t→0

∣∣eit∆f(x)− f(x)
∣∣ ≤ ¯lim

t→0

∣∣eit∆g(x)− g(x)
∣∣+ ¯lim

t→0

∣∣eit∆h(x)− h(x)
∣∣

≤ 0 + sup
0<t≤1

∣∣eit∆h(x)
∣∣+ |h(x)| .

For any α > 0, denote

Eα :=
{
x ∈ Bn(0, 1) : ¯lim

t→0

∣∣eit∆f(x)− f(x)
∣∣ > α

}
,

and we bound |Eα|, the measure of Eα, by

∣∣∣∣
{
x ∈ Bn(0, 1) : sup

0<t≤1

∣∣eit∆h(x)
∣∣ > α/2

}∣∣∣∣+
∣∣ {x ∈ Bn(0, 1) : |h(x)| > α/2}

∣∣ .

Moreover by assumption (2.16) we have

∣∣∣∣
{
x ∈ Bn(0, 1) : sup

0<t≤1

∣∣eit∆h(x)
∣∣ > α/2

}∣∣∣∣

≤
∥∥sup0<t≤1 |eit∆h|

∥∥p
Lp(Bn(0,1))

(α/2)p
≤
Cp

s ‖h‖pHs(Rn)

(α/2)p
.
εp

αp
,

and
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∣∣ {x ∈ Bn(0, 1) : |h(x)| > α/2}
∣∣ ≤ ‖h‖22

(α/2)2
≤ ‖h‖2Hs

(α/2)2
.
ε2

α2
.

Therefore, for any α > 0 the bound

|Eα| .
εp

αp
+
ε2

α2

holds for any ε > 0. We conclude that |Eα| = 0 for any α > 0. We take the set
⋃∞

k=1E1/k, which has

measure zero and

lim
t→0

eit∆f(x) = f(x) for anyx ∈ Bn(0, 1)\
∞⋃

k=1

E1/k .

We have proved the almost everywhere pointwise convergence in Bn(0, 1). The same argument applies to

any other ball Bn(x0, 1), via the following observation: we write x = x0+y ∈ Bn(x0, 1), where y ∈ Bn(0, 1),

then

eit∆f(x) = (2π)−n

∫
ei(y·ξ−t|ξ|2)eix0·ξ f̂(ξ) dξ =: eit∆g(y) ,

where ĝ(ξ) = eix0·ξ f̂(ξ), so we have

∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
Lp(Bn(x0,1))

=

∥∥∥∥ sup
0<t≤1

|eit∆g|
∥∥∥∥
Lp(Bn(0,1))

≤ Cs‖g‖Hs(Rn) = Cs‖f‖Hs(Rn) .

Therefore, limt→0 e
it∆f(x) = f(x) for almost every x ∈ R

n.

�

We have seen that the Schrödinger maximal bounds (2.16) imply a.e. pointwise convergence results.

Next we make a few standard reductions of (2.16). Recall the following Lemma from [14]:

Lemma 2.4 (Lee) Let p, q ≥ 2, λ ≥ 1, and α ∈ R. Suppose that

∥∥eit∆f
∥∥
Lp

xL
q
t (B

n(0,1)×[0,1/λ])
≤ Cλα‖f‖2

holds for any f ∈ L2(Rn) with suppf̂ ⊂ A(λ). Then

∥∥eit∆f
∥∥
Lp

xL
q
t (B

n(0,1)×[0,1])
≤ Cǫλ

α+ε‖f‖2

holds for any ε > 0 and any f ∈ L2(Rn) with suppf̂ ⊂ A(λ).
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Proof: By parabolic rescaling (2.15), it suffices to show that for any β ∈ R, the estimate

∥∥eit∆f
∥∥
Lp

xL
q
t (B

n(0,λ)×[0,λ])
≤ Cλβ‖f‖2 for any f ∈ L2 with suppf̂ ⊂ A(1) (2.18)

implies

∥∥eit∆f
∥∥
Lp

xL
q
t (B

n(0,λ)×[0,λ2])
≤ Cελ

β+ε‖f‖2 for any f ∈ L2 with suppf̂ ⊂ A(1) . (2.19)

To prove (2.19), since t is restricted to [0, λ2], we use wave packet decomposition at scale λ2. Recall that

for each tile (θ, ν), the corresponding tube Tθ,ν is of radius λ1+2δ, of length λ2, and in the direction given

by (2c(θ), 1). Note that the angle between each tube and the t-axis is nonzero (roughly 45 degree), since

c(θ) ∈ A(1). To utilize the assumption (2.18), we partition the interval [0, λ2] into intervals Ij of length λ,

and denote Ωj := Bn(0, λ)× Ij . For each j, define

fj :=
∑

(θ,ν):Tθ,ν∩Ωj 6=∅
fθ,ν .

Then on each Ωj , we have eit∆f(x) ∼ eit∆fj(x), moreover

∑

j

‖fj‖22 ∼
∑

j

∑

(θ,ν):Tθ,ν∩Ωj 6=∅
‖fθ,ν‖22 . λO(δ)‖f‖22 , (2.20)

where the last inequality follows from the fact that each tube Tθ,ν has nonzero angle to the t-axis and it can

only intersect at most λO(δ) many Ωj ’s.

Now we write the right hand side of (2.19) as follows:

∥∥eit∆f
∥∥p
Lp

xL
q
t (B

n(0,λ)×[0,λ2])
=

∫

Bn(0,λ)


∑

j

∫

Ij

∣∣eit∆f(x)
∣∣q dt




p/q

dx .

We consider the cases p ≥ q and p < q separately. First, when p < q,

∥∥eit∆f
∥∥p
Lp

xL
q
t (B

n(0,λ)×[0,λ2])
≤
∑

j

∥∥eit∆f
∥∥p
Lp

xL
q
t (Ωj)

∼
∑

j

∥∥eit∆fj
∥∥p
Lp

xL
q
t (Ωj)

,

by applying the assumption (2.18) to each fj , we get

∥∥eit∆f
∥∥p
Lp

xL
q
t (B

n(0,λ)×[0,λ2])
.
∑

j

λβp‖fj‖p2 ,

now because of p ≥ 2 and (2.20),
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∥∥eit∆f
∥∥p
Lp

xL
q
t (B

n(0,λ)×[0,λ2])
. λβp


∑

j

‖fj‖22




p/2

. λβp+O(δ)‖f‖p2 .

Next, when p ≥ q, by Minkowski’s inequality, the assumption (2.18), q ≥ 2 and (2.20),

∥∥eit∆f
∥∥p
Lp

xL
q
t (B

n(0,λ)×[0,λ2])
≤


∑

j

∥∥eit∆f
∥∥q
Lp

xL
q
t (Ωj)



p/q

∼


∑

j

∥∥eit∆fj
∥∥q
Lp

xL
q
t (Ωj)



p/q

. λβp


∑

j

‖fj‖q2




p/q

. λβp+O(δ)‖f‖p2 ,

and this completes the proof.

�

By a Littlewood-Paley decomposition, parabolic rescaling and Lemma 2.4, we have the following reduction

of Schrödinger maximal estimates (in particular, Theorem 1.3 implies Theorem 1.2 by taking n = 2, p = 3

and s0 = 1/3):

Lemma 2.5 Let p ≥ 2 and s0 ∈ R. Suppose that for any ǫ > 0, there is a constant Cε such that

∥∥∥∥ sup
0<t≤R

|eit∆f |
∥∥∥∥
Lp(Bn(0,R))

≤ CεR
s0−n/2+n/p+ε‖f‖2 (2.21)

holds for any R ≥ 1, and any function f ∈ L2(Rn) with suppf̂ ⊂ Bn(0, 1). Then

∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
Lp(Bn(0,1))

≤ Cs‖f‖Hs(Rn) (2.22)

holds for any function f ∈ Hs(Rn) with s > s0.

Proof: By parabolic rescaling (2.15) and our assumption (2.21), for any ε > 0, there is a constant Cε such

that

∥∥∥∥∥ sup
0<t≤1/R

|eit∆f |
∥∥∥∥∥
Lp(Bn(0,1))

≤ CεR
s0+ε‖f‖2 (2.23)

holds for any R ≥ 1, and any function f ∈ L2 with suppf̂ ⊂ A(R). Then by Lemma 2.4, for any ε > 0,

there is a constant C ′
ε such that
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∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
Lp(Bn(0,1))

≤ C ′
εR

s0+ε‖f‖2 , (2.24)

holds for any R ≥ 1, and any function f ∈ L2 with suppf̂ ⊂ A(R).

Now given s > s0 and f ∈ Hs(Rn), we choose ε > 0 such that s > s0 + ε. We decompose f in a

Littlewood-Paley decomposition:

f =
∑

k≥0

fk ,

where f̂0 is supported in Bn(0, 1) and f̂k is supported in A(2k) for k ≥ 1. We have

‖fk‖L2 . 2−ks‖f‖Hs .

Applying (2.24) to each fk, (2.21) to f0 and using the triangle inequality, we get

∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
Lp(Bn(0,1))

.
∑

k≥1

2k(s0+ε−s)‖f‖Hs + ‖f0‖2 . ‖f‖Hs ,

as desired.

�

Combining Lemma 2.3 and Lemma 2.5, we get:

Proposition 2.6 Let p ≥ 2 and s0 ≥ 0. Suppose that for any ǫ > 0, there is a constant Cε such that

∥∥∥∥ sup
0<t≤R

|eit∆f |
∥∥∥∥
Lp(Bn(0,R))

≤ CεR
s0−n/2+n/p+ε‖f‖2 (2.25)

holds for any R ≥ 1, and any function f ∈ L2(Rn) with suppf̂ ⊂ Bn(0, 1). Then

lim
t→0

eit∆f(x) = f(x) almost everywhere (2.26)

whenever f ∈ Hs(Rn) with s > s0.

2.4 A sharp global Schrödinger maximal estimate

In Section 2.3, we have seen that Theorem 1.3 implies the local Schrödinger maximal estimate (1.3) in

Theorem 1.2. In this section, we show a sharp global estimate, as a corollary of Theorem 1.3.
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Proposition 2.7 Theorem 1.3 implies Theorem 1.5. In other words, suppose that for any ε > 0,

∥∥ sup
0<t≤R

|eit∆f |
∥∥
L3(B(0,R))

≤ CǫR
ǫ‖f‖2 (2.27)

for all R ≥ 1 and all f ∈ L2(R2) with suppf̂ ⊂ B(0, 1). Then

∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
L3(R2)

≤ Cs‖f‖Hs(R2) (2.28)

holds for any function f ∈ Hs(R2) provided that s > 1/3.

Proof: First, we show
∥∥ sup
0<t≤R2

|eit∆f |
∥∥
L3(R2)

≤ CǫR
ǫ‖f‖2 (2.29)

for all R ≥ 1 and all f ∈ L2 with suppf̂ ⊂ B(0, 1). By assumption, we have

∥∥ sup
0<t≤R2

|eit∆f |
∥∥
L3(Q)

≤ CǫR
ǫ‖f‖2 (2.30)

for any cube Q ⊂ R
2 with side length R2. Since t is restricted to [0, R2], we use wave packet decomposition

at scale R2. Recall that for each tile (θ, ν), the corresponding tube Tθ,ν is of radius R1+2δ, of length R2, and

in the direction given by (2c(θ), 1). We partition R
2 into disjoint cubes Ql of side length R2, and denote

Ωl = Ql × [0, R2]. For each l, we define

fl :=
∑

(θ,ν):Tθ,ν∩Ωl 6=∅
fθ,ν .

Then one each Ωl, we have eit∆f(x) ∼ eit∆fl(x), moreover

∑

l

‖fl‖22 ∼
∑

l

∑

(θ,ν):Tθ,ν∩Ωl 6=∅
‖fθ,ν‖22 . ‖f‖22 , (2.31)

where the last inequality follows from the fact that each tube Tθ,ν can only intersect O(1) many Ωl’s. Now

we have

∥∥ sup
0<t≤R2

|eit∆f |
∥∥3
L3(R2)

=
∑

l

∥∥ sup
0<t≤R2

|eit∆f |
∥∥3
L3(Ql)

∼
∑

l

∥∥ sup
0<t≤R2

|eit∆fl|
∥∥3
L3(Ql)

by applying (2.30) to each fl and utilizing (2.31) we get
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∥∥ sup
0<t≤R2

|eit∆f |
∥∥3
L3(R2)

≤
∑

l

CεR
ε‖fl‖32 ≤ CεR

ε‖f‖32 ,

which establishes (2.29).

By parabolic rescaling (2.15), (2.29) implies that

∥∥ sup
0<t≤1

|eit∆f |
∥∥
L3(R2)

≤ CǫR
1/3+ǫ‖f‖2 (2.32)

holds for all R ≥ 1 and all f ∈ L2 with suppf̂ ⊂ A(R) = {ξ ∈ R
2 : |ξ| ∼ R}.

Now given any function f ∈ Hs(R2) with some s > 1/3, we choose ε > 0 such that 1/3 + ε < s, and

decompose f in a Littlewood-Paley decomposition:

f =
∑

k≥0

fk ,

where f̂0 is supported in Bn(0, 1) and f̂k is supported in A(2k) for k ≥ 1. We have

‖fk‖L2 . 2−ks‖f‖Hs .

Applying (2.32) to each fk, (2.29) to f0 and using the triangle inequality, we get

∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥
L3(R2)

≤ Cε

∑

k≥1

2k(1/3+ε−s)‖f‖Hs + C‖f0‖2 ≤ Cs‖f‖Hs ,

the last inequality follows from the choice of ε: 1/3 + ε < s, and this completes the proof.

�

2.5 Polynomial partitioning

First we state a variation of the ham-sandwich theorem, which introduces a polynomial P in the polynomial

ring R[x, t] such that the variety Z(P ) = {(x, t) ∈ R
n×R : P (x, t) = 0} bisects every member in a collection

of some quantities. It relies on the Borsuk-Ulam Theorem, which asserts that if F : SN −→ R
N is a continuous

function, where S
N is the N -dimensional unit sphere, then there exists a point v ∈ S

N with F (v) = F (−v).

Lemma 2.8 Suppose that W1,W2, · · · ,WN ∈ L1
xL

r
t (R

n × R), 1 ≤ r < ∞. Then there exists a non-zero

polynomial P on R
n × R of degree ≤ cnN

1/(n+1) such that for each Wj,
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∥∥χ{P>0}Wj

∥∥
L1

xL
r
t (R

n×R)
=
∥∥χ{P<0}Wj

∥∥
L1

xL
r
t (R

n×R)
.

Proof: Let V be the vector space of polynomials on R
n × R of degree at most D, then

DimV =

(
D + n+ 1

n+ 1

)
∼n D

n+1.

So we can choose D ∼ N1/(n+1) such that DimV ≥ N + 1, and without loss of generality we can assume

DimV = N + 1 and identify V with R
N+1. We define a function G as follows:

S
N ⊆ V \{0} G−−→ R

N

P 7→ {Gj(P )}Nj=1 ,

where

Gj(P ) :=
∥∥χ{P>0}Wj

∥∥
L1

xL
r
t (R

n×R)
−
∥∥χ{P<0}Wj

∥∥
L1

xL
r
t (R

n×R)
,

it is obvious that G(−P ) = −G(P ). Assume that the function G is continuous, then the Borsuk-Ulam

Theorem tells us that there exists a polynomial P ∈ S
N ⊆ V \{0} with G(P ) = G(−P ), hence G(P ) = 0,

and P obeys the conclusion of Lemma 2.8. It remains to check the continuity of the functions Gj on V \{0}.

Suppose that Pk → P in V \{0}. Note that

|Gj(Pk)−Gj(P )| ≤ 2
∥∥χ{PkP≤0}Wj

∥∥
L1

xL
r
t (R

n×R)
,

while Pk → P implies that

⋂

k0

⋃

k≥k0

{(x, t) : Pk(x, t) · P (x, t) ≤ 0} ⊆ P−1(0).

By the dominated convergence theorem,

lim
k0→∞

∥∥χ∪k≥k0
{PkP≤0}Wj

∥∥
L1

xL
r
t (R

n×R)
=
∥∥χ{P−1(0)}Wj

∥∥
L1

xL
r
t (R

n×R)
= 0.

This proves that limk→∞ |Gj(Pk)−Gj(P )| = 0, showing that Gj is continuous on V \{0}.

�
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By applying Lemma 2.8 repeatedly, we get the following polynomial partitioning result:

Theorem 2.9 Suppose that W ∈ L1
xL

r
t (R

n × R)\{0}, 1 ≤ r < ∞. Then for each degree D ≥ 1 there exists

a non-zero polynomial P on R
n × R of degree at most D such that (Rn × R)\Z(P ) is a union of ∼n D

n+1

disjoint open sets Oi and for each i we have

∥∥W
∥∥
L1

xL
r
t (R

n×R)
≤ cnD

n+1
∥∥χ

Oi
W
∥∥
L1

xL
r
t (R

n×R)
.

Proof: By Lemma 2.8, we obtain a polynomial P1 of degree . 1 such that

∥∥χ{P1>0}W
∥∥
L1

xL
r
t (R

n×R)
=
∥∥χ{P1<0}W

∥∥
L1

xL
r
t (R

n×R)
.

Next, we let W+ := χ{P1>0}W and W− := χ{P1<0}W , and by Lemma 2.8 again we obtain a polynomial P2

of degree . 21/(n+1) such that

∥∥χ{P2>0}Wj

∥∥
L1

xL
r
t (R

n×R)
=
∥∥χ{P2<0}Wj

∥∥
L1

xL
r
t (R

n×R)
,

for j = +,−. Continuing inductively, we construct polynomials P1, P2, · · · , Ps. Let P :=
∏s

k=1 Pk. The

sign conditions of the polynomials cut (Rn × R)\Z(P ) into 2s cells Oi, and by construction and triangle

inequality we have that, for each i,

∥∥W
∥∥
L1

xL
r
t (R

n×R)
≤ 2s

∥∥χ
Oi
W
∥∥
L1

xL
r
t (R

n×R)
.

By construction, degPk . 2(k−1)/(n+1), therefore degP ≤ cn2
s/(n+1). We can choose s such that cn2

s/(n+1) ∈

[D/2, D], then degP ≤ D and the number of cells is 2s ∼n D
n+1.

�

Definition 2.10 We say that a polynomial P is non-singular if ∇P (z) 6= 0 for each point z in Z(P ).

It is well-known that non-singular polynomials are dense in the space of all polynomials, cf. Lemma 1.5

in [10].

Lemma 2.11 (Guth) Let PolyD(Rn) be the vector space of polynomials on R
n of degree at most D. Then

non-singular polynomials are dense in PolyD(Rn) for any D and n. Moreover, the singular polynomials have

measure zero.
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Proof: Consider the map

R
n × PolyD(Rn)

E−−→ R× PolyD(Rn)

(x,Q) 7→ (Q(x), Q) .

The map E is C∞ smooth, and so by Sard’s theorem, the critical values of E have measure zero.

Suppose that (h,Q) is a regular value of E, then we claim that Q − h is a non-singular polynomial.

Given x ∈ R
n satisfying that (Q− h)(x) = 0, we want to show that ∇(Q− h)(x) = ∇Q(x) 6= 0. Note that

(Q − h)(x) = 0 if and only if (x,Q) ∈ E−1(h,Q). Since (h,Q) is a regular value of E, we know that the

differential map

dEx,Q = ∇Q(x)× id : Rn × PolyD(Rn) → R× PolyD(Rn)

is surjective, therefore, ∇Q(x) is nonzero.

We have seen that for almost every (h,Q) ∈ R× PolyD(Rn), Q− h is non-singular. In other words, the

set {(h, P + h) ∈ R× PolyD(Rn) : P is singular} has measure zero. By Fubini’s theorem it follows that the

set of singular polynomials has measure zero in PolyD(Rn), and so the non-singular polynomials are dense.

�

Following from the density of non-singular polynomials and the proof of Theorem 2.9, we can assume

that the polynomial in the partitioning theorem enjoys nice geometric properties.

Lemma 2.12 Suppose that W1,W2, · · · ,WN ∈ L1
xL

r
t (R

n ×R), 1 ≤ r <∞. Then for any ǫ > 0, there exists

a non-singular polynomial P on R
n × R of degree ≤ cnN

1/(n+1) such that for each Wj,

(1− ε)
∥∥χ{P<0}Wj

∥∥
L1

xL
r
t (R

n×R)
≤
∥∥χ{P>0}Wj

∥∥
L1

xL
r
t (R

n×R)
≤ (1 + ε)

∥∥χ{P<0}Wj

∥∥
L1

xL
r
t (R

n×R)
.

Proof: Let P0 be a non-zero polynomial on R
n × R of degree ≤ cnN

1/(n+1) such that for each Wj ,

∥∥χ{P>0}Wj

∥∥
L1

xL
r
t (R

n×R)
=
∥∥χ{P<0}Wj

∥∥
L1

xL
r
t (R

n×R)
.

Then let Pk be a sequence of non-singular polynomials of degree ≤ cnN
1/(n+1), approaching P0. By the

same continuity argument as in the proof of Lemma 2.8, we have

lim
k→∞

∥∥χ{Pk>0}Wj

∥∥
L1

xL
r
t (R

n×R)
=
∥∥χ{P>0}Wj

∥∥
L1

xL
r
t (R

n×R)
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and

lim
k→∞

∥∥χ{Pk<0}Wj

∥∥
L1

xL
r
t (R

n×R)
=
∥∥χ{P<0}Wj

∥∥
L1

xL
r
t (R

n×R)
,

therefore, for large k, Pk obeys the desired inequality.

�

Using Lemma 2.12 in place of Lemma 2.8, we get a partitioning result involving non-singular polynomials.

Theorem 2.13 Suppose that W ∈ L1
xL

r
t (R

n ×R)\{0}, 1 ≤ r <∞. Then for each D there exists a non-zero

polynomial P on R
n ×R of degree at most D such that (Rn ×R)\Z(P ) is a union of ∼n D

n+1 disjoint open

sets Oi and for each i we have

∥∥W
∥∥
L1

xL
r
t (R

n×R)
≤ cnD

n+1
∥∥χ

Oi
W
∥∥
L1

xL
r
t (R

n×R)
.

Moreover, the polynomial P is a product of distinct non-singular polynomials.
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Chapter 3

Proof of main inductive theorem -

Theorem 1.7

This chapter is devoted to a proof of Theorem 1.7, using polynomial partitioning.

3.1 Cell contributions

Recall that the functions f in Theorem 1.7 are Fourier supported in B(ξ0,M
−1) ⊂ R

2 with arbitrary

ξ0 ∈ B(0, 1) and M ≥ 1. Also p > 3 and q > ǫ−4. The functions f can be assumed to be Schwartz functions

since the collection of all Schwartz functions is dense in L2. We need to prove the bound (1.11):

∥∥eit∆f
∥∥
Lp

xL
q
t (B(0,R)×[0,R])

≤ Cp,ǫM
−ǫ2Rǫ‖f‖2 .

The proof of Theorem 1.7 is by induction on the radius R in physical space and the radius 1/M in

frequency space. First we cover the bases of the induction. Suppose that M ≥ R10, then we bound

|eit∆f(x)| by M−1‖f‖2 and Theorem 1.7 is trivial. Suppose that R1/2−O(δ) < M < R10, then all associated

wave packets are in the same direction, and by a direct computation we can bound the left-hand side of

(1.11) by R(3−p)/(2p)+O(δ)‖f‖2, from which Theorem 1.7 follows immediately. Therefore we can assume that

M ≪
√
R. We can assume that R is sufficiently large, otherwise Theorem 1.7 is trivial. This covers the base

of the induction. Now we turn to the inductive step. By induction, we can assume that Theorem 1.7 holds

for physical radii less than R/2 or for physical radius R and frequency radius less than 1
2M .

Let B∗
R denote the set B(0, R) × [0, R]. We pick a degree D = Rǫ4 , and apply polynomial partitioning

with this degree to the function χ
B

∗
R
|eit∆f(x)|p. By Theorem 2.13 with r = q/p, there exists a non-zero

polynomial P on R
2×R of degree at most D such that (R2×R)\Z(P ) is a union of ∼ D3 disjoint open sets

Oi and for each i we have

∥∥eit∆f(x)
∥∥p
Lp

xL
q
t (B

∗
R)

≤ cD3
∥∥χ

Oi
eit∆f(x)

∥∥p
Lp

xL
q
t (B

∗
R)
. (3.1)

Moreover, the polynomial P is a product of distinct non-singular polynomials.
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We define

W := NR1/2+δZ(P ) ∩B∗
R , (3.2)

where δ = ǫ2 and NR1/2+δZ(P ) stands for the R1/2+δ-neighborhood of the variety Z(P ) in R
3. We have the

wave packet decomposition for eit∆f as in (2.7). For each cell Oi, we set

O′
i = [Oi ∩B∗

R] \W and Ti = {(θ, ν) ∈ T : Tθ,ν ∩O′
i 6= ∅} . (3.3)

Here Tθ,ν is the tube associated to each tile (θ, ν), as defined in (2.8). For a function f we define

fi =
∑

(θ,ν)∈Ti

fθ,ν . (3.4)

From (2.10), it follows that on each cell O′
i,

eit∆f(x) ∼ eit∆fi(x) . (3.5)

By the fundamental theorem of algebra, we have a simple yet important geometric observation:

Lemma 3.1 For each tile (θ, ν) ∈ T, the number of cells O′
i that intersect the tube Tθ,ν is ≤ D + 1.

Proof: If Tθ,ν intersects O′
i, then the central line of Tθ,ν must cross Oi. On the other hand, a line can

cross the variety Z(P ) at most D times, hence can cross at most D + 1 cells Oi.

�

By triangle inequality, we dominate
∥∥eit∆f(x)

∥∥p
Lp

xL
q
t (B

∗
R)

by

∑

i

∥∥χ
O′

i
eit∆f(x)

∥∥p
Lp

xL
q
t (B

∗
R)

+
∥∥χ

W eit∆f(x)
∥∥p
Lp

xL
q
t (B

∗
R)
. (3.6)

We call the first term in (3.6) the cellular term, and the second the wall term. Using induction we will see

that the desired bound (1.11) holds unless the wall term makes a significant contribution. In particular, we

will show that (1.11) holds unless

∥∥eit∆f
∥∥
Lp

xL
q
t (B

∗
R)

. RO(ǫ4)
∥∥χ

W eit∆f
∥∥
Lp

xL
q
t (B

∗
R)
. (3.7)

Define
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I =

{
i :
∥∥eit∆f(x)

∥∥p
Lp

xL
q
t (B

∗
R)

≤ 10cD3
∥∥χ

O′
i
eit∆f(x)

∥∥p
Lp

xL
q
t (B

∗
R)

}
, (3.8)

where c is the constant from (3.1). By triangle inequality and (3.1), for each i ∈ Ic, we have

∥∥eit∆f(x)
∥∥p
Lp

xL
q
t (B

∗
R)

≤ 10

9
cD3

∥∥χ
Oi∩W eit∆f(x)

∥∥p
Lp

xL
q
t (B

∗
R)

. R3ǫ4
∥∥χ

W eit∆f(x)
∥∥p
Lp

xL
q
t (B

∗
R)
.

So if Ic is non-empty, then (3.7) holds. For the moment, we are considering the case where (3.7) does

not hold, and so every index i is in I, and hence |I| ∼ D3.

In addition, by Lemma 3.1,

∑

i

‖fi‖22 . (D + 1)
∑

θ,ν

‖fθ,ν‖22 . D‖f‖22 . (3.9)

Henceforth, by pigeonhole principle, there exists i ∈ I such that

‖fi‖22 . D−2‖f‖22 . (3.10)

Now we use induction: we apply (1.11) to this special fi at radius
R
2 . We can cover B(0, R)× [0, R] by

O(1) cylinders with dimensions B(0, R/2)× [0, R/2]. Therefore, we get the bound

∥∥eit∆f(x)
∥∥p
Lp

xL
q
t (B

∗
R)

. D3
∥∥χ

O′
i
eit∆f(x)

∥∥p
Lp

xL
q
t (B

∗
R)

. D3
∥∥eit∆fi(x)

∥∥p
Lp

xL
q
t (B

∗
R)

. D3
[
Cp,ǫM

−ǫ2Rǫ‖fi‖2
]p

. D3−p
[
Cp,ǫM

−ǫ2Rǫ‖f‖2
]p
.

Recall that D = Rǫ4 , and we can assume R is very large (compared to p). Since p > 3 we have D3−p ≪ 1.

Therefore, we see that induction closes (unless (3.7) holds).

It remains to prove the desired bounds when (3.7) holds – when the wall term is almost as big as the

whole.

28



3.2 Contribution from the wall: transverse term

From Section 3.1, it remains to estimate the wall contribution, the second term in (3.6). To deal with the

contribution from the wallW , we break B∗
R into ∼ R3δ balls Bj of radius R

1−δ. (Recall from the last chapter

that δ is defined to be ǫ2.)

For any tile (θ, ν) ∈ T, we say that Tθ,ν is tangent to the wall W in a given ball Bj if it satisfies that

Tθ,ν ∩Bj ∩W 6= ∅ and

Angle(G0(θ), Tz[Z(P )]) ≤ R−1/2+2δ (3.11)

for any non-singular point z ∈ 10Tθ,ν∩2Bj∩Z(P ). Recall that G0(θ) = (2c(θ), 1) is the direction of the tube

Tθ,ν . Here Tz[Z(P )] stands for the tangent space to the variety Z(P ) at the point z, and by a non-singular

point we mean a point z in Z(P ) with ∇P (z) 6= 0. Since P is a product of distinct non-singular polynomials,

the non-singular points are dense in Z(P ). We note that if Tθ,ν is tangent to W in Bj , then Tθ,ν ∩ Bj is

contained in the R1/2+δ-neighborhood of Z(P ) ∩ 2Bj .

We say that Tθ,ν is transverse to the wall W in the ball Bj if it enjoys that Tθ,ν ∩Bj ∩W 6= ∅ and

Angle(G0(θ), Tz[Z(P )]) > R−1/2+2δ (3.12)

for some non-singular point z ∈ 10Tθ,ν ∩ 2Bj ∩ Z(P ).

Let Tj,tang represent the collection of all tiles (θ, ν) ∈ T such that Tθ,ν ’s are tangent to the wall W in

Bj , and Tj,trans denote the collection of all tiles (θ, ν) ∈ T such that Tθ,ν ’s are transverse to the wall W in

Bj .

We define fj,tang :=
∑

(θ,ν)∈Tj,tang
fθ,ν and fj,trans :=

∑
(θ,ν)∈Tj,trans

fθ,ν . Then on Bj ∩W , we have

eit∆f(x) ∼ eit∆fj,tang(x) + eit∆fj,trans(x) . (3.13)

The following Lemma is about how a tube crosses a variety transversely, which was proved by Guth in

[10]. It says that Tθ,ν crosses the wall W transversely in at most RO(ǫ4) many balls Bj .

Lemma 3.2 (Lemma 3.5 in [10]) For each tile (θ, ν) ∈ T, the number of R1−δ-balls Bj for which (θ, ν) ∈

Tj,trans is at most Poly(D) = RO(ǫ4).

For points (x, t) ∈ Bj ∩ W , we could break up eit∆f(x) into a transverse term and a tangent term.

However, when we analyze the tangent contribution in subsequent sections, we will need to use a bilinear
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structure. So we do a more refined decomposition: we break eit∆f(x) into a linear transverse term and a

bilinear tangent term.

We decompose B(ξ0,M
−1) ⊂ R

2, the Fourier support of function f , into balls τ of radius 1/(KM). Here

K = K(ǫ) is a large parameter. We write f =
∑

τ fτ , where supp f̂τ ⊆ τ .

We let Bǫ := {(x, t) ∈ B(0, R)×[0, R] : ∃ τ s.t. |eit∆fτ (x)| > K−ǫ4 |eit∆f(x)|}. We will show by induction

on the radius (1/M) in frequency space that the contribution from Bǫ is acceptable. In fact, by the definition

of Bǫ,

∥∥χ
Bǫe

it∆f(x)
∥∥p
Lp

xL
q
t (B

∗
R)

≤ Kǫ4p
∑

τ

∥∥eit∆fτ (x)
∥∥p
Lp

xL
q
t (B

∗
R)
.

By applying (1.11) in Theorem 1.7 the right-hand side is bounded by

. Kǫ4p
∑

τ

[
Cǫ(KM)−ǫ2Rǫ‖fτ‖2

]p

≤ K(ǫ4−ǫ2)p
[
CǫM

−ǫ2Rǫ‖f‖2
]p

We choose K = K(ǫ) large so that K(ǫ4−ǫ2) ≪ 1, and the term involving Bǫ plays an unimportant role by

induction. So from now on, we can assume that the contribution of Bǫ is negligible.

For points (x, t) not in Bǫ, we have the following decomposition into a transverse term and a bilinear

tangent term.

Lemma 3.3 For each point (x, t) ∈ Bj ∩W satisfying maxτ |eit∆fτ (x)| ≤ K−ǫ4 |eit∆f(x)|, there exists a

sub-collection I of the collection of all possible 1/(KM) balls τ , such that

|eit∆f(x)| . |eit∆fI,j,trans(x)|+K10Bil(eit∆fj,tang(x)), (3.14)

where

fI,j,trans(x) :=
∑

τ∈I

fτ,j,trans(x),

and the bilinear tangent term is given by

Bil(eit∆fj,tang(x)) := max
τ1,τ2

dist(τ1,τ2)≥1/(KM)

|eit∆fτ1,j,tang(x)|1/2|eit∆fτ2,j,tang(x)|1/2. (3.15)
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Proof: Let I be defined by I := {τ : |eit∆fτ,j,tang(x)| ≤ K−10|eit∆f(x)|}. Then clearly

Ic = {τ : |eit∆fτ,j,tang(x)| > K−10|eit∆f(x)|}.

If there exist τ1, τ2 ∈ Ic with dist(τ1, τ2) ≥ 1/(KM), then |eit∆f(x)| . K10Bil(eit∆fj,tang(x)). Otherwise,

the number of balls τ in Ic is O(1), and

∑

τ∈Ic

|eit∆fτ (x)| ≤ CK−ǫ4 |eit∆f(x)| ≤ 1

10
|eit∆f(x)|.

Hence, by the fact that f =
∑

τ fτ and the definition of I,

9

10
|eit∆f(x)| ≤ |

∑

τ∈I

eit∆fτ (x)|

. |eit∆fI,j,tang(x)|+ |eit∆fI,j,trans(x)|

≤ CK−8|eit∆f(x)|+ |eit∆fI,j,trans(x)|,

which implies that |eit∆f(x)| . |eit∆fI,j,trans(x)|.

�

By Lemma 3.3 we can now estimate the wall contribution in (3.6) by

∥∥χ
W eit∆f(x)

∥∥p
Lp

xL
q
t (B

∗
R)

.
∑

j

∥∥max
I

χ
Bj∩W |eit∆fI,j,trans(x)|

∥∥p
Lp

xL
q
t (B

∗
R)

(3.16)

+K10p
∑

j

∥∥χ
Bj∩WBil(eit∆fj,tang(x))

∥∥p
Lp

xL
q
t (B

∗
R)
. (3.17)

We now estimate the linear transverse term (3.16). The term (3.16) is dominated by
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∑

j

∑

I⊆T

∥∥χ
Bj∩W eit∆fI,j,trans(x)

∥∥p
Lp

xL
q
t (B

∗
R)
, (3.18)

where T is the collection of all possible 1/(KM)-balls in B(ξ0, 1/M), and the sum is taken over all subsets

of T . Since there are at most 2K
2

I’s, we apply (1.11) in Theorem 1.7 with radius R1−δ to obtain

(3.18) ≤
∑

j

2K
2
[
CǫM

−ǫ2R(1−δ)ǫ‖fj,trans‖2
]p
, (3.19)

which is bounded by, using Lemma 3.2,

2K
2

RO(ǫ4)−δǫp
[
CǫM

−ǫ2Rǫ‖f‖2
]p
. (3.20)

Since δ = ǫ2, it is clear that 2K
2

RO(ǫ4)−δǫp < 1/100 and so the induction on the transverse term closes.

It remains to estimate the bilinear tangent term (3.17). We state the Schrödinger maximal estimate for

the bilinear tangent term in this section, and prove it in Subsection 3.3.4.

Proposition 3.4 For p > 3, the following maximal estimate of the bilinear tangent term (3.15) holds,

uniformly in M :

(∫

B(0,R)

sup
t:(x,t)∈W∩Bj

∣∣Bil(eit∆fj,tang(x))
∣∣pdx

)1/p

≤ CǫR
ǫ/2‖f‖2 . (3.21)

Given Proposition 3.4, we estimate the bilinear tangent term (3.17) as follows, for any q > 1/ǫ4,

∥∥χ
Bj∩WBil(eit∆fj,tang(x))

∥∥p
Lp

xL
q
t (B

∗
R)

≤ Rp/q

∫

B(0,R)

sup
t:(x,t)∈W∩Bj

∣∣Bil(eit∆fj,tang(x))
∣∣pdx

≤ RO(δ)+ǫp/2‖f‖p2 .

Hence Theorem 1.7 follows from Proposition 3.4 and the inductions.

32



3.3 Contribution from the wall: bilinear tangent term

In this section we obtain both linear and bilinear local refinements of the Strichartz inequality, via the

Bourgain-Demeter l2-decoupling theorem [4]. In subsection 3.3.4 we will use the bilinear refinement of

Strichartz to prove the Schrödinger maximal estimate for the bilinear tangent term in Proposition 3.4.

3.3.1 Variations on the Strichartz inequality using decoupling

For the bilinear tangent term in Proposition 3.4, all wave packets are tangent to a variety. Suppose that

Z = Z(P ) where P is a product of non-singular polynomials. For any tile (θ, ν) ∈ T, we say that Tθ,ν is

ER−1/2-tangent to Z if

Tθ,ν ⊂ NER1/2Z ∩B∗
R ,

and

Angle(G0(θ), Tz[Z(P )]) ≤ ER−1/2 (3.22)

for any non-singular point z ∈ N2ER1/2(Tθ,ν) ∩ 2B∗
R ∩ Z.

Let

TZ(E) := {(θ, ν) ∈ T : Tθ,ν is ER−1/2-tangent toZ} ,

and we say that f is concentrated in wave packets from TZ(E) if

∑

(θ,ν)/∈TZ(E)

‖fθ,ν‖2 ≤ RapDec(R)‖f‖2.

Since the radius of Tθ,ν is R1/2+δ, Rδ is the smallest interesting value of E.

We write A / B if A ≤ CǫR
ǫB for any ǫ > 0. In this section, we establish the following local refinements

of the Strichartz estimates.

Theorem 3.5 Suppose that f ∈ L2(R2) has Fourier support in B2(0, 1), and is concentrated in wave packets

from TZ(E), where Z = Z(P ) and P is a product of distinct non-singular polynomials. Suppose that

Q1, Q2, ... are lattice R1/2-cubes in B3(R), so that
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‖eit∆f‖L6(Qj) is essentially constant in j.

Suppose that these cubes are arranged in horizontal strips of the form R×R×{t0, t0 +R1/2}, and that each

strip contains ∼ σ cubes Qj. Let Y denote
⋃

j Qj. Then

‖eit∆f‖L6(Y ) / EO(1)R−1/6σ−1/3‖f‖L2 . (3.23)

To get some intuition, we consider a special case of Theorem 3.5, in which the variety Z is naturally

replaced by a 2-plane V , and E ≈ 1. In the planar case, the angle condition (3.22) restricts the support of

f̂ to a ≈ R−1/2-strip and all wave packets are contained in the ≈ R1/2-neighborhood of V , so the absolute

value |eit∆f(x)| is essentially constant along a transverse direction which is roughly normal to V . (It is not

rigorous to treat |eit∆f(x)| essentially as constant along a transverse direction to V , but useful for intuition.

In subsection 3.3.4 we will give a rigorous argument to deal with the issue of |eit∆f(x)| being morally roughly

constant along a transverse direction.) By a direct computation, the absolute value of eit∆f(x)|V is roughly

equal to the absolute value of a Schrödinger solution in dimension 2, denoted by eir∆h(y) for some function

h with Fourier support in B1(0, 1), where (y, r) are coordinates of V . Hence the conclusion in Theorem 3.5

can be rephrased in terms of h. Indeed, observe that

‖eit∆f(x)‖6L6(Y ) ∼ R1/2‖eir∆h(y)‖6L6(Y ∩V ),

‖f‖22 ∼ R−1‖eit∆f‖2L2(B3(R)) ∼ R−1R1/2‖eir∆h‖2L2(B3
R∩V ) ∼ R1/2‖h‖22.

Therefore the estimate (3.23) is equivalent to

‖eir∆h‖L6(Y ∩V ) / σ−1/3‖h‖L2 . (3.24)

It follows from the Strichartz inequality that ‖eir∆h‖L6(Y ∩V ) . ‖h‖L2 . We get an improvement when σ is

large. The condition that σ is large forces the solution eit∆f to be spread out in space, and we will exploit

this spreading out to get our improvement.

Moreover, Theorem 3.5 has the following bilinear refinement.

Theorem 3.6 For functions f1 and f2 in L2(R2) with separated Fourier supports in B2(0, 1), separated by

∼ 1, suppose that f1 and f2 are concentrated in wave packets from TZ(E), where Z = Z(P ) and P is a
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product of distinct non-singular polynomials. Suppose that Q1, Q2, · · · , QN are lattice R1/2-cubes in B3(R),

so that for each i,

‖eit∆fi‖L6(Qj) is essentially constant in j.

Let Y denote
⋃N

j=1Qj. Then

∥∥∥|eit∆f1eit∆f2|1/2
∥∥∥
L6(Y )

/ EO(1)R−1/6N−1/6‖f1‖1/2L2 ‖f2‖1/2L2 .

3.3.2 Proof of the linear refinement of Strichartz - Theorem 3.5

The proof uses the Bourgain-Demeter l2-decoupling theorem, together with induction on the radius and

parabolic rescaling. First we recall the decoupling result of Bourgain and Demeter in [4].

Theorem 3.7 (Bourgain-Demeter) Suppose that the R−1-neighborhood of the unit parabola in R
2 is

divided into R1/2 disjoint rectangular boxes τ , each with dimensions R−1/2 ×R−1. Suppose F̂τ is supported

in τ and F =
∑

τ Fτ . Then

‖F‖L6(R2) /

(∑

τ

‖Fτ‖2L6(R2)

)1/2

.

If E ≥ R1/4 (or any fixed power of R), then the estimate (3.23) is trivial because of the factor EO(1). So

we assume that E ≤ R1/4.

To set up the argument, we decompose f as follows. We break the unit ball B2(1) in frequency space

into small balls τ of radius R−1/4, and divide the physical space ball B2(R) into balls B of radius R3/4. For

each pair (τ,B), we let f✷τ,B
be the function formed by cutting off f on the ball B (with a Schwartz tail)

in physical space and the ball τ in Fourier space. We note that eit∆f✷τ,B
, restricted to B3(R), is essentially

supported on an R3/4 × R3/4 × R-box, which we denote by ✷τ,B (compare the discussion in Section 2.1).

The box ✷τ,B is in the direction given by (2c(τ), 1) and intersects t = 0 at a disk centered at (c(B), 0), where

c(τ) and c(B) are the centers of τ and B respectively. For a fixed τ , the different boxes ✷τ,B tile B3(R). In

particular, for each τ , a given cube Qj lies in exactly one box ✷τ,B .

Since f is concentrated in wave packets from TZ(E), we only need to consider those R1/2-cubes Qj

that are contained in the ER1/2-neighborhood of Z. For each such R1/2-cube Qj , we will see that the wave

packets that pass through Qj are nearly coplanar. Because of this, we will be able to apply the 2-dimensional

decoupling theorem to study eit∆f on Qj :
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Lemma 3.8 Suppose that f ∈ L2(R2) has Fourier support in B2(0, 1) and is concentrated in wave packets

from TZ(E), where E ≤ R1/4 and Z = Z(P ) is a finite union of non-singular varieties. Suppose that an

R1/2-cube Q is in NER1/2(Z). Then we have the decoupling bound

‖eit∆f‖L6(Q) /

(∑

✷

‖eit∆f✷‖2L6(10Q)

)1/2

+R−1000‖f‖L2 . (3.25)

Remark: Recall that the parameter R is assumed to be sufficiently large. The R−1000‖f‖L2 is a negligibly

small term which covers minor contributions coming from the tails of the Fourier transforms of smooth

functions. We will neglect this term in the sequel.

Proof: Observe that Q ⊂ NER1/2Z implies that there exists a non-singular point z0 ∈ Z ∩NER1/2Q. Thus

for each wave packet Tθ,ν that intersects Q, we have z0 ∈ Z ∩N2ER1/2(Tθ,ν). By the definition of TZ(E) we

get the angle bound

Angle(G0(θ), Tz0 [Z(P )]) ≤ ER−1/2 . (3.26)

We recall from Section 2.1 that G0(θ) = (2c(θ), 1). Suppose that Tz0Z is the plane given by a1x1 +

a2x2 + bt = 0, with a21 + a22 + b2 = 1. The angle condition above restricts the location of θ as follows:

|2a · c(θ) + b| . ER−1/2. (3.27)

We note that each tube Tθ,ν makes an angle & 1 with the plane t = 0, because θ ⊂ B(0, 1). We can assume

that there are some tubes Tθ,ν tangent to Tz0Z, and so |a| & 1. Therefore, (3.27) confines θ to a strip of

width ∼ ER−1/2 inside of B(0, 1). We denote this strip by S ⊂ B(0, 1).

Let TZ,Q(E) be the set of (θ, ν) in TZ(E) for which each Tθ,ν intersects Q. For each (θ, ν) in TZ,Q(E),

θ obeys (3.27), and so θ ⊂ S. Let η be a smooth bump function which approximates χQ. We note that

ηeit∆f is essentially equal to

∑

(θ,ν)∈TZ,Q(E)

ηeit∆fθ,ν .

Therefore, the Fourier transform of the localized solution ηeit∆f is essentially supported in

S∗ := {(ξ1, ξ2, ξ3) : (ξ1, ξ2) ∈ S and |ξ3 + ξ21 + ξ22 | . R−1/2}. (3.28)

(The contribution of the not essential parts is covered by the negligible term R−1000‖f‖L2 in the statement
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of the Lemma.)

After a rotation in the (x1, x2)-plane we can suppose that the strip S is defined by

a1 ≤ ξ1 ≤ a1 + ER−1/2,

for some a1 ∈ [−1, 1]. We note that at each point (ξ1, ξ2) ∈ S,

∂1
(
−ξ21 − ξ22

)
= −2a1 +O(ER−1/2). (3.29)

Let v be the vector

v = (1, 0,−2a1).

Let Π be a 2-plane perpendicular to v. Because E ≤ R1/4, we claim that the projection of S∗ onto Π lies in

the ∼ R−1/2-neighborhood of a parabola. We can see this as follows. Let

S∗
core := {(ξ1, ξ2, ξ3) : ξ1 = a1, |ξ2| ≤ 1, ξ3 = −ξ21 − ξ22}.

The set S∗
core is a parabola, and its projection onto Π is also a parabola. We claim that the projection of

S∗ to Π lies in the ∼ R−1/2-neighborhood of this parabola. If (ξ1, ξ2, ξ3) ∈ S∗, then (3.29) tells us that

(−ξ21 − ξ22) = −a21 − ξ22 − 2a1(ξ1 − a1) +O(ER−1/2 · |ξ1 − a1|).

Therefore,

(ξ1, ξ2, ξ3) = (a1, ξ2,−a21 − ξ22) + (ξ1 − a1)v +O(ER−1/2|ξ1 − a1|+R−1/2).

The first term on the right-hand side lies is S∗
core. Since Π is perpendicular to v, the projection to Π kills

the second term on the right-hand side. So the distance from the projection of ξ to the projection of S∗
core

is at most

ER−1/2|ξ1 − a1|+R−1/2 . E2R−1 +R−1/2 ∼ R−1/2.

Therefore, if we restrict ηeit∆f to Π, the resulting 2-dimensional function has Fourier support in the

∼ R−1/2-neighborhood of a parabola.

We consider the decomposition f =
∑

(τ,B):✷τ,B∩Q 6=∅ f✷τ,B
. If eit∆f✷τ,B

contributes to ‖eit∆f‖L6(Q),
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there must be a wave packet Tθ,ν that intersects the R1/2-cube Q with θ ⊂ τ , and so τ ∩ S must be non-

empty. Also, for a given τ , there is only one B so that ✷τ,B ∩ Q is non-empty. Also, the Fourier support

of ηeit∆f✷τ,B
lies in S∗ ∩ (τ × R), by the same argument we used above for ηeit∆f . The projection onto

Π of S∗ ∩ (τ × R) is an R−1/4 × R−1/2 rectangular box. The union of these boxes over all τ intersecting

S is the R−1/2-neighborhood of a parabola. Therefore, we have the hypotheses to apply the 2-dimensional

decoupling theorem, Theorem 3.7, which gives:

‖ηeit∆f‖L6(Π) /

(∑

✷

‖ηeit∆f✷‖2L6(Π)

)1/2

.

Now we integrate in the direction perpendicular to Π and apply Fubini and Minkowski to get

‖ηeit∆f‖L6(R3) /

(∑

✷

‖ηeit∆f✷‖2L6(R3)

)1/2

.

This implies the desired conclusion.

�

Next, by induction on the radius R, we will show that each function f✷ obeys a version of Theorem 3.5.

Here is the statement. Suppose that S1, S2, ... are R
1/2 × R1/2 × R3/4-tubes in ✷ (running parallel to the

long axis of ✷), and that

‖eit∆f✷‖L6(Sj) is essentially constant in j.

Suppose that these tubes are arranged into R3/4-strips running parallel to the short axes of ✷ and that each

such strip contains ∼ σ✷ tubes Sj . Let Y✷ denote ∪jSj . Then

‖eit∆f✷‖L6(Y✷) / EO(1)R−1/12R−1/12σ
−1/3
✷ ‖f✷‖L2 . (3.30)

This inequality follows by doing a parabolic rescaling and then using Theorem 3.5 at scale R1/2, which

we can assume holds by induction on R. We write down the details of this parabolic rescaling, and in

particular we will check that the tangent-to-variety condition is preserved under parabolic rescaling. For

each R−1/4-ball τ in B2(1), we write ξ = ξ0 +R−1/4ζ ∈ τ , then

|eit∆fτ (x)| = R−1/4|eit̃∆g(x̃)|

for some function g with Fourier support in B2(1) and ‖g‖2 = ‖fτ‖2, where the new coordinates (x̃, t̃) are
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related to the old coordinates (x, t) by





x̃ = R−1/4x− 2tR−1/4ξ0 ,

t̃ = R−1/2t .

(3.31)

Therefore

‖eit∆f✷(x)‖L6(Y✷) = R−1/12‖eit̃∆g(x̃)‖L6(Ỹ ),

where Ỹ is the image of Y✷ under the new coordinates. Note that Ỹ is a union of R1/4-cubes inside

an R1/2-cube. These R1/4-cubes are arranged in R1/4-horizontal strips, and each strip contains ∼ σ✷

R1/4-cubes. Moreover, by the relation (3.31), we see that each wave packet T , at scale R, of dimensions

R1/2+δ × R1/2+δ × R in the old coordinates is mapped to a corresponding wave packet T̃ , at scale R1/2, of

dimensions R1/4+δ ×R1/4+δ ×R1/2 in the new coordinates. The variety Z(P ) corresponds to a new variety

Z(Q), given by the relation Q(x̃, t̃) = Q(R−1/4x − 2tR−1/4ξ0, R
−1/2t) = P (x, t). We claim that, under the

above correspondence, if the wave packet T at scale R is ER−1/2-tangent to Z(P ), then the wave packet T̃

at scale R1/2 is ER−1/4-tangent to Z(Q) in the new coordinates.

By the relation (3.31), the distance condition T ⊂ NER1/2Z(P ) implies that T̃ ⊂ NER1/4Z(Q). Given

the direction (2ξ, 1) of T , the angle condition

Angle((2ξ, 1), Tz0 [Z(P )]) ≤ ER−1/2

is equivalent to

|(2ξ, 1) · (Px(x0, t0), Pt(x0, t0))|
|(Px(x0, t0), Pt(x0, t0))|

. ER−1/2, (3.32)

where z0 = (x0, t0). Note that the direction of the corresponding wave packet T̃ is given by (2ζ, 1), where

ξ and ζ are related by ξ = ξ0 + R−1/4ζ. Let z̃0 = (x̃0, t̃0) denote the point corresponding to z0. Using the

relations

Px = R−1/4Qx̃, Pt = −2R−1/4ξ0 ·Qx̃ +R−1/2Qt̃ ,

after some computation, (3.32) yields that

|(2ζ, 1) · (Qx̃(x̃0, t̃0), Qt̃(x̃0, t̃0))|
|(Qx̃(x̃0, t̃0), Qt̃(x̃0, t̃0))|

. ER−1/4,
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which implies that

Angle((2ζ, 1), T̃z̃0 [Z(Q)]) ≤ ER−1/4.

Therefore the tangent-to-variety condition is preserved under parabolic rescaling and the induction on radius

is justified.

We have now established inequality (3.30). To apply this inequality, we need to identify a good choice

of Y✷. We do this by some dyadic pigeonholing. For each ✷, we apply the following algorithm to regroup

tubes in ✷.

1. We sort those R1/2×R1/2×R3/4-tubes S’s contained in the box ✷ according to the order of magnitude

of ‖eit∆f✷‖L6(S), which we denote λ. For each dyadic number λ, we use Sλ to stand for the collection

of tubes S ⊂ ✷ with ‖eit∆f✷‖L6(S) ∼ λ.

2. For each λ, we sort the tubes S ∈ Sλ by looking at the number of such tubes in an R3/4-strip. For

any dyadic number η, we let Sλ,η be the set of tubes S ∈ Sλ so that the number of tubes of Sλ in the

R3/4-strip containing S is ∼ η.

...

R

1

2

η

R

3 4

R

3 4

R

1 2

Figure 3.1: Tubes in a given strip in the ✷

Let Y✷,λ,η be the union of the tubes in Sλ,η. Then we represent

eit∆f =
∑

λ,η

(∑

✷

eit∆f✷ · χY✷,λ,η

)
.

Since there are O(logR) choices for each of λ, η, by pigeonholing, we can choose λ, η so that
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‖eit∆f‖L6(Qj) . (logR)2
∥∥∑

✷

eit∆f✷ · χY✷,λ,η

∥∥
L6(Qj)

(3.33)

holds for a fraction ≈ 1 of all cubes Qj in Y . We need this uniform choice of (λ, η), which is independent of

Qj , because later we will sum over all Qj and arrive at ‖eit∆f✷‖L6(Y✷,λ,η).

We fix λ and η for the rest of the proof. Let Y✷ stand for the abbreviation of Y✷,λ,η. We note that Y✷

obeys the hypotheses for our inductive estimate (3.30), with σ✷ being the value of η that we have fixed.

The following geometric estimate will play a crucial role in our proof. Each set Y✷ contains . σ✷ tubes

in each strip parallel to the short axes of ✷. Since the angle between the short axes of ✷ and the x-axes is

bounded away from π/2, it follows that Y✷ contains . σ✷ cubes Qj in any R1/2-horizontal row. Therefore,

|Y✷ ∩ Y | . σ✷
σ

|Y |. (3.34)

Next we sort the the boxes ✷ according to the dyadic size of ‖f✷‖L2 . We can restrict matters to . logR

choices of this dyadic size, and so we can choose a set of ✷’s, B, so that ‖f✷‖L2 is essentially constant for

✷ ∈ B and

‖eit∆f‖L6(Qj) / ‖
∑

✷∈B

eit∆f✷ · χY✷
‖L6(Qj) (3.35)

for a fraction ≈ 1 of cubes Qj in Y .

Finally we sort the cubes Qj ⊂ Y according to the number of Y✷ that contain them. We let Y ′ ⊂ Y be

a set of cubes Qj which obey (3.35) and which each lies in ∼ µ of the sets {Y✷}✷∈B. Because (3.35) holds

for a large fraction of cubes, and because there are only dyadically many choices of µ, |Y ′| ≈ |Y |. By the

equation (3.34), we see that

|Y✷ ∩ Y ′| ≤ |Y✷ ∩ Y | / σ✷
σ

|Y | ≈ σ✷
σ

|Y ′|.

Therefore, the multiplicity µ is bounded by

µ /
σ✷
σ

|B|. (3.36)

We now are ready to combine all our ingredients and finish our proof. For each Qj ⊂ Y ′, we have
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‖eit∆f‖L6(Qj) /

∥∥∥∥∥
∑

✷∈B

eit∆f✷ · χY✷

∥∥∥∥∥
L6(Qj)

.

Now we apply Lemma 3.8 to the function
∑

✷∈B,Qj⊂Y✷

f✷ to bound the right hand side by

/


 ∑

✷∈B,Qj⊂Y✷

∥∥eit∆f✷
∥∥2
L6(Qj)




1/2

.

Since the number of Y✷ containing Qj is ∼ µ, we can apply Hölder to get

∥∥∥∥∥
∑

✷∈B

eit∆f✷ · χY✷

∥∥∥∥∥
L6(Qj)

/ µ1/3


 ∑

✷∈B,Qj⊂Y✷

∥∥eit∆f✷
∥∥6
L6(Qj)




1/6

.

Now we raise to the sixth power and sum over Qj ⊂ Y ′ to get

∥∥eit∆f
∥∥6
L6(Y ′)

/ µ2
∑

✷∈B

∥∥eit∆f✷
∥∥6
L6(Y✷)

.

Since |Y ′| ' |Y |, and since each cube Qj ⊂ Y makes an equal contribution to ‖eit∆f‖L6(Y ), we see that

‖eit∆f‖L6(Y ) ≈ ‖eit∆f‖L6(Y ′) and so

∥∥eit∆f
∥∥6
L6(Y )

/ µ2
∑

✷∈B

∥∥eit∆f✷
∥∥6
L6(Y✷)

.

By a parabolic rescaling, Figure 3.1 becomes Figure 3.2. Henceforth, applying our inductive hypothesis

. . . η21

R

1 2 R

1 4

Figure 3.2: Cubes in a given strip in an R
1/2-cube

(3.30) at scale R1/2 to the right-hand side, we see that
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∥∥eit∆f
∥∥6
L6(Y )

/ EO(1)R−1µ2σ−2
✷

∑

✷∈B

‖f✷‖6L2 . (3.37)

Plugging in our bound for µ in (3.36), this is bounded by

. EO(1)R−1σ−2|B|2
∑

✷∈B

‖f✷‖6L2 .

Now since ‖f✷‖L2 is essentially constant among all ✷ ∈ B, the last expression is

∼ EO(1)R−1σ−2(
∑

✷∈B

‖f✷‖2L2)3 ≤ EO(1)R−1σ−2‖f‖6L2 .

Taking the sixth root, we obtain our desired bound:

‖eit∆f‖L6(Y ) / EO(1)R−1/6σ−1/3‖f‖L2 .

This closes the induction on radius and completes the proof.

3.3.3 Proof of the bilinear refinement of Strichartz - Theorem 3.6

It can be proved by the method used in the proof of Theorem 3.5. By Hölder,

∥∥∥
∣∣eit∆f1eit∆f2

∣∣1/2
∥∥∥
L6(Y )

≤
2∏

i=1

∥∥eit∆fi
∥∥1/2
L6(Y )

.

For each i, we process ‖eit∆fi‖L6(Y ) following the proof of Theorem 3.5. We decompose fi =
∑

✷
fi,✷, and

we follow the proof of Theorem 3.5. We define Yi,✷ by dyadic pigeonholing, so that Yi,✷ is arranged in

several R3/4-strips (running parallel to the short axes of ✷) with ∼ σi,✷ R1/2 × R1/2 × R3/4-tubes in each

strip. When we use dyadic pigeonholing to pick a subset of cubes Qj ⊂ Y , we pigeonhole for f1 and f2

simultaneously, and so we pick out a set of cubes that works well for both functions. Following the argument

up to Equation (3.35), we see that for a fraction ≈ 1 of cubes Qj ,

‖eit∆fi‖L6(Qj) / ‖
∑

✷∈Bi

eit∆fi,✷ · χYi,✷
‖L6(Qj) for i = 1, 2. (3.38)

Similarly, we sort the cubes Qj ⊂ Y according to the number of Yi,✷ that contain them. We let Y ′ ⊂ Y

be a set of cubes Qj which obey (3.38) and which each lies in ∼ µ1 of the sets {Y1,✷}✷∈B1 and ∼ µ2 of the

sets {Y2,✷}✷∈B2
. Because (3.38) holds for a large fraction of cubes, and because there are only dyadically
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many choices of µ1, µ2, |Y ′| ≈ |Y |. Following the proof of Theorem 3.5 further, up to Equation (3.37), we

see that for each i,

∥∥eit∆fi
∥∥
L6(Y )

/ EO(1)R−1/6

[
µ2
iσ

−2
i,✷

∑

✷∈Bi

‖fi,✷‖6L2

]1/6
. (3.39)

Finally, we give a geometric estimate for µ1 and µ2 that takes advantage of the bilinear structure. If

✷1 ∈ B1 and ✷2 ∈ B2, then the angle between their long axes is ∼ 1. Therefore, their intersection is

contained in a ball of radius ∼ R3/4, and so Y✷1 ∩ Y✷2 contains . σ1,✷σ2,✷ different R1/2-balls (see Figure

3.3).

.
.

.
.

.

R

3

R

1 2

4

1

2

σ
1,1

2

σ
2,

.

Figure 3.3: at most O(σ1,✷σ2,✷) cubes created by two transversal families of rectangular boxes

For each of the ≈ N cubes Qj in Y ′, for each i, the cube Qj lies in ∼ µi of the sets {Y✷i}✷i∈Bi . Therefore,

N
2∏

i=1

µi /
2∏

i=1

σi,✷|Bi|. (3.40)

Starting with (3.39) and inserting this estimate, we see that

2∏

i=1

∥∥eit∆fi
∥∥1/2
L6(Y )

/ EO(1)R−1/6
2∏

i=1

[
µ2
iσ

−2
i,✷

∑

✷∈Bi

‖fi,✷‖6L2

] 1
6 · 12

/ EO(1)R−1/6
2∏

i=1

[
N−1|Bi|2

∑

✷∈Bi

‖fi,✷‖6L2

] 1
6 · 12

. EO(1)R−1/6N−1/6
2∏

i=1

‖fi‖1/2L2 ,

as desired.

44



3.3.4 Schrödinger maximal estimate for the bilinear tangent term

In this subsection, using the bilinear refinement of Strichartz in Theorem 3.6 and parabolic rescaling, we

prove the following proposition, which implies Proposition 3.4.

Proposition 3.9 Suppose that ξ0 ∈ B2(0, 1) and that f1 and f2 in L2(R2) have Fourier supports in

B(ξ0, 1/M) for some M ≥ 1. Also suppose that the Fourier supports of f1 and f2 are separated by at

least 1/(KM), where K = K(ǫ) is a large constant. Suppose that each fi is concentrated in wave packets

from TZ(E), where E ≥ Rδ and Z = Z(P ) and P is a product of distinct non-singular polynomials. Then

∥∥∥|eit∆f1|1/2|eit∆f2|1/2
∥∥∥
L3

x(BR)L∞
t (0,R)

/ EO(1)‖f1‖1/2L2 ‖f2‖1/2L2 . (3.41)

Proof: We can assume M ≪ R1/2, otherwise all wave packets were in the same direction and a direct

computation would give us the desired result.

Since f is concentrated in wave packets from TZ(E), we decompose NER1/2Z into balls Q of radius R1/2.

Let η be a smooth bump function approximating χQ. As we saw in the proof of Lemma 3.8, in Equation

(3.28), the Fourier support of each function ηeit∆fi is essentially supported on

S∗ := {(ξ1, ξ2, ξ3) : (ξ1, ξ2) ∈ S and |ξ3 + ξ21 + ξ22 | . R−1/2},

where S ⊂ B(0, 1) is a strip of width ER−1/2. Since the Fourier support of each fi is also contained in

B(ξ0, 1/M), the Fourier support of ηeit∆fi is also essentially contained in B(ξ0,
2
M )×R. The intersection of

S∗ with the cylinder B(ξ0,
2
M )× R is contained in a rectangle of dimensions ∼ ER−1/2 × 1/M × 1/M . We

denote this rectangle by A∗(Q). Since the Fourier support of each ηeit∆fi is contained in A∗(Q), |ηeit∆fi|

is morally constant on dual rectangles with dimensions M × M × E−1R1/2. We tile Q with such dual

rectangles, which we denote Ak(Q). The projection of each dual rectangle Ak(Q) to the x-plane is an

M × E−1R1/2-rectangle.

Suppose that sup0<t≤R |eit∆f1eit∆f2|1/2 ∼ H on a set U ⊂ B(0, R). It suffices for us to prove the bound

H|U |1/3 / EO(1)‖f1‖1/2L2 ‖f2‖1/2L2 . (3.42)

We will bound |U | using the rectangles Ak(Q). For the time being, let us suppose that |ηeit∆fi| is roughly

constant on each Ak(Q). This is not quite rigorous, but useful for intuition. On the next page, we will come

back to this point and give a rigorous argument.

There must be a collection of dual rectangles Ak(Qj) whose projections cover U and so that

45



|eit∆f1eit∆f2|1/2 ∼ H

on each dual rectangle. We let X denote the union of these dual rectangles. Each M × M × E−1R1/2

rectangle Ak(Qj) ⊂ X has a projection with area ME−1R1/2, and since these projections cover U , we have

the bound

|U | .M−1|X|. (3.43)

We can also assume that no two rectangles Ak(Qj) ⊂ X have essentially the same projection. This

implies that X contains . EO(1)R1/2M−1 rectangles Ak(Q) in each cube Q. So for each cube Q, we get the

bound

|X ∩Q| . EO(1)MR. (3.44)

We consider the R1/2-cubes Q in B2(R)× [0, R] that intersect X. We sort these R1/2-cubes Q according

to the dyadic value of
∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥
L6(Q)

. We can choose a set of of R1/2-cubes Qj , j = 1, 2, · · · , N ,

so that

∥∥∥|eit∆f1|1/2|eit∆f2|1/2
∥∥∥
L6(Qj)

is essentially constant in j, (3.45)

and |X| / |X ∩ Y |, where Y :=
⋃N

j=1Qj . Using the locally constant property that |eit∆f1eit∆f2|1/2 ∼ H on

each rectangle Ak(Qj) ⊂ X, we see that

H|X|1/6 / EO(1)
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y )

. (3.46)

Since |X ∩ Qj | . EO(1)MR for each cube Qj , j = 1, ...N , we see that |X| / |X ∩ Y | . EO(1)MNR.

Therefore,

H|X|1/3 / EO(1)M1/6N1/6R1/6
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y )

. (3.47)

Finally, since |U | .M−1|X|, we have

H|U |1/3 / EO(1)M−1/6N1/6R1/6
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y )

. (3.48)

Therefore, our desired bound (3.42) follows from a generalization of Theorem 3.6, which we now state.
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Proposition 3.10 Suppose that f1 and f2 are as in Proposition 3.9. Suppose that Q1, Q2, · · · , QN are

lattice R1/2-cubes in B3(R) so that

∥∥∥|eit∆f1|1/2|eit∆f2|1/2
∥∥∥
L6(Qj)

is essentially constant in j. (3.49)

Let Y denote
⋃N

j=1Qj. Then

∥∥∥|eit∆f1|1/2|eit∆f2|1/2
∥∥∥
L6(Y )

/ EO(1)M1/6N−1/6R−1/6‖f1‖1/2L2 ‖f2‖1/2L2 . (3.50)

If M = 1, then f1 and f2 have Fourier supports separated by ∼ 1, and we can apply Theorem 3.6. We

first find Y ′ ⊂ Y with |Y ′| ≈ |Y | so that for each i, ‖eit∆fi‖L6(Qj) is essentially constant among all Qj ⊂ Y ′.

Then we apply Theorem 3.6 to Y ′ to get (3.50):

∥∥∥|eit∆f1|1/2|eit∆f2|1/2
∥∥∥
L6(Y )

≈

≈
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y ′)

/ EO(1)N−1/6R−1/6‖f1‖1/2L2 ‖f2‖1/2L2 .

For larger M , the Fourier supports of f1 and f2 are only separated by ∼ 1/M , and so we will need to

apply parabolic rescaling before we can use Theorem 3.6.

Before we do this parabolic rescaling and prove Proposition 3.10, let us return to the issue of |eit∆fi|

being morally roughly constant on each rectangle Ak(Q). We used the locally constant property to justify

(3.46) above. We can rigorously prove (3.46) as follows. We mentioned above that each function ηQe
it∆fi

has Fourier transform essentially supported in a rectangle A∗(Q) of dimensions ∼ ER−1/2 ×M−1 ×M−1.

So the Fourier transform of their product, g := η2Qe
it∆f1e

it∆f2, is essentially supported in a rectangle with

the same orientation and roughly the same dimensions. If ψ̂ is designed to be identically 1 on this rectangle,

then g ∗ ψ is essentially equal to g. We can choose such a ψ where |ψ| is a rapidly-decaying approximation

of |Ak(Qj)|−1χ
Ak(Qj). Therefore, we see that

sup
Ak(Q)

|eit∆f1eit∆f2| . RO(δ)

∫
RδAk(Q)

|eit∆f1eit∆f2|
|Ak(Qj)|

+R−1000‖f1‖L2‖f2‖L2 , (3.51)

where the second term accounts for the tail of ψ. Since E ≥ Rδ, we can assume that RδAk(Q) ⊂ Q.

We let X be a union of rectangles Ak(Qj) which each obeys
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H . sup
Ak(Qj)

|eit∆f1eit∆f2|1/2.

We can arrange that the projections of 10Ak(Qj) cover U and also that any two rectangles Ak(Qj) in

X have essentially different projections. Because of this covering, we still have |U | . M−1|X|. Now if

H . R−100‖f1‖1/2L2 ‖f2‖1/2L2 , then (3.42) follows trivially. Therefore, (3.51) tells us that for each Ak(Qj) ⊂ X:

∫

RδAk(Q)

|eit∆f1eit∆f2| & R−O(δ)|Ak(Qj)|H2.

We define Y just as above, and this inequality lets us rigorously justify (3.46):

H|X|1/6 ≈ H|X ∩ Y |1/6 / EO(1)
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y )

.

It only remains to prove Proposition 3.10.

Proof: For function f ∈ L2 with Fourier support in B(ξ0, 1/M), by parabolic rescaling, we have

‖eit∆f(x)‖Lp(B3(R)) ∼M
4
p−1‖eir∆f̃(y)‖Lp(BR/M×IR/M2 ), (3.52)

where f̃ has Fourier support in B2(0, 1), ‖f̃‖2 = ‖f‖2, the new coordinates (y, r) and old coordinates (x, t)

are related by





y = x/M − 2tξ0/M,

r = t/M2,

and BR/M × IR/M2 is a box of dimension ∼ R
M × R

M × R
M2 , which is the range for (y, r) under the change of

variables as above. By (3.52), we have

∥∥∥|eit∆f1|1/2|eit∆f2|1/2
∥∥∥
L6(Y )

∼M−1/3
∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2

∥∥∥
L6(Ỹ )

, (3.53)

where f̃1, f̃2 have 1/K-separated Fourier supports in B2(0, 1), and Ỹ is a union of N
√
R

M ×
√
R

M ×
√
R

M2 -boxes

in BR/M × IR/M2 , in correspondence to Y under the change of variables as above.

To use Theorem 3.6 to estimate
∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2

∥∥∥
L6(Ỹ )

, we decompose BR/M × IR/M2 as a union

of R
M2 -balls Qk,R/M2 , and inside each Qk,R/M2 we consider the

√
R/M -cubes Q(k) that intersect Ỹ . First, we

sort the balls Qk,R/M2 according to the dyadic values ‖eir∆f̃i‖L2(Qk,R/M2 ), i = 1, 2. Then inside each Qk,R/M2

we sort the cubes Q(k) according to the dyadic values ‖eir∆f̃i‖L6(Q(k)), i = 1, 2. We can choose balls Qk,R/M2 ,
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k = 1, 2, · · · , W̄ , and inside each Qk,R/M2 we can choose a set of
√
R/M -cubes Q

(k)
j , j = 1, 2, · · · , Nk, so

that

≈ N boxes in Ỹ are contained in
W̄⋃

k=1

Ỹk, (3.54)

where Ỹk :=
⋃Nk

j=1Q
(k)
j , and the following conditions hold:

• (a). For each i = 1, 2, ‖eir∆f̃i‖L2(Qk,R/M2 ) is essentially constant in k = 1, · · · , W̄ .

• (b). For each k = 1, · · · , W̄ , for each i = 1, 2, ‖eir∆f̃i‖L6(Q
(k)
j )

is essentially constant in j = 1, · · · , Nk.

• (c).
∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2

∥∥∥
L6(Ỹk)

is essentially constant in k = 1, · · · , W̄ .

Now by (3.49), (3.54) and the condition (c) as above, for each 1 ≤ k ≤ W̄ we have

∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2
∥∥∥
L6(Ỹ )

/ W̄
1
6

∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2
∥∥∥
L6(Ỹk)

.

Since tangent-to-variety condition is preserved under parabolic rescaling, we can apply Theorem 3.6 to bound
∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2

∥∥∥
L6(Ỹk)

by

/ EO(1)

(
R

M2

)−1/6

N
−1/6
k

(
R

M2

)−1/2 2∏

i=1

∥∥∥eir∆f̃i
∥∥∥
1/2

L2(Qk,R/M2 )
.

By the condition (a) as above and parabolic rescaling (3.52), we have

2∏

i=1

∥∥∥eir∆f̃i
∥∥∥
1/2

L2(Qk,R/M2 )
. W̄−1/2

2∏

i=1

‖eir∆f̃i‖1/2L2(BR/M×IR/M2 )

∼ W̄−1/2M−1
2∏

i=1

‖eit∆fi‖1/2L2(B3(R)) . W̄−1/2M−1R1/2
2∏

i=1

‖fi‖1/22 .

Combining (3.53) and the above estimates for
∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2

∥∥∥
L6(Ỹ )

, we get

∥∥∥|eit∆f1|1/2|eit∆f2|1/2
∥∥∥
L6(Y )

/ EO(1)W̄−1/3N
−1/6
k R−1/6

2∏

i=1

‖fi‖1/22 .

The above estimate holds for W̄ indexes k’s. For each k, there are Nk

√
R

M -cubes in Ỹk, each
√
R

M -cube

contains at most M
√
R

M ×
√
R

M ×
√
R

M2 -boxes in Ỹ , and there are ≈ N
√
R

M ×
√
R

M ×
√
R

M2 -boxes in Ỹ that are

contained in
⋃W̄

k=1 Ỹk. By pigeonholing there is an index k satisfying
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N / NkW̄M.

Therefore

∥∥∥|eit∆f1|1/2|eit∆f2|1/2
∥∥∥
L6(Y )

/ EO(1)W̄−1/6N−1/6M1/6R−1/6
2∏

i=1

‖fi‖1/22 . (3.55)

Since W̄ ≥ 1, this completes the proof of Proposition 3.10.

�

This finishes the proof of Proposition 3.9.

�

Finally, to prove Proposition 3.4, we apply Proposition 3.9 to fj,tang on each ball Bj . We expand fj,tang

into wave packets at the scale ρ = R1−δ on the ball Bj . Because of the definition of fj,tang, each wave

packet will lie in the R1/2+δ-neighborhood of Z and the angles between the wave packets and the tangent

space of Z will be bounded by R−1/2+2δ. For a detailed description of the wave packet decomposition of

fj,tang on a smaller ball, see Section 7 of [11]. We define E so that ρ1/2E = R1/2+δ. Since ρ = R1−δ, we

get E = R(3/2)δ, and so Eρ−1/2 = R−1/2+2δ. Each new wave packet lies in the Eρ1/2-neighborhood of Z,

and the angles between the wave packets and the tangent space of Z are bounded by Eρ−1/2. Therefore,

the new wave packets are concentrated in TZ(E). Now since EO(1) = RO(δ), the bound from Proposition

3.9 implies Proposition 3.4.
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Chapter 4

Schrödinger maximal estimates in

higher dimension

In this chapter, we first display Bourgain’s counterexample from [3], which shows that pointwise convergence

can fail for s < n
2(n+1) . We will see that Bourgain’s example fits a scenario where all wave packets are

contained in a small neighborhood of a hyperplane. In this special scenario, or more generally, in tangent-

to-variety case, where all wave packets are contained in a small neighborhood of a variety, we will prove that

the exponent n
2(n+1) is optimal.

4.1 Bourgain’s counterexample

Proposition 4.1 Let p ≥ 1, n ≥ 2 and s < n
2(n+1) . Then there exists Rk → ∞ and fk ∈ L2(Rn) with

suppf̂k supported in the annulus |ξ| ∼ Rk, such that ‖fk‖2 = 1 and

lim
k→∞

R−s
k

∥∥∥∥ sup
0<t≤1/Rk

|eit∆fk(x)|
∥∥∥∥
Lp(Bn(0,1))

= ∞. (4.1)

Denote x = (x1, · · · , xn) = (x1, x
′) ∈ Bn(0, 1). Let ϕ : R → R+,Φ : Rn−1 → R+ satisfy supp ϕ̂ ⊂ [−1, 1],

supp Φ̂ ⊂ Bn−1(0, 1), ϕ̂, Φ̂ smooth and ϕ(0) = Φ(0) = 1. Set D = R
n+2

2(n+1) and define

f(x) = eiRx1ϕ(R
1
2x1)Φ(x

′)
n∏

j=2


 ∑

R
2D<ℓj<

R
D

eiDℓjxj


 (4.2)

where ℓ = (ℓ2, · · · , ℓn) ∈ Z
n−1. By a direct computation, for ξ = (ξ1, ξ

′) ∈ R
n we get

f̂(ξ1, ξ
′) = R− 1

2 ϕ̂
(
R− 1

2 (ξ1 −R)
)(∑

ℓ

Φ̂(ξ′ −Dℓ)

)
, (4.3)

hence,

‖f‖2 ∼ R− 1
4

(
R

D

)n−1
2

and supp f̂ ⊂ A(R) = {ξ : |ξ| ∼ R} . (4.4)

Clearly, denoting e(z) = eiz,
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eit∆f(x) =

∫ ∫
ϕ̂(ξ1)Φ̂(ξ

′)

{∑

ℓ

e
(
(R+R

1
2 ξ1)x1 + (ξ′ +Dℓ) · x′ − (R+R

1
2 ξ1)

2t− |ξ′ +Dℓ|2t
)}

dξ1dξ
′ .

Taking t < c
R , |x| < c for suitable constant c > 0, one get

∣∣eit∆f(x)
∣∣ ∼

∣∣∣∣∣

∫ ∫
ϕ̂(ξ1)Φ̂(ξ

′)

{∑

ℓ

e
(
R

1
2 ξ1x1 +Dℓ · x′ − 2R

3
2 ξ1t−D2|ℓ|2t

)}
dξ1dξ

′
∣∣∣∣∣

∼ ϕ
(
R

1
2 (x1 − 2Rt)

)
Φ(0)

∣∣∣∣∣
∑

ℓ

e
(
Dℓ · x′ −D2|ℓ|2t

)
∣∣∣∣∣ (4.5)

Recall that Φ(0) = 1. In order to ensure that the first factor in (4.5) should be ∼ 1, we specify

R
1
2 |x1 − 2Rt| < 1

5
(4.6)

and denote

t =
x1
2R

+ τ with |τ | < 1

10
R− 3

2 . (4.7)

For this choice of t, the third factor of (4.5) becomes

∣∣∣∣∣
∑

ℓ

e

(
Dℓ · x′ − D2

2R
|ℓ|2x1 −D2|ℓ|2τ

)∣∣∣∣∣

=

n∏

j=2

∣∣∣∣∣∣
∑

R
2D<ℓj<

R
D

e
(
ℓjyj + ℓ2j (y1 + s)

)
∣∣∣∣∣∣

(4.8)

with

y′ = Dx′(mod 2π) y1 = −D2

2R
x1(mod 2π) (4.9)

and where s = −D2τ is subject to the condition

|s| . D2R− 3
2 = R− n−1

2(n+1) . (4.10)

We view (y1, y
′) as a point in the n-torus Tn. Next, define the following subset Ω ⊂ T

n
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Ω =
⋃

q∼R
n−1

2(n+1) ,a

{
(y1, y

′) :
∣∣y1 − 2π

a1
q

∣∣ < cR− n−1
2(n+1) and

∣∣y′ − 2π
a′

q

∣∣ < c
D

R

}
(4.11)

with a = (a1, a
′) (mod q) and (a1, q) = 1.

Hence

|Ω| ∼ R
n−1

2(n+1)Rn n−1
2(n+1)R− n−1

2(n+1)
(D
R

)n−1 ∼ 1

and we take x ∈ Bn(0, 1) for which y given by (4.9) belongs to Ω:

Ω̄ =

{
x ∈ Bn(0, 1) : (y1, y

′) = (−D
2

2R
x1, Dx

′) (mod 2π) ∈ Ω

}
,

clearly |Ω̄| = c1 > 0. We evaluate (4.8) for y ∈ Ω. For y ∈ Ω, we have

∣∣y1 − 2π
a1
q

∣∣ < cR− n−1
2(n+1) and

∣∣y′ − 2π
a′

q

∣∣ < c
D

R

for some q ∼ R
n−1

2(n+1) and a = (a1, a
′) (mod q) with (a1, q) = 1. We set

s = 2π
a1
q

− y1

for which (4.10) holds. Clearly for j = 2, · · · , n, by the quadratic Gauss sum evaluation

∣∣∣∣∣∣
∑

R
2D<ℓj<

R
D

e
(
ℓjyj + ℓ2j (y1 + s)

)
∣∣∣∣∣∣
∼

∣∣∣∣∣∣
∑

R
2D<ℓj<

R
D

e

(
2π
aj
q
ℓj + 2π

a1
q
ℓ2j

)∣∣∣∣∣∣

∼ R/D

q

∣∣∣∣∣∣

q−1∑

ℓj=0

e

(
2π
aj
q
ℓj + 2π

a1
q
ℓ2j

)∣∣∣∣∣∣
∼ R

1
2(n+1) q

1
2 ∼ R

1
4

and

(4.8) ∼ R
n−1
4 . (4.12)

Recalling (4.4), we obtain for any x in the set Ω̄ of measure c1 > 0,

sup
0<t≤1/R

∣∣eit∆f(x)
∣∣

‖f‖2
& R

n−1
4 R

1
4

(
D

R

)n−1
2

= R
n

2(n+1) . (4.13)

The claim in the Proposition follows.
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Remark 4.2 Let us take a look at Bourgain’s example after parabolic rescaling. Recall the parabolic rescaling

from Section 2.2. For any function f ∈ L2(Rn) with supp f̂ ⊂ A(R), write ξ = Rζ ∈ A(R), where ζ ∈ A(1),

then

|eit∆f(x)| = Rn/2|eit̃∆g(x̃)| , (4.14)

where the function g ∈ L2(Rn) is given by

ĝ(ζ) = Rn/2f̂(Rζ) , (4.15)

and ‖g‖2 = ‖f‖2, and the new coordinates and the old coordinates are related by





x̃ = Rx ,

t̃ = R2t .

(4.16)

Moreover,

∥∥∥∥ sup
0<t≤1/R

|eit∆f(x)|
∥∥∥∥
L2(Bn(0,1))

=

∥∥∥∥ sup
0<t̃≤R

|eit̃∆g(x̃)|
∥∥∥∥
L2(Bn(0,R))

. (4.17)

After applying parabolic rescaling to Bourgain’s example, we get a function g given by

ĝ(ζ1, ζ
′) = R

n−1
2 ϕ̂

(
R

1
2 (ζ1 − 1)

)(∑

ℓ

Φ̂(Rζ ′ −Dℓ)

)
, (4.18)

where ℓ = (ℓ2, · · · , ℓn) ∈ Z
n−1 with R

2D < ℓj <
R
D for each j. Form this expression, we see that ĝ is supported

in an R−1/2-strip in A(1):

supp ĝ ⊂ {(ζ1, ζ ′) ∈ A(1) : |ζ1 − 1| ≤ R−1/2} . (4.19)

And the absolute value |eit̃∆g| is

|eit̃∆g(x̃)| ∼ R−n/2ϕ
(
R− 1

2 (x̃1 − 2t̃)
)
Φ(0)

∣∣∣∣∣
∑

ℓ

e
(
R−1Dℓ · x̃′ −R−2D2|ℓ|2t̃

)
∣∣∣∣∣ . (4.20)

Take hyperplane V to be x̃1 − 2t̃ = 0. From this expression and the factor ϕ(R−1/2(x̃1 − 2t̃)), we observe

that eit̃∆g(x̃) is essentially concentrated in a CR1/2-neighborhood of V and its absolute value is essentially

constant along a transverse direction to V for a distance cR1/2. Moreover, for ζ ∈ supp ĝ, we have
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|(2ζ, 1) · (−1/2, 0, · · · , 0, 1)| = | − ζ1 + 1| ≤ R−1/2 ,

that is,

Angle((2ζ, 1), V ) . R−1/2 .

In summary, for each R ≥ 1, there is a function g ∈ L2(Rn) with ĝ supported in A(1), and g is

concentrated in wave packets from TV , where V is a hyperplane, satisfying that

∥∥∥∥ sup
0<t≤R

|eit∆g|
∥∥∥∥
L2(Bn(0,R))

& R
n

2(n+1) ‖g‖L2 . (4.21)

4.2 A sharp Schrödinger maximal estimate in tangent-to-variety

case

In this section, we point out that we have a linear local refinement of the Strichartz estimate in general

dimension, from which a sharp Schrödinger maximal estimate in tangent-to-variety case follows. We have

seen that Bourgain’s example fits into the tangent-to-hyperplane scenario. Our result says that in this special

scenario, the exponent n
2(n+1) is optimal. As before, R is a sufficiently large parameter.

Theorem 4.3 Let n ≥ 2. For any function f ∈ L2(Rn) with Fourier support in Bn(0, 1), suppose that

f is concentrated in wave packets from TZ(E), where Z = Z(P ) is defined by a polynomial P of degree

≤ D = Rǫ4 , and P is a product of distinct non-singular polynomials. Suppose that Q1, Q2, ... are lattice

R1/2-cubes in Bn+1(R), so that

‖eit∆f‖L2(n+1)/(n−1)(Qj) is essentially constant in j.

Suppose that these cubes are arranged in horizontal strips of the form R× · · · ×R×{t0, t0 +R1/2}, and that

each strip contains ∼ σ cubes Qj. Let Y denote
⋃

j Qj. Then

‖eit∆f‖L2(n+1)/(n−1)(Y ) / EO(1)R− 1
2(n+1)σ− 1

n+1 ‖f‖L2 . (4.22)

Proposition 4.4 Let n ≥ 2. For any ǫ > 0, there exists a constant C(ǫ) such that the following holds for

any R ≥ 1. For any function f ∈ L2(Rn) with Fourier support in Bn(0, 1), suppose that f is concentrated
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in wave packets from TZ(E), where Z = Z(P ) is defined by a polynomial P of degree ≤ D = Rǫ4 , and P is

a product of distinct non-singular polynomials. Then

∥∥∥∥ sup
0<t≤R

|eit∆f |
∥∥∥∥
L2(Bn(0,R))

≤ C(ǫ)EO(1)R
n

2(n+1)
+ǫ‖f‖L2 . (4.23)

Remark 4.5 In tangent-to-variety case, we have the sharp estimate (4.23) of the L2-norm of the associated

maximal function. The issue is that, when estimating L2-norm, we have no machinery to reduce the original

problem to that special case.

If we estimate L2(n+1)/n-norm instead of L2, we can indeed reduce the original problem to tangent-to-

variety case, using polynomial partitioning. To deal with the exponent p = 2(n+1)
n , we are working to get a

multilinear analogue of Theorem 4.3, as well as thinking about how to go from multilinear maximal estimates

to linear ones.

4.2.1 Proof of Theorem 4.3

The proof for general dimension follows the same argument for the case n = 2. It uses the Bourgain-Demeter

l2-decoupling theorem, together with induction on the radius and parabolic rescaling. First we recall the

decoupling result of Bourgain and Demeter in higher dimension in [4].

Theorem 4.6 (Bourgain-Demeter) Let n ≥ 2 and R ≥ 1. Suppose that the R−1-neighborhood of the

unit paraboloid in R
n is divided into R(n−1)/2 disjoint rectangular boxes τ , each with dimensions R−1/2 ×

· · · ×R−1/2 ×R−1. Suppose F̂τ is supported in τ and F =
∑

τ Fτ . Then for any ε > 0,

‖F‖L2(n+1)/(n−1)(Rn) ≤ CεR
ǫ

(∑

τ

‖Fτ‖2L2(n+1)/(n−1)(Rn)

)1/2

.

If E ≥ R1/4 (or any fixed power of R), then the estimate (4.22) is trivial because of the factor EO(1). So

we assume that E ≤ R1/4.

To set up the argument, we decompose f as follows. We break the unit ball Bn(1) in frequency space

into small balls τ of radius R−1/4, and divide the physical space ball Bn(R) into balls B of radius R3/4. For

each pair (τ,B), we let f✷τ,B
be the function formed by cutting off f on the ball B (with a Schwartz tail) in

physical space and the ball τ in Fourier space. We note that eit∆f✷τ,B
, restricted to Bn+1(R), is essentially

supported on an R3/4 × · · · × R3/4 × R-box, which we denote by ✷τ,B (compare the discussion in Section

2.1). The box ✷τ,B is in the direction given by (2c(τ), 1) and intersects t = 0 at a disk centered at (c(B), 0),
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where c(τ) and c(B) are the centers of τ and B respectively. For a fixed τ , the different boxes ✷τ,B tile

Bn+1(R). In particular, for each τ , a given cube Qj lies in exactly one box ✷τ,B .

Since f is concentrated in wave packets from TZ(E), we only need to consider those R1/2-cubes Qj

that are contained in the ER1/2-neighborhood of Z. For each such R1/2-cube Qj , we will see that the wave

packets that pass through Qj are nearly coplanar. Because of this, we will be able to apply the n-dimensional

decoupling theorem to study eit∆f on Qj :

Lemma 4.7 Suppose that f has Fourier support in Bn(0, 1) and is concentrated in wave packets from

TZ(E), where E ≤ R1/4 and Z = Z(P ) is a finite union of non-singular varieties. Suppose that an R1/2-

cube Q is in NER1/2(Z). Then we have the decoupling bound

‖eit∆f‖L2(n+1)/(n−1)(Q) /

(∑

✷

‖eit∆f✷‖2L2(n+1)/(n−1)(10Q)

)1/2

+R−1000n‖f‖L2 . (4.24)

Remark: The parameter R is assumed to be sufficiently large. The R−1000n‖f‖L2 is a negligibly small

term which covers minor contributions coming from the tails of the Fourier transforms of smooth functions.

We will neglect this term in the sequel.

Proof: Observe that Q ⊂ NER1/2Z implies that there exists a non-singular point z0 ∈ Z ∩NER1/2Q. Thus

for each wave packet Tθ,ν that intersects Q, we have z0 ∈ Z ∩N2ER1/2(Tθ,ν). By the definition of TZ(E) we

get the angle bound

Angle(G0(θ), Tz0 [Z(P )]) ≤ ER−1/2 . (4.25)

We recall from Section 2.1 that G0(θ) = (2c(θ), 1). Suppose that Tz0Z is the plane given by a1x1 + · · ·+

anx2 + bt = 0, with a21 + · · ·+ a2n + b2 = 1. The angle condition above restricts the location of θ as follows:

|2a · c(θ) + b| . ER−1/2. (4.26)

We note that each tube Tθ,ν makes an angle & 1 with the plane t = 0, because θ ⊂ Bn(0, 1). We can assume

that there are some tubes Tθ,ν tangent to Tz0Z, and so |a| & 1. Therefore, (4.26) confines θ to a strip of

width ∼ ER−1/2 inside of Bn(0, 1). We denote this strip by S ⊂ Bn(0, 1).

Let TZ,Q(E) be the set of (θ, ν) in TZ(E) for which each Tθ,ν intersects Q. For each (θ, ν) in TZ,Q(E),

θ obeys (4.26), and so θ ⊂ S. Let η be a smooth bump function which approximates χQ. We note that

ηeit∆f is essentially equal to
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∑

(θ,ν)∈TZ,Q(E)

ηeit∆fθ,ν .

Therefore, the Fourier transform of the localized solution ηeit∆f is essentially supported in

S∗ := {(ξ1, · · · , ξn, ξn+1) : (ξ1, · · · , ξn) ∈ S and |ξn+1 + ξ21 + · · ·+ ξ2n| . R−1/2}. (4.27)

(The contribution of the not essential parts is covered by the negligible term R−1000n‖f‖L2 in the state-

ment of the Lemma.)

After a rotation in the (x1, · · · , xn)-plane we can suppose that the strip S is defined by

a1 ≤ ξ1 ≤ a1 + ER−1/2,

for some a1 ∈ [−1, 1]. We note that at each point (ξ1, · · · , ξn) ∈ S,

∂1
(
−ξ21 − · · · − ξ2n

)
= −2a1 +O(ER−1/2). (4.28)

Let v ∈ R
n+1 be the vector

v = (1, 0, · · · , 0,−2a1).

Let Π be an n-plane perpendicular to v. Because E ≤ R1/4, we claim that the projection of S∗ onto Π lies

in the ∼ R−1/2-neighborhood of a paraboloid. We can see this as follows. Let

S∗
core := {(ξ1, · · · , ξn, ξn+1) : ξ1 = a1, |(ξ2, · · · , ξn)| ≤ 1, ξn+1 = −ξ21 − · · · − ξ2n}.

The set S∗
core is a paraboloid, and its projection onto Π is also a paraboloid. We claim that the projection

of S∗ to Π lies in the ∼ R−1/2-neighborhood of this paraboloid. If (ξ1, · · · , ξn, ξn+1) ∈ S∗, then (4.28) tells

us that

(−ξ21 − · · · − ξ2n) = −a21 − ξ22 − · · · − ξ2n − 2a1(ξ1 − a1) +O(ER−1/2 · |ξ1 − a1|).

Therefore,

(ξ1, ξ2, · · · , ξn+1) = (a1, ξ2, · · · , ξn,−a21 − ξ22 − · · · − ξ2n) + (ξ1 − a1)v +O(ER−1/2|ξ1 − a1|+R−1/2).

58



The first term on the right-hand side lies is S∗
core. Since Π is perpendicular to v, the projection to Π kills

the second term on the right-hand side. So the distance from the projection of ξ to the projection of S∗
core

is at most

ER−1/2|ξ1 − a1|+R−1/2 . E2R−1 +R−1/2 ∼ R−1/2.

Therefore, if we restrict ηeit∆f to Π, the resulting n-dimensional function has Fourier support in the

∼ R−1/2-neighborhood of a paraboloid.

We consider the decomposition f =
∑

(τ,B):✷τ,B∩Q 6=∅ f✷τ,B
. Suppose that eit∆f✷τ,B

contributes to

‖eit∆f‖L2(n+1)/(n−1)(Q), there must be a wave packet Tθ,ν that intersects the R1/2-cube Q with θ ⊂ τ ,

and so τ ∩ S must be non-empty. Also, for a given τ , there is only one B so that ✷τ,B ∩ Q is non-empty.

Also, the Fourier support of ηeit∆f✷τ,B
lies in S∗∩ (τ ×R), by the same argument we used above for ηeit∆f .

The projection onto Π of S∗ ∩ (τ ×R) is an R−1/4 × · · ·R−1/4 ×R−1/2 rectangular box. The union of these

boxes over all τ intersecting S is the R−1/2-neighborhood of a parabola. Therefore, we have the hypotheses

to apply the n-dimensional decoupling theorem, Theorem 4.6, which gives:

‖ηeit∆f‖L2(n+1)/(n−1)(Π) /

(∑

✷

‖ηeit∆f✷‖2L2(n+1)/(n−1)(Π)

)1/2

.

Now we integrate in the direction perpendicular to Π and apply Fubini and Minkowski to get

‖ηeit∆f‖L2(n+1)/(n−1)(Rn+1) /

(∑

✷

‖ηeit∆f✷‖2L2(n+1)/(n−1)(Rn+1)

)1/2

.

This implies the desired conclusion.

�

Next, by induction on the radius R, we will show that each function f✷ obeys a version of Theorem 4.3.

Here is the statement. Suppose that S1, S2, ... are R
1/2 × · · · ×R1/2 ×R3/4-tubes in ✷ (running parallel to

the long axis of ✷), and that

‖eit∆f✷‖L2(n+1)/(n−1)(Sj) is essentially constant in j.

Suppose that these tubes are arranged into R3/4-strips running parallel to the short axes of ✷ and that each

such strip contains ∼ σ✷ tubes Sj . Let Y✷ denote ∪jSj . Then

‖eit∆f✷‖L2(n+1)/(n−1)(Y✷) / EO(1)R− 1
4(n+1)R− 1

4(n+1)σ
− 1

n+1
✷ ‖f✷‖L2 . (4.29)
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This inequality follows by doing a parabolic rescaling and then using Theorem 4.3 at scale R1/2, which

we can assume holds by induction on R. We write down the details of this parabolic rescaling, and in

particular we will check that the tangent-to-variety condition is preserved under parabolic rescaling. For

each R−1/4-ball τ in Bn(1), we write ξ = ξ0 +R−1/4ζ ∈ τ , then

|eit∆fτ (x)| = R−n/8|eit̃∆g(x̃)|

for some function g with Fourier support in Bn(1) and ‖g‖2 = ‖fτ‖2, where the new coordinates (x̃, t̃) are

related to the old coordinates (x, t) by





x̃ = R−1/4x− 2tR−1/4ξ0 ,

t̃ = R−1/2t .

(4.30)

Therefore

‖eit∆f✷(x)‖L2(n+1)/(n−1)(Y✷) = R− 1
4(n+1) ‖eit̃∆g(x̃)‖L2(n+1)/(n−1)(Ỹ ),

where Ỹ is the image of Y✷ under the new coordinates. Note that Ỹ is a union of R1/4-cubes inside

an R1/2-cube. These R1/4-cubes are arranged in R1/4-horizontal strips, and each strip contains ∼ σ✷

R1/4-cubes. Moreover, by the relation (4.30), we see that each wave packet T , at scale R, of dimensions

R1/2+δ × · · · × R1/2+δ × R in the old coordinates is mapped to a corresponding wave packet T̃ , at scale

R1/2, of dimensions R1/4+δ × · · · × R1/4+δ × R1/2 in the new coordinates. The variety Z(P ) corresponds

to a new variety Z(Q), given by the relation Q(x̃, t̃) = Q(R−1/4x− 2tR−1/4ξ0, R
−1/2t) = P (x, t). We claim

that, under the above correspondence, if the wave packet T at scale R is ER−1/2-tangent to Z(P ), then the

wave packet T̃ at scale R1/2 is ER−1/4-tangent to Z(Q) in the new coordinates.

By the relation (4.30), the distance condition T ⊂ NER1/2Z(P ) implies that T̃ ⊂ NER1/4Z(Q). Given

the direction (2ξ, 1) of T , the angle condition

Angle((2ξ, 1), Tz0 [Z(P )]) ≤ ER−1/2

is equivalent to

|(2ξ, 1) · (Px(x0, t0), Pt(x0, t0))|
|(Px(x0, t0), Pt(x0, t0))|

. ER−1/2, (4.31)

where z0 = (x0, t0). Note that the direction of the corresponding wave packet T̃ is given by (2ζ, 1), where
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ξ and ζ are related by ξ = ξ0 + R−1/4ζ. Let z̃0 = (x̃0, t̃0) denote the point corresponding to z0. Using the

relations

Px = R−1/4Qx̃, Pt = −2R−1/4ξ0 ·Qx̃ +R−1/2Qt̃ ,

after some computation, (4.31) yields that

|(2ζ, 1) · (Qx̃(x̃0, t̃0), Qt̃(x̃0, t̃0))|
|(Qx̃(x̃0, t̃0), Qt̃(x̃0, t̃0))|

. ER−1/4,

which implies that

Angle((2ζ, 1), T̃z̃0 [Z(Q)]) ≤ ER−1/4.

Therefore the tangent-to-variety condition is preserved under parabolic rescaling and the induction on radius

is justified.

We have now established inequality (4.29). To apply this inequality, we need to identify a good choice

of Y✷. We do this by some dyadic pigeonholing. For each ✷, we apply the following algorithm to regroup

tubes in ✷.

1. We sort those R1/2 × · · · × R1/2 × R3/4-tubes S’s contained in the box ✷ according to the order of

magnitude of ‖eit∆f✷‖L2(n+1)/(n−1)(S), which we denote λ. For each dyadic number λ, we use Sλ to

stand for the collection of tubes S ⊂ ✷ with ‖eit∆f✷‖L2(n+1)/(n−1)(S) ∼ λ.

2. For each λ, we sort the tubes S ∈ Sλ by looking at the number of such tubes in an R3/4-strip. For

any dyadic number η, we let Sλ,η be the set of tubes S ∈ Sλ so that the number of tubes of Sλ in the

R3/4-strip containing S is ∼ η.

Let Y✷,λ,η be the union of the tubes in Sλ,η. Then we represent

eit∆f =
∑

λ,η

(∑

✷

eit∆f✷ · χY✷,λ,η

)
.

Since there are O(logR) choices for each of λ, η, by pigeonholing, we can choose λ, η so that

‖eit∆f‖L2(n+1)/(n−1)(Qj) . (logR)2
∥∥∑

✷

eit∆f✷ · χY✷,λ,η

∥∥
L2(n+1)/(n−1)(Qj)

(4.32)

holds for a fraction ≈ 1 of all cubes Qj in Y . We need this uniform choice of (λ, η), which is independent of

Qj , because later we will sum over all Qj and arrive at ‖eit∆f✷‖L2(n+1)/(n−1)(Y✷,λ,η).
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We fix λ and η for the rest of the proof. Let Y✷ stand for the abbreviation of Y✷,λ,η. We note that Y✷

obeys the hypotheses for our inductive estimate (4.29), with σ✷ being the value of η that we have fixed.

The following geometric estimate will play a crucial role in our proof. Each set Y✷ contains . σ✷ tubes

in each strip parallel to the short axes of ✷. Since the angle between the short axes of ✷ and the x-axes is

bounded away from π/2, it follows that Y✷ contains . σ✷ cubes Qj in any R1/2-horizontal row. Therefore,

|Y✷ ∩ Y | . σ✷
σ

|Y |. (4.33)

Next we sort the the boxes ✷ according to the dyadic size of ‖f✷‖L2 . We can restrict matters to . logR

choices of this dyadic size, and so we can choose a set of ✷’s, B, so that ‖f✷‖L2 is essentially constant for

✷ ∈ B and

‖eit∆f‖L2(n+1)/(n−1)(Qj) / ‖
∑

✷∈B

eit∆f✷ · χY✷
‖L2(n+1)/(n−1)(Qj) (4.34)

for a fraction ≈ 1 of cubes Qj in Y .

Finally we sort the cubes Qj ⊂ Y according to the number of Y✷ that contain them. We let Y ′ ⊂ Y be

a set of cubes Qj which obey (4.34) and which each lies in ∼ µ of the sets {Y✷}✷∈B. Because (4.34) holds

for a large fraction of cubes, and because there are only dyadically many choices of µ, |Y ′| ≈ |Y |. By the

equation (4.33), we see that

|Y✷ ∩ Y ′| ≤ |Y✷ ∩ Y | / σ✷
σ

|Y | ≈ σ✷
σ

|Y ′|.

Therefore, the multiplicity µ is bounded by

µ /
σ✷
σ

|B|. (4.35)

We now are ready to combine all our ingredients and finish our proof. For each Qj ⊂ Y ′, we have

‖eit∆f‖L2(n+1)/(n−1)(Qj) /

∥∥∥∥∥
∑

✷∈B

eit∆f✷ · χY✷

∥∥∥∥∥
L2(n+1)/(n−1)(Qj)

.

Now we apply Lemma 4.7 to the function
∑

✷∈B,Qj⊂Y✷

f✷ to bound the right hand side by

/


 ∑

✷∈B,Qj⊂Y✷

∥∥eit∆f✷
∥∥2
L2(n+1)/(n−1)(Qj)




1/2

.
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Since the number of Y✷ containing Qj is ∼ µ, we can apply Hölder to get

∥∥∥∥∥
∑

✷∈B

eit∆f✷ · χY✷

∥∥∥∥∥
L2(n+1)/(n−1)(Qj)

/ µ
1

n+1


 ∑

✷∈B,Qj⊂Y✷

∥∥eit∆f✷
∥∥2(n+1)/(n−1)

L2(n+1)/(n−1)(Qj)




(n−1)/2(n+1)

.

Now we raise to the 2(n+ 1)/(n− 1)-th power and sum over Qj ⊂ Y ′ to get

∥∥eit∆f
∥∥2(n+1)/(n−1)

L2(n+1)/(n−1)(Y ′)
/ µ

2
n−1

∑

✷∈B

∥∥eit∆f✷
∥∥2(n+1)/(n−1)

L2(n+1)/(n−1)(Y✷)
.

Since |Y ′| ' |Y |, and since each cube Qj ⊂ Y makes an equal contribution to ‖eit∆f‖L2(n+1)/(n−1)(Y ), we see

that ‖eit∆f‖L2(n+1)/(n−1)(Y ) ≈ ‖eit∆f‖L2(n+1)/(n−1)(Y ′) and so

∥∥eit∆f
∥∥2(n+1)/(n−1)

L2(n+1)/(n−1)(Y )
/ µ

2
n−1

∑

✷∈B

∥∥eit∆f✷
∥∥2(n+1)/(n−1)

L2(n+1)/(n−1)(Y✷)
.

By a parabolic rescaling and applying our inductive hypothesis (4.29) at scale R1/2 to the right-hand

side, we see that

∥∥eit∆f
∥∥2(n+1)/(n−1)

L2(n+1)/(n−1)(Y )
/ EO(1)R− 1

n−1µ
2

n−1σ
− 2

n−1
✷

∑

✷∈B

‖f✷‖2(n+1)/(n−1)
L2 . (4.36)

Plugging in our bound for µ in (4.35), this is bounded by

. EO(1)R− 1
n−1σ− 2

n−1 |B| 2
n−1

∑

✷∈B

‖f✷‖2(n+1)/(n−1)
L2 .

Now since ‖f✷‖L2 is essentially constant among all ✷ ∈ B, the last expression is

∼ EO(1)R− 1
n−1σ− 2

n−1 (
∑

✷∈B

‖f✷‖2L2)(n+1)/(n−1) ≤ EO(1)R− 1
n−1σ− 2

n−1 ‖f‖2(n+1)/(n−1)
L2 .

Taking the 2(n+ 1)/(n− 1)-th root, we obtain our desired bound:

‖eit∆f‖L2(n+1)/(n−1)(Y ) / EO(1)R− 1
2(n+1)σ− 1

n+1 ‖f‖L2 .

This closes the induction on radius and completes the proof.
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4.2.2 Proof of Proposition 4.4

Since f is concentrated in wave packets from TZ(E), we decompose NER1/2Z into balls Q of radius R1/2.

Let η be a smooth bump function approximating χQ. As we saw in the proof of Lemma 4.7, in Equation

(4.27), the Fourier support of each function ηeit∆f is essentially supported on

S∗ := {(ξ1, · · · , ξn, ξn+1) : (ξ1, · · · , ξn) ∈ S and |ξn+1 + ξ21 + · · ·+ ξ2n| . R−1/2},

where S ⊂ Bn(0, 1) is a strip of width ER−1/2. Therefore, the Fourier support of ηeit∆f is contained

in a rectangle of dimensions ∼ ER−1/2 × 1 × · · · × 1. We denote this rectangle by A∗(Q). Since the

Fourier support of each ηeit∆fi is contained in A∗(Q), |ηeit∆fi| is morally constant on dual rectangles with

dimensions 1 × · · · × 1 × E−1R1/2. We tile Q with such dual rectangles, which we denote Ak(Q). The

projection of each dual rectangle Ak(Q) to the x-plane is an n-dimensional 1× · · · × 1×E−1R1/2-rectangle.

Suppose that sup0<t≤R |eit∆f | ∼ H on a set U ⊂ Bn(0, R). It suffices for us to prove the bound

H|U |1/2 / EO(1)R
n

2(n+1) ‖f‖2. (4.37)

We will bound |U | using the rectangles Ak(Q). For the time being, let us suppose that |ηeit∆f | is roughly

constant on each Ak(Q). This is not quite rigorous, but useful for intuition. On the next page, we will come

back to this point and give a rigorous argument.

There must be a collection of dual rectangles Ak(Qj) whose projections cover U and so that |eit∆f | ∼ H

on each dual rectangle. We let X denote the union of these dual rectangles. Each 1 × · · · × 1 × E−1R1/2

rectangle Ak(Qj) ⊂ X has a projection with area E−1R1/2, and since these projections cover U , we have

the bound

|U | . |X|. (4.38)

We can also assume that no two rectangles Ak(Qj) ⊂ X have essentially the same projection. This

implies that X contains . EO(1)R(n−1)/2 rectangles Ak(Q) in each cube Q. So for each cube Q, we get the

bound

|X ∩Q| . EO(1)Rn/2. (4.39)

We consider the R1/2-cubes Q in Bn(R)× [0, R] that intersect X. We sort these R1/2-cubes Q according

to the dyadic value of
∥∥eit∆f

∥∥
L2(n+1)/(n−1)(Q)

. We can choose a set of of R1/2-cubes Qj , j = 1, 2, · · · , N , so
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that

∥∥eit∆f
∥∥
L2(n+1)/(n−1)(Qj)

is essentially constant in j, (4.40)

and |X| / |X ∩ Y |, where Y :=
⋃N

j=1Qj . Using the locally constant property that |eit∆f | ∼ H on each

rectangle Ak(Qj) ⊂ X, we see that

H|X|
n−1

2(n+1) / EO(1)
∥∥eit∆f

∥∥
L2(n+1)/(n−1)(Y )

. (4.41)

Since |X ∩ Qj | . EO(1)Rn/2 for each cube Qj , j = 1, ...N , we see that |X| / |X ∩ Y | . EO(1)NRn/2.

Therefore,

H|X|1/2 / EO(1)N
1

n+1R
n

2(n+1)
∥∥eit∆f

∥∥
L2(n+1)/(n−1)(Y )

. (4.42)

Since |U | . |X|, we have

H|U |1/2 / EO(1)N
1

n+1R
n

2(n+1)
∥∥eit∆f

∥∥
L2(n+1)/(n−1)(Y )

. (4.43)

Finally, we can find a sub-collection of R1/2-cubes Y ′ ⊂ Y with |Y ′| ≈ |Y | so that the cubes in Y ′ are

arranged in horizontal strips of the form R× · · ·R× [t0, t0 + R1/2], and that each strip contains ∼ σ cubes

in Y ′. Note that

σ '
N

R1/2
. (4.44)

By Theorem 4.3, we get

∥∥eit∆f
∥∥
L2(n+1)/(n−1)(Y )

≈
∥∥eit∆f

∥∥
L2(n+1)/(n−1)(Y ′)

/ EO(1)R− 1
2(n+1)

(
N

R1/2

)− 1
n+1

‖f‖2 ,

combining this bound with (4.43), we have

H|U |1/2 / EO(1)R
n

2(n+1) ‖f‖2 ,

and our desired bound (4.37) follows.
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It only remains to deal with the issue of |eit∆f | being morally roughly constant on each rectangle Ak(Q).

We used the locally constant property to justify (4.41) above. We can rigorously prove (4.41) as follows. We

mentioned above that the function ηQe
it∆f has Fourier transform essentially supported in a rectangle A∗(Q)

of dimensions ∼ ER−1/2×1×· · ·×1. If ψ̂ is designed to be identically 1 on this rectangle, then (ηQe
it∆f)∗ψ

is essentially equal to ηQe
it∆f . We can choose such a ψ where |ψ| is a rapidly-decaying approximation of

|Ak(Qj)|−1χ
Ak(Qj). Therefore, we see that

sup
Ak(Q)

|eit∆f | . RO(δ)

∫
RδAk(Q)

|eit∆f |
|Ak(Qj)|

+R−1000n‖f‖L2 , (4.45)

where the second term accounts for the tail of ψ. Since E ≥ Rδ, we can assume that RδAk(Q) ⊂ Q.

We let X be a union of rectangles Ak(Qj) which each obeys

H . sup
Ak(Qj)

|eit∆f |.

We can arrange that the projections of 10Ak(Qj) cover U and also that any two rectangles Ak(Qj) in X have

essentially different projections. Because of this covering, we still have |U | . |X|. Now if H . R−100n‖f‖L2 ,

then (4.37) follows trivially. Therefore, (4.45) tells us that for each Ak(Qj) ⊂ X:

∫

RδAk(Q)

|eit∆f | & R−O(δ)|Ak(Qj)|H.

We define Y just as above, and this inequality lets us rigorously justify (4.41):

H|X|
n−1

2(n+1) ≈ H|X ∩ Y |
n−1

2(n+1) / EO(1)
∥∥eit∆f

∥∥
L2(n+1)/(n−1)(Y )

.

This completes the proof.
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