A sharp Trudinger - Moser type inequality for unbounded domains in \mathbb{R}^{2}

Bernhard Ruf

Abstract

The classical Trudinger-Moser inequality says that for functions with Dirichlet norm smaller or equal to 1 in the Sobolev space $H_{0}^{1}(\Omega)$ (with $\Omega \subset \mathbb{R}^{2}$ a bounded domain), the integral $\int_{\Omega} e^{4 \pi u^{2}} d x$ is uniformly bounded by a constant depending only on Ω. If the volume $|\Omega|$ becomes unbounded then this bound tends to infinity, and hence the Trudinger-Moser inequality is not available for such domains (and in particular for \mathbb{R}^{2}).

In this paper we show that if the Dirichlet norm is replaced by the standard Sobolev norm, then the supremum of $\int_{\Omega} e^{4 \pi u^{2}} d x$ over all such functions is uniformly bounded, independently of the domain Ω. Furthermore, a sharp upper bound for the limits of Sobolev normalized concentrating sequences is proved for $\Omega=B_{R}$, the ball or radius R, and for $\Omega=\mathbb{R}^{2}$. Finally, the explicit construction of optimal concentrating sequences allows to prove that the above supremum is attained on balls $B_{R} \subset \mathbb{R}^{2}$ and on \mathbb{R}^{2}.

1 Introduction

Let $\Omega \subset \mathbb{R}^{N}$ denote a bounded domain. The Sobolev imbedding theorem states that $H_{0}^{1}(\Omega) \subset L^{p}(\Omega)$, for $1 \leq p \leq 2^{*}=\frac{2 N}{N-2}$, or equivalently, using the Dirichlet norm $\|u\|_{D}=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{1 / 2}$ on $H_{0}^{1}(\Omega)$,

$$
\sup _{\|u\|_{D} \leq 1} \int_{\Omega}|u|^{p} d x<+\infty, \text { for } 1 \leq p \leq 2^{*}
$$

while this supremum is infinite for $p>2^{*}$. The maximal growth $|u|^{2^{*}}$ is called "critical" Sobolev growth. In the case $N=2$, every polynomial growth is admitted, but one knows by easy examples that $H_{0}^{1}(\Omega) \nsubseteq$ $L^{\infty}(\Omega)$. Hence, one is led to look for a function $g(s): \mathbb{R} \rightarrow \mathbb{R}^{+}$with maximal grwoth such that

$$
\sup _{\|u\|_{D} \leq 1} \int_{\Omega} g(u) d x<+\infty .
$$

It was shown by Pohozhaev [12], Trudinger [14] and Moser [11] that the maximal growth is of exponential type. More precisely, the Trudinger-Moser inequality states that for $\Omega \subset \mathbb{R}^{2}$ bounded

$$
\begin{equation*}
\sup _{\|u\|_{D} \leq 1} \int_{\Omega}\left(e^{\alpha u^{2}}-1\right) d x=c(\Omega)<+\infty \text { for } \alpha \leq 4 \pi \tag{1.1}
\end{equation*}
$$

The inequality is optimal: for any growth $e^{\alpha u^{2}}$ with $\alpha>4 \pi$ the corresponding supremum is $+\infty$.
The supremum (1.1) becomes infinite for domains Ω with $|\Omega|=\infty$, and therefore the Trudinger-Moser inequality is not available for unbounded domains. Related inequalities for unbounded domains have been proposed by Cao [5] and Tanaka [2], however they assume a growth $e^{\alpha u^{2}}$ with $\alpha<4 \pi$, i.e. with subcritical growth.

In this paper we show that replacing the Dirichlet norm $\|u\|_{D}=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{1 / 2}$ by the standard Sobolev norm on $H_{0}^{1}(\Omega)$, namely

$$
\begin{equation*}
\|u\|_{S}=\left(\|u\|_{D}^{2}+\|u\|_{L^{2}}^{2}\right)^{1 / 2}=\left(\int_{\Omega}\left(|\nabla u|^{2}+|u|^{2}\right) d x\right)^{1 / 2} \tag{1.2}
\end{equation*}
$$

yields a bound independent of Ω. More precisely, we prove
Theorem 1.1 There exists a constant $d>0$ such that for any domain $\Omega \subset \mathbb{R}^{2}$

$$
\begin{equation*}
\sup _{\|u\|_{S} \leq 1} \int_{\Omega}\left(e^{4 \pi u^{2}}-1\right) d x \leq d \tag{1.3}
\end{equation*}
$$

The inequality is sharp: for any growth $e^{\alpha u^{2}}$ with $\alpha>4 \pi$ the supremum is $+\infty$.

In an interesting paper, L. Carleson and A. Chang [6] proved that the supremum in (1.1) is attained if $\Omega=B_{1}(0)$, the unit ball in \mathbb{R}^{2}. This result was extended to arbitrary bounded domains in \mathbb{R}^{2} by M . Flucher [9]. In their proof, Carleson and Chang used a "concentration-compactness" argument. They consider "normalized concentrating sequences", i.e. normalized (in the Dirichlet norm) sequences which converge weakly to 0 and (being radial) blow up at the origin. They showed that for any such sequence $\left\{u_{n}\right\}$ one has

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \int_{B_{1}(0)}\left(e^{4 \pi u_{n}^{2}}-1\right) d x \leq e\left|B_{1}\right| \tag{1.4}
\end{equation*}
$$

Hence, one may say that $e\left|B_{1}\right|$ is the highest possible "concentration" or "non-compactness" level (see also P.L. Lions [10], and H. Brezis - L. Nirenberg [3] for the related situation for Sobolev embeddings). Carleson and Chang went on to show that

$$
\begin{equation*}
\sup _{\|u\|_{D} \leq 1} \int_{B_{1}}\left(e^{4 \pi u^{2}}-1\right) d x>e\left|B_{1}\right| \tag{1.5}
\end{equation*}
$$

and hence, since no concentration can happen at a level above $e\left|B_{1}\right|$, they concluded that the supremum in (1.1) is attained.
Let us call the maximal limit in (1.4) the Carleson-Chang limit, in symbol: cc-lim. In [7] an explicit normalized concentrating sequence $\left\{y_{n}\right\}$ with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{B_{1}}\left(e^{4 \pi y_{n}^{2}}-1\right) d x=\underset{\left\|u_{n}\right\|_{D} \leq 1}{\mathrm{cc}-\lim _{B_{1}}} \int\left(e^{4 \pi u_{n}^{2}}-1\right) d x=e\left|B_{1}\right| \tag{1.6}
\end{equation*}
$$

was constructed.
In this paper we analyze the corresponding Carleson-Chang limit for concentrating sequences which are normalized in the Sobolev norm. We will show

Theorem 1.2

1. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain, and let $R>0$ such that $|\Omega|=\left|B_{R}\right|$. Then

$$
\begin{equation*}
\underset{\left\|u_{n}\right\|_{s} \leq 1}{\mathrm{cc}-\lim _{\Omega}} \int_{\Omega}\left(e^{4 \pi u_{n}^{2}}-1\right) d x \leq \pi e^{1-D(R)} \tag{1.7}
\end{equation*}
$$

where

$$
D(R)=2 K_{0}(R)\left[2 R K_{1}(R)-1 / I_{0}(R)\right]>0, \text { with } \lim _{R \rightarrow+\infty} D(R)=0
$$

Here, $I_{k}(x)$ and $K_{k}(x)$ denote the $k-t h$ modified Bessel functions of the first and second kind, i.e. the solutions of the equation

$$
-x^{2} u^{\prime \prime}(x)-x u^{\prime}(x)+\left(x^{2}+k^{2}\right) u(x)=0, k=0,1,2, \ldots
$$

2. Let $\Omega \subseteq \mathbb{R}^{2}$ be an arbitrary domain. Then

$$
\begin{equation*}
\underset{\left\|u_{n}\right\|_{s} \leq 1}{\mathrm{cc}-\lim _{\Omega}} \int_{\Omega}\left(e^{4 \pi u_{n}^{2}}-1\right) d x \leq \pi e . \tag{1.8}
\end{equation*}
$$

3. The bound in (1.7) is sharp for $\Omega=B_{R}(0)$, and the bound in (1.8) is sharp for $\Omega=\mathbb{R}^{2}$.

It is remarkable that for $\Omega=B_{1}(0)$ with Dirichlet normalization and for $\Omega=\mathbb{R}^{2}$ with Sobolev normalization the corresponding Carleson-Chang limits coincide, that is

$$
\underset{\left\|u_{n}\right\|_{D} \leq 1}{\mathrm{cc}-\lim _{B_{1}}} \int_{B_{1}}\left(e^{4 \pi u_{n}^{2}}-1\right) d x=\underset{\left\|u_{n}\right\|_{S} \leq 1}{\mathrm{cc}-\lim _{\mathbb{R}^{2}}} \int_{\mathbb{R}^{4}}\left(e^{4 \pi u_{n}^{2}}-1\right) d x=e \pi .
$$

In the final result of the paper we prove
Theorem 1.3 For any ball $\Omega=B_{R}(0)$ and for $\Omega=\mathbb{R}^{2}$ holds

$$
\begin{equation*}
\sup _{\|u\|_{S} \leq 1} \int_{\Omega}\left(e^{4 \pi u^{2}}-1\right) d x>e^{1-D(R)} \pi \tag{1.9}
\end{equation*}
$$

This implies in particular that the supremum (1.9) is attained in the cases of $\Omega=B_{R}(0)$ and $\Omega=\mathbb{R}^{2}$.

2 A uniform bound

In this section we prove Theorem 1.1. We begin with
Proposition 2.1 Let $\Omega \subset \mathbb{R}^{2}$ denote a domain in \mathbb{R}^{2}, and let $H_{0}^{1}(\Omega)$ denote the standard Sobolev space equipped with the norm

$$
\|u\|_{S}=\left(\int_{\Omega}\left(|\nabla u|^{2}+|u|^{2}\right) d x\right)^{1 / 2}
$$

Then there exists a constant d (independent of Ω) such that

$$
\begin{equation*}
\sup _{\|u\|_{S} \leq 1} \int_{\Omega}\left(e^{4 \pi u^{2}}-1\right) d x \leq d \tag{2.1}
\end{equation*}
$$

Proof. It is clear that

$$
\begin{equation*}
\sup _{\|u\|_{S} \leq 1} \int_{\Omega}\left(e^{4 \pi u^{2}}-1\right) d x \leq \sup _{\|u\|_{S} \leq 1} \int_{\mathbb{R}^{2}}\left(e^{4 \pi u^{2}}-1\right) d x \tag{2.2}
\end{equation*}
$$

since any function $u \in H_{0}^{1}(\Omega)$ can be extended by zero outside of Ω, obtaining a function in $\left(H^{1}\left(\mathbb{R}^{2}\right),\|\cdot\|_{S}\right)$. Hence, it is sufficient to show that

$$
\begin{equation*}
\sup _{\|u\|_{S} \leq 1} \int_{\mathbb{R}^{2}}\left(e^{4 \pi u^{2}}-1\right) d x \leq d \tag{2.3}
\end{equation*}
$$

We use symmetrization (see e.g. J. Moser [11]) by defining the radially symmetric function u^{*} as follows:

$$
\text { for every } \rho>0 \text { let } m\left(\left\{x \in \mathbb{R}^{2} ; u^{*}(x)>\rho\right\}\right)=m\left(\left\{x \in \mathbb{R}^{2} ; u(x)>\rho\right\}\right) \text {. }
$$

Then u^{*} is a non-increasing function in $|x|$. By construction

$$
\int_{\mathbb{R}^{2}}\left(e^{4 \pi\left|u^{*}\right|^{2}}-1\right) d x=\int_{\mathbb{R}^{2}}\left(e^{4 \pi|u|^{2}}-1\right) d x \quad \text { and } \quad \int_{\mathbb{R}^{2}}\left|u^{*}\right|^{2} d x=\int_{\mathbb{R}^{2}}|u|^{2} d x
$$

and it is known that

$$
\int_{\mathbb{R}^{2}}\left|\nabla u^{*}\right|^{2} \leq \int_{\mathbb{R}^{2}}|\nabla u|^{2} d x
$$

It is therefore sufficient to prove (2.3) for radially symmetric functions $u(x)=u(|x|)$.
Thus, we may assume that u in (2.3) is radially symmetric and non-increasing. We divide the integral (2.3) into two parts, with $r_{0}>0$ to be chosen:

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left(e^{4 \pi u^{2}}-1\right)=\int_{|x| \leq r_{0}}\left(e^{4 \pi u^{2}}-1\right)+\int_{|x| \geq r_{0}}\left(e^{4 \pi u^{2}}-1\right) \tag{2.4}
\end{equation*}
$$

We write the second integral as

$$
\begin{equation*}
\int_{|x| \geq r_{0}}\left(e^{4 \pi u^{2}}-1\right)=\sum_{k=1}^{\infty} \int_{|x| \geq r_{0}} \frac{(4 \pi)^{k}|u|^{2 k}}{k!} \tag{2.5}
\end{equation*}
$$

We estimate the single terms by the following "radial lemma" (see Berestycki - Lions, [4], Lemma A.IV):

$$
\begin{equation*}
|u(r)| \leq \frac{1}{\sqrt{\pi}}\|u\|_{L^{2}} \frac{1}{r}, \text { for all } r>0 \tag{2.6}
\end{equation*}
$$

Hence we obtain for $k \geq 2$:

$$
\begin{equation*}
\int_{|x| \geq r_{0}}|u|^{2 k} \leq\|u\|_{L^{2}}^{2 k} \frac{2}{\pi^{k-1}} \int_{r_{0}}^{\infty} \frac{1}{r^{2 k}} r d r=\frac{1}{k-1}\|u\|_{L^{2}}^{2}\left(\frac{\|u\|_{L^{2}}^{2}}{\pi r_{0}^{2}}\right)^{k-1} \tag{2.7}
\end{equation*}
$$

This yields

$$
\begin{align*}
\int_{|x| \geq r_{0}}\left(e^{4 \pi u^{2}}-1\right) & \leq 4 \pi\|u\|_{L^{2}}^{2}+4 \pi\|u\|_{L^{2}}^{2} \sum_{k=2}^{\infty} \frac{1}{k!}\left(\frac{4\|u\|_{L^{2}}^{2}}{r_{0}^{2}}\right)^{k-1} \tag{2.8}\\
& \leq c\left(r_{0}\right)
\end{align*}
$$

since $\|u\|_{L^{2}} \leq 1$.
To estimate the first integral in (2.4), let

$$
v(r)= \begin{cases}u(r)-u\left(r_{0}\right) & , 0 \leq r \leq r_{0} \\ 0 & , r \geq r_{0}\end{cases}
$$

Then, by (2.6)

$$
\begin{align*}
u^{2}(r) & =v^{2}(r)+2 v(r) u\left(r_{0}\right)+u^{2}\left(r_{0}\right) \\
& \leq v^{2}(r)+v^{2}(r) \frac{1}{\pi r_{0}^{2}}\|u\|_{L^{2}}^{2}+1+\frac{1}{\pi r_{0}^{2}}\|u\|_{L^{2}}^{2} \tag{2.9}\\
& \leq v^{2}(r)\left[1+\frac{1}{\pi r_{0}^{2}}\|u\|_{L^{2}}^{2}\right]+d\left(r_{0}\right)
\end{align*}
$$

hence

$$
u(r) \leq v(r)\left(1+\frac{1}{\pi r_{0}^{2}}\|u\|_{L^{2}}^{2}\right)^{1 / 2}+d^{1 / 2}\left(r_{0}\right)=: w(r)+d^{1 / 2}\left(r_{0}\right)
$$

By assumption

$$
\int_{B_{r_{0}}}|\nabla v|^{2} d x=\int_{B_{r_{0}}}|\nabla u|^{2} d x \leq 1-\|u\|_{L^{2}}^{2}
$$

and hence

$$
\begin{align*}
\int_{B_{r_{0}}}|\nabla w|^{2} d x & =\int_{B_{r_{0}}}\left|\nabla v\left(1+\frac{1}{\pi r_{0}^{2}}\|u\|_{L^{2}}^{2}\right)^{1 / 2}\right|^{2} \\
& =\left(1+\frac{1}{\pi r_{0}^{2}}\|u\|_{L^{2}}^{2}\right) \int_{B_{r_{0}}}|\nabla u|^{2} d x \tag{2.10}\\
& \leq\left(1+\frac{1}{\pi r_{0}^{2}}\|u\|_{L^{2}}^{2}\right)\left(1-\|u\|_{L^{2}}^{2}\right) \\
& =1+\frac{1}{\pi r_{0}^{2}}\|u\|_{L^{2}}^{2}-\|u\|_{L^{2}}^{2}-\frac{1}{\pi r_{0}^{2}}\|u\|_{L^{2}}^{4} \leq 1
\end{align*}
$$

provided that $r_{0}^{2} \geq \frac{1}{\pi}$. Since by $(2.9) u^{2}(r) \leq w^{2}(r)+d$ we get

$$
\int_{|x| \leq r_{0}}\left(e^{4 \pi u^{2}}-1\right) d x \leq e^{4 \pi d} \int_{B_{r_{0}}} e^{4 \pi w^{2}} d x
$$

The result follows by the Trudinger-Moser inequality, since $w \in H_{0}^{1}\left(B_{r_{0}}\right)$ with $\|w\|_{D}^{2}=\int_{B_{r_{0}}}|\nabla w|^{2} d x \leq 1$.

In the next proposition we show that the result is optimal (as in the Dirichlet-norm case), namely that the supremum in (2.1) becomes infinite if the exponent 4π is replaced by a number $\alpha>4 \pi$.

Proposition 2.2 Suppose that $\alpha>4 \pi$. Then, for any domain $\Omega \subseteq \mathbb{R}^{2}$

$$
\begin{equation*}
\sup _{\|u\|_{S} \leq 1} \int_{\Omega}\left(e^{\alpha u^{2}}-1\right) d x=+\infty \tag{2.11}
\end{equation*}
$$

Proof.

We may suppose that $0 \in \Omega$, and that for some $\rho>0$ the ball $B_{\rho}(0) \subset \Omega$. We use a modified "Mosersequence", see [11], defined in $B_{\rho}(0)$ and continued by zero in $\Omega \backslash B_{\rho}(0)$, and with Sobolev-norm ≤ 1 :

$$
m_{n}(x)=\frac{1}{\sqrt{2 \pi}} \begin{cases}\frac{\log (\rho /|x|)}{(\log n)^{1 / 2}}\left(1-\frac{\rho^{2}}{4 \log n}\right)^{1 / 2} & , \quad \frac{\rho}{n} \leq|x| \leq \rho \tag{2.12}\\ (\log n)^{1 / 2}\left(1-\frac{\rho^{2}}{4 \log n}\right)^{1 / 2} & , \quad 0 \leq|x| \leq \rho / n\end{cases}
$$

One checks that $\left\|m_{n}\right\|_{H_{0}^{1}(\Omega)}^{2} \leq 1$, for n large. Hence one has

$$
\begin{align*}
& \sup _{\|u\|_{S} \leq 1} \int_{\Omega}\left(e^{\alpha u^{2}}-1\right) d x \geq \lim _{n \rightarrow \infty} \int_{B_{\rho}}\left(e^{\alpha m_{n}^{2}}-1\right) d x \\
& \quad \geq 2 \pi \int_{0}^{\rho / n}\left(e^{\frac{\alpha}{2 \pi} \log n\left[1-\rho^{2} /(4 \log n)\right]}-1\right) r d r \tag{2.13}\\
& \quad=\left.2 \pi\left(n^{\frac{\alpha}{2 \pi}} e^{-\frac{\alpha \rho^{2}}{8 \pi}}-1\right) \frac{r^{2}}{2}\right|_{0} ^{\rho / n} \rightarrow+\infty, \text { as } n \rightarrow \infty
\end{align*}
$$

3 Critical growth and concentration

Numerous studies in recent years have shown the close connection of critical growth with concentration phenomena, see e.g. the pioneering work of H. Brezis - L. Nirenberg [3].

As pointed out in the introduction, it is of particular interest to study the "highest level of noncompactness" for the functional $\int_{\Omega}\left(e^{4 \pi u_{n}^{2}}-1\right) d x$, under the restriction $\|u\|_{S} \leq 1$. In view of this, we make the following definition:

Definition 3.1 A sequence $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ is a Sobolev-normalized concentrating sequence (for short, SNC-sequence), if
a) $\left\|u_{n}\right\|_{S}=1$
b) $u_{n} \rightharpoonup 0$, weakly in $H_{0}^{1}(\Omega)$
c) $\exists x_{0} \in \Omega$ such that $\forall \rho>0: \int_{\Omega \backslash B_{\rho}\left(x_{0}\right)}\left(\left|\nabla u_{n}\right|^{2}+\left|u_{n}\right|^{2}\right) d x \rightarrow 0$

Next, we define the Carleson-Chang limit as the maximal limit of SNS-sequences:
Definition 3.2 Let

$$
\Sigma:=\left\{\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega) \mid\left\{u_{n}\right\} \text { is a SNC-sequence }\right\}
$$

and define the Carleson-Chang limit as

$$
\underset{\left\|u_{n}\right\|_{S} \leq 1}{\mathrm{cc}-\lim _{\Omega}} \int_{\Omega}\left(e^{4 \pi u_{n}^{2}}-1\right) d x:=\sup _{\Sigma} \limsup _{n \rightarrow \infty} \int_{\Omega}\left(e^{4 \pi u_{n}^{2}}-1\right) d x
$$

The following "concentration-compactness alternative" by P.L. Lions (restated in our notation) is relevant for our purposes:

Proposition (P.L. Lions, [10], Theorem I.6). Let $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ satisfy $\left\|u_{n}\right\|_{S} \leq 1$; we may assume that $u_{n} \rightharpoonup u$. Then either
$\left\{u_{n}\right\}$ is a SNC-sequence
or
$\int_{\Omega}\left(e^{4 \pi u_{n}^{2}}-1\right) d x \rightarrow \int_{\Omega}\left(e^{4 \pi u^{2}}-1\right) d x$; this holds in particular if $u \neq 0$.
Then one has
Proposition 3.3 Suppose that

$$
S:=\sup _{\|u\|_{S} \leq 1} \int_{\Omega}\left(e^{4 \pi u^{2}}-1\right) d x>\underset{\left\|u_{n}\right\|_{S} \leq 1}{\mathrm{cc}-\lim _{\Omega}} \int_{\Omega}\left(e^{4 \pi u_{n}^{2}}-1\right) d x
$$

Then the supremum S is attained.
Proof. Let $\left\{y_{n}\right\}$ denote a maximizing sequence for S, and assume that S is not attained. We may assume that $y_{n} \rightharpoonup y$. By the alternative of P.L. Lions we get $y=0$, and $\left\{y_{n}\right\}$ is a SNC-sequence. Hence

$$
S=\lim _{n \rightarrow \infty} \int_{\Omega}\left(e^{4 \pi y_{n}^{2}}-1\right) d x \leq \underset{\left\|u_{n}\right\|_{S} \leq 1}{\mathrm{cc}-\lim _{\Omega}} \int_{\Omega}\left(e^{4 \pi u_{n}^{2}}-1\right) d x<S
$$

Contradiction!

4 Upper bound for the Carleson-Chang limit

In this section we prove an explicit upper bound for the Carleson-Chang limit. In particular, we prove the estimates (1.7) and (1.8) of Theorem 1.2. In section 7 we will show that the bound in (1.7) is sharp for $\Omega=B_{R}$, with any radius $R>0$, and the bound in (1.8) is sharp for $\Omega=\mathbb{R}^{2}$.

Proof.

1. Using symmetrization as in section 2, we see that it is sufficient to prove (1.7) for radial functions in $B_{R}(0)$. Following J. Moser [11] we perform the change of variables

$$
\begin{equation*}
r=e^{-t / 2}, \text { and setting } w_{n}(t)=(4 \pi)^{1 / 2} y_{n}(r) \tag{4.1}
\end{equation*}
$$

we transform the radial integrals on $[0, R]$ into integrals on the half-line $[-2 \log R,+\infty)$. We will write throughout the paper: $\alpha_{R}=-2 \log R$, with $\alpha_{R}=-\infty$ if $R=+\infty$. One checks that

$$
\int_{B_{R}}\left|\nabla y_{n}(x)\right|^{2} d x=2 \pi \int_{0}^{R}\left|\frac{d}{d r} y_{n}(r)\right|^{2} r d r=\int_{\alpha_{R}}^{\infty}\left|w_{n}^{\prime}(t)\right|^{2} d t
$$

and

$$
\begin{equation*}
\int_{B_{R}}\left(e^{4 \pi y_{n}^{2}(x)}-1\right) d x=2 \pi \int_{0}^{R}\left(e^{4 \pi y_{n}^{2}(r)}-1\right) r d r=\pi \int_{\alpha_{R}}^{\infty}\left(e^{w_{n}^{2}(t)}-1\right) e^{-t} d t \tag{4.2}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\int_{B_{R}}\left|y_{n}(x)\right|^{2} d x=2 \pi \int_{0}^{R}\left|y_{n}(r)\right|^{2} r d r=\frac{1}{4} \int_{\alpha_{R}}^{\infty}\left|w_{n}(t)\right|^{2} e^{-t} d t \tag{4.3}
\end{equation*}
$$

The SNC-sequences in this new setting are characterized by:
a) $\left\|w_{n}\right\|_{S}^{2}:=\int_{\alpha_{R}}^{\infty}\left(\left|w_{n}^{\prime}\right|^{2}+\frac{1}{4}\left|w_{n}\right|^{2} e^{-t}\right) d t=1, w_{n}\left(\alpha_{R}\right)=0$
b) $w_{n} \rightharpoonup 0$, weakly in $H^{1}\left(\left[\alpha_{R},+\infty\right)\right)$
c) $\int_{\alpha_{R}}^{A}\left(\left|w_{n}^{\prime}\right|^{2}+\frac{1}{4}\left|w_{n}\right|^{2} e^{-t}\right) d t \rightarrow 0$ for any fixed $A>0$,
and the estimate (1.7) (which we seek to prove) becomes

$$
\begin{equation*}
\underset{\left\|w_{n}\right\|_{S} \leq 1}{\mathrm{cc}-\lim _{1}} \pi \int_{\alpha_{R}}^{\infty}\left(e^{w_{n}^{2}(t)}-1\right) e^{-t} d t \leq \pi e^{1-D(R)} \tag{4.4}
\end{equation*}
$$

for SNC-sequences $\left\{w_{n}\right\} \subset H^{1}\left(\left[\alpha_{R},+\infty\right)\right)$.
Let now denote $\left\{w_{n}\right\}$ a maximizing SNC-sequence for the Carleson-Chang limit (1.7). We may assume that the sequence $\left\{w_{n}\right\}$ satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \pi \int_{\alpha_{R}}^{\infty}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t>2 \pi e^{-D(R)} \tag{4.5}
\end{equation*}
$$

since otherwise the theorem is proved. Note that we may assume that $w_{n}(t)$ is an increasing function on $\left[\alpha_{R},+\infty\right)$. Fix $A_{R} \geq 1$ such that

$$
\begin{equation*}
t-2 \log t-D(R)>1, \forall t \geq A_{R} \tag{4.6}
\end{equation*}
$$

Claim 1: There exists a number n_{1} such that

$$
w_{n}(t)<1, \forall t \leq A_{R}, \forall n \geq n_{1}
$$

Indeed, for $0<R<+\infty$ we can estimate

$$
\begin{align*}
w_{n}(t) & \leq\left(A_{R}+2 \log R\right)^{1 / 2}\left(\int_{\alpha_{R}}^{A_{R}}\left|u_{n}^{\prime}\right|^{2} d t\right)^{1 / 2} \tag{4.7}\\
& =:\left(A_{R}+2 \log R\right)^{1 / 2} \delta_{n}, \text { for } t \leq A_{R}
\end{align*}
$$

with $\delta_{n} \rightarrow 0$ as $n \rightarrow 0$, by c).
For $R=+\infty$ and $0<t \leq A_{R}$ we estimate

$$
w_{n}(t)=w_{n}(0)+\int_{0}^{t} w^{\prime}(t) d t \leq w_{n}(0)+t^{1 / 2}\left(\int_{0}^{t}\left|w_{n}^{\prime}\right|^{2}\right)^{1 / 2} d t
$$

The second term goes to zero, as above. For the estimate of $w_{n}(0)$ we use the following Radial Lemma (see W. Strauss, [13]), valid for radial functions $v(r)$ in $H^{1}\left(\mathbb{R}^{2}\right)$ and for $r \geq 1$:

$$
\left(r+\frac{1}{2}\right) v^{2}(r) \leq \frac{5}{4} \int_{r}^{\infty}\left(\left|v^{\prime}\right|^{2}+|v|^{2}\right) \rho d \rho
$$

We transform this inequality (as before) by the change of variables $r=e^{-t / 2}$ and $w(t)=(4 \pi)^{1 / 2} v(r)$ and get, for $t \leq 0$:

$$
\begin{equation*}
\left(e^{-t / 2}+\frac{1}{2}\right) w^{2}(t) \leq \frac{5}{2} \int_{-\infty}^{e^{-t / 2}}\left(\left|w^{\prime}(t)\right|^{2}+\frac{1}{4}|w(t)|^{2} e^{-t}\right) d t \tag{4.8}
\end{equation*}
$$

Hence, we get for $w_{n}(0)$, using the concentration property of w_{n}

$$
w_{n}^{2}(0) \leq \frac{5}{3} \int_{-\infty}^{0}\left(\left|w^{\prime}(t)\right|^{2}+\frac{1}{4}|w(t)|^{2} e^{-t}\right) d t=: \sigma_{n}^{2} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Thus the claim is proved.
By claim 1 we conclude that for n sufficiently large $(0<R \leq+\infty)$

$$
w_{n}^{2}(t)<1<A_{R}-2 \log A_{R}-D(R), \alpha_{R} \leq t \leq A_{R}
$$

Let now $a_{n}>A_{R}$ denote the first $t>A_{R}$ with

$$
\begin{equation*}
w_{n}^{2}\left(a_{n}\right)=a_{n}-2 \log a_{n}-D(R) \tag{4.9}
\end{equation*}
$$

Such an a_{n} exists (for n sufficiently large), since otherwise

$$
w_{n}^{2}(t)<t-2 \log t-D(R), \forall t \geq A_{R} \geq 1, \quad \text { as } \quad n \rightarrow \infty,
$$

and thus

$$
\pi \int_{\alpha_{R}}^{\infty}\left(e^{w_{n}^{2}}-1\right) e^{-t} \leq \pi \int_{\alpha_{R}}^{A_{R}}\left(e^{w_{n}^{2}}-1\right) e^{-t}+\pi \int_{A_{R}}^{\infty} e^{t-2 \log t-D(R)-t}
$$

The second term on the right is bounded by $\pi e^{-D(R)}$, and in the following claim 2 we prove that the first term goes to 0 , for $n \rightarrow \infty$, and thus we have a contradiction to assumption (4.5).

Claim 2:

$$
\pi \int_{\alpha_{R}}^{A_{R}}\left(e^{w_{n}^{2}}-1\right) e^{-t} \rightarrow 0 \text { as } n \rightarrow \infty
$$

This is immediate for $0<R<+\infty$, since then this term can be estimated, using (4.7), by

$$
\pi\left(R^{2}-e^{-A_{R}}\right)\left(e^{\delta_{n}^{2}\left(A_{R}+\alpha_{R}\right)}-1\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

If $R=+\infty$ we write

$$
\int_{-\infty}^{0}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t+\int_{0}^{A_{R}}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t
$$

The second term is now estimated as before, while for the first term we use a series expansion:

$$
\begin{aligned}
& \int_{-\infty}^{0}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t=\int_{-\infty}^{0} \sum_{k=1}^{\infty} \frac{\left|w_{n}(t)\right|^{2 k}}{k!} e^{-t} d t \\
& \quad=\int_{-\infty}^{0}\left|w_{n}(t)\right|^{2} e^{-t} d t+\int_{-\infty}^{0} \frac{1}{2}\left|w_{n}(t)\right|^{4} e^{-t} d t+\sum_{k=3}^{\infty} \int_{-\infty}^{0} \frac{\left|w_{n}(t)\right|^{2 k}}{k!} e^{-t} d t
\end{aligned}
$$

The first term goes to zero by concentration, the second term can be estimated by Sobolev (by returning to the variable r and back to t)

$$
\int_{-\infty}^{0} w_{n}^{4} e^{-t} d t \leq c_{0}\left(\int_{-\infty}^{0}\left(\left|w_{n}^{\prime}\right|^{2}+\frac{1}{4}\left|w_{n}\right|^{2} e^{-t}\right) d t\right)^{2}
$$

and hence also goes to zero by concentration. For the third term, observe that by (4.8) we get for $t \leq 0$

$$
w_{n}^{2}(t) \leq \frac{5}{4} \frac{1}{e^{-t / 2}+1 / 2} \sigma_{n}^{2} \leq c e^{t / 2} \sigma_{n}^{2}
$$

Hence we can estimate the series as

$$
\sum_{k=3}^{\infty} \int_{-\infty}^{0} \frac{c^{k}}{k!} \sigma_{n}^{2 k} e^{k t / 2} e^{-t} d t \leq \sum_{k=3}^{\infty} c^{k} \sigma_{n}^{2 k} \int_{-\infty}^{0} e^{t / 2} d t \leq c_{1} \sigma_{n}^{6} 2
$$

and thus claim 2 is proved.
Thus we have proved the existence of a number $a_{n}>A_{R}$ as claimed in (4.9).
We now prove, for $0<R \leq+\infty$
i) $\pi \int_{\alpha_{R}}^{a_{n}}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t \rightarrow 0$, as $n \rightarrow \infty$.
ii) $\lim _{n \rightarrow \infty} \pi \int_{a_{n}}^{\infty}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t \leq \pi e^{1-D(R)}$

Proof of i): Note that the argument above shows that $a_{n} \rightarrow+\infty$ as $n \rightarrow \infty$, since for an arbitrarily large number A_{R} there exists $n_{0}\left(A_{R}\right)$ such that $a_{n}>A_{R}$ for $n \geq n_{0}$. By (4.9) we have

$$
\pi \int_{\alpha_{R}}^{a_{n}}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t \leq \int_{\alpha_{R}}^{A}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t+\pi \int_{A}^{a_{n}} e^{-2 \log t-D(R)} d t
$$

Let $\epsilon>0$: for the second term we get $\pi e^{-D(R)}\left(\frac{1}{A}-\frac{1}{a_{n}}\right)<\epsilon / 2$, for A sufficiently large, and then the first term becomes $\leq \epsilon / 2$, for $n \geq n_{0}(A, \epsilon)$, proceeding as in Claim 2 .
Proof of ii): We apply the following basic estimate which was proved in [6] (we cite it here in the form given in [7], Proposition 2.2):
Lemma (Carleson-Chang): For $a>0$ and $\delta>0$ given, suppose that $\int_{a}^{\infty}\left|w^{\prime}(t)\right|^{2} d t \leq \delta$. Then

$$
\int_{a}^{\infty} e^{w^{2}-t} d t \leq e \frac{1}{1-\delta} e^{K}, \quad \text { with } \quad K=w^{2}(a)\left(1+\frac{\delta}{1-\delta}\right)-a
$$

We apply this Lemma to our sequence $\left\{w_{n}\right\}$, with $a=a_{n}$ given in (4.9), and $\delta=\delta_{n}=\int_{a_{n}}^{\infty}\left(\left|w_{n}^{\prime}\right|^{2}+\right.$ $\left.\frac{1}{4}\left|w_{n}\right|^{2} e^{-t}\right) d t$. Furthermore, in the following section 5, (5.1) and section 6, Proposition 6.4, it is shown that:

For $a>0$ and $b>0$ given, let

$$
S_{a, b}=\left\{u \in H^{1}\left(\alpha_{R}, a\right), u\left(\alpha_{R}\right)=0, \int_{\alpha_{R}}^{a}\left(\left|u^{\prime}\right|^{2}+\frac{1}{4}|u|^{2} e^{-t}\right) d t=b\right\}
$$

Then the supremum

$$
\sup \left\{\|u\|_{\infty}^{2}: u \in S_{a, b}\right\}
$$

is attained by a function y, with

$$
\|y\|_{\infty}^{2}=y^{2}(a)=b(a-D(R))+O\left(\frac{1}{a}\right) .
$$

Thus, choosing $a=a_{n}$ and $b=b_{n}=1-\delta_{n}$ we get for $w_{n} \in S_{a_{n}, b_{n}}$

$$
w_{n}^{2}\left(a_{n}\right) \leq a_{n}-a_{n} \delta_{n}-D(R)+O\left(\delta_{n}\right)+O\left(\frac{1}{a_{n}}\right)
$$

which implies together with (4.9)

$$
\begin{equation*}
\delta_{n} \leq \frac{2 \log a_{n}}{a_{n}}+O\left(\frac{\log a_{n}}{a_{n}^{2}}\right) \tag{4.10}
\end{equation*}
$$

Thus we have for $K=K_{n}$ in the Lemma of Carleson and Chang

$$
\begin{align*}
K_{n} & =w_{n}^{2}\left(a_{n}\right)\left(1+\frac{\delta_{n}}{1-\delta_{n}}\right)-a_{n} \\
& \leq\left(a_{n}-a_{n} \delta_{n}-D(R)+O\left(\frac{\log a_{n}}{a_{n}}\right)\right)\left(1+\delta_{n}+O\left(\delta_{n}^{2}\right)\right)-a_{n} \\
& =-D(R)-\delta_{n} D(R)+O\left(\frac{\log a_{n}}{a_{n}}\right)+a_{n} O\left(\delta_{n}^{2}\right) \tag{4.11}\\
& =-D(R)+O\left(\frac{\left(\log a_{n}\right)^{2}}{a_{n}}\right)
\end{align*}
$$

Hence we obtain by the Lemma of Carleson and Chang for any maximizing SNC-sequence $\left\{w_{n}\right\}$

$$
\lim _{n \rightarrow \infty} \pi \int_{a_{n}}^{\infty}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t \leq \lim _{n \rightarrow \infty} \pi e \frac{1}{1-\delta_{n}} e^{K_{n}} \leq \pi e^{1-D(R)}
$$

thus ii) is proved.
With i) and ii) we now easily complete the proof of the first statement of Theorem 1.2
2. It is clear that for $\Omega_{0} \subset \Omega_{1}$ the corresponding cc-limits are increasing. Thus, it is sufficient to prove 2) for $\Omega=\mathbb{R}^{2}$; this corresponds to setting $R=+\infty$, which was included in the proof of 1).

5 An auxiliary variational problem

In this section we consider the following variational problem: Determine

$$
\begin{equation*}
\sup \left\{\|u\|_{\infty}^{2} \mid u \in S_{a, b}\right\} \tag{5.1}
\end{equation*}
$$

where

$$
S_{a, b}=\left\{u \in H^{1}\left(\alpha_{R}, a\right) \mid u\left(\alpha_{R}\right)=0, \int_{\alpha_{R}}^{a}\left(\left|u^{\prime}\right|^{2}+\frac{R^{2}}{4}|u|^{2} e^{-t}\right) d t=b>0\right\}
$$

Note that $S_{a, b} \subset L^{\infty}\left(\alpha_{R}, a\right)$, with compact embedding, and hence it is easily seen that the supremum in (5.1) is attained: let $y_{a} \in S_{a, b}$ such that

$$
\begin{equation*}
\left\|y_{a}\right\|_{\infty}^{2}=\sup \left\{\|u\|_{\infty}^{2} \mid u \in S_{a, b}\right\} \tag{5.2}
\end{equation*}
$$

In order to determine the value of (5.2) we need to identify the maximizing function $y_{a} \in S_{a, b}$. The natural way to do this consists in deriving the Euler-Lagrange equation associated to (5.1), but we encounter the difficulty that the functional $y \mapsto\|y\|_{\infty}^{2}$ is not differentiable. However, this functional is convex, and hence its subdifferential exists. We briefly recall this notion, and then derive the Euler-Lagrange equation for (5.1). For the proofs of some of the results we refer to [8].

Definition 5.1 Let E be a Banach space, and $\psi: E \rightarrow \mathbb{R}$ continuous and convex. Then we denote by $\partial \psi(u) \subset E^{\prime}$ the subdifferential of ψ in $u \in E$, given by

$$
\mu_{u} \in \partial \psi(u) \Leftrightarrow \psi(u+v)-\psi(u) \geq\left\langle\mu_{u}, v\right\rangle, \forall v \in E ;
$$

here $\langle\cdot, \cdot\rangle$ denotes the dual pairing between E and E^{\prime}. An element $\mu_{u} \in \partial \psi(u)$ is called a subgradient of ψ at u.

In [8], Lemma 2.2, it is proved that
Lemma: If ψ satisfies in addition

$$
\begin{equation*}
\psi(x) \geq 0, \forall x \in E, \text { and } \psi(t x)=t^{2} \psi(x), \forall t \geq 0 \tag{5.3}
\end{equation*}
$$

then

$$
\mu \in \partial \psi(u) \Leftrightarrow\left\{\begin{array}{l}
\langle\mu, u\rangle=2 \psi(u) \\
\langle\mu, x\rangle \leq\langle\mu, u\rangle,
\end{array} \forall x \in \psi^{u}=\{x \in E ; \psi(x) \leq \psi(u)\} .\right.
$$

Furthermore, by an easy variation of [8], Lemma 2.3 and Corollary 2.4, one has:

Lemma 5.2 Suppose that $\psi: E \rightarrow \mathbb{R}$ satisfies (5.3), and $\phi \in C^{1}(E, \mathbb{R})$ satisfies $\left\langle\phi^{\prime}(x), x\right\rangle=2 \phi(x)$, $\forall x \in E$. If $y \in E$ is such that

$$
\psi(y)=\sup _{\{u \in E, \phi(u)=b\}} \psi(u)
$$

then

$$
\phi^{\prime}(u) \in \frac{b}{\psi(u)} \partial \psi(u)
$$

Proof. The Euler-Lagrange equation

$$
\begin{equation*}
\phi^{\prime}(u) \in \lambda \partial \psi(u) \text { for some } \lambda>0 \tag{5.4}
\end{equation*}
$$

is obtained as in [8], Lemma 2.3 and Corollary 2.4. The value

$$
\lambda=\frac{b}{\psi(u)}
$$

is found by testing (5.4) with u :

$$
2 b=2 \phi(u)=\left\langle\phi^{\prime}(u), u\right\rangle=\lambda\left\langle\mu_{u}, u\right\rangle=\lambda 2 \psi(u) .
$$

We now apply Lemma 5.2 to our situation, and obtain
Theorem 5.3 Let $E=\left\{v \in H^{1}\left(\alpha_{R}, a\right) ; v\left(\alpha_{R}\right)=0\right\}$, and consider

$$
\psi(u)=\|u\|_{\infty}^{2}: E \rightarrow \mathbb{R}
$$

and

$$
\phi(u)=\int_{\alpha_{R}}^{a}\left(\left|u^{\prime}(x)\right|^{2}+\frac{1}{4}|u(x)|^{2} e^{-x}\right) d x .
$$

Suppose that $y \in E$ satisfies

$$
\psi(y)=\sup \{\psi(u) \mid u \in E, \phi(u)=b\} ;
$$

then y satisfies (weakly) the equation

$$
\begin{equation*}
-y^{\prime \prime}(x)+\frac{1}{4} y(x) e^{-x}=\frac{b}{\|y\|_{\infty}^{2}} \mu_{y}, \quad \text { where } \mu_{y} \in \partial \psi(y) \subset E^{\prime} \tag{5.5}
\end{equation*}
$$

6 The auxiliary Euler-Lagrange equation

It remains to determine the subgradient μ_{y} in equation (5.5). Again following [8], Lemma 2.6, 2.7 and 2.8 we find:

Proposition 6.1 Let $K_{y}=\left\{x \in\left[\alpha_{R}, a\right] ; \mid y(x)=\|y\|_{\infty}\right\}$. Then
i) supp $\mu_{y} \subset K_{y}$
ii) $K_{y}=\{a\}$
iii) $\mu_{y}=\|y\|_{\infty} \delta_{a}$, the Dirac delta-function concentrated in the point a.

Thus, equation (5.5) becomes

$$
\left\{\begin{align*}
-y^{\prime \prime}+\frac{1}{4} y e^{-t} & =\frac{b}{\|y\|_{\infty}} \delta_{a}, \alpha_{R} \leq t \leq a \tag{6.1}\\
y\left(\alpha_{R}\right) & =0
\end{align*}\right.
$$

From this one now concludes easily that equation (5.5) is equivalent to solving the equation

$$
\left\{\begin{array}{rl}
-w^{\prime \prime}+\frac{1}{4} w e^{-t} & =0 \tag{6.2}\\
w\left(\alpha_{R}\right) & =0
\end{array} \quad, \alpha_{R} \leq t<a\right.
$$

with the condition that

$$
\begin{equation*}
\int_{\alpha_{R}}^{a}\left(\left|w^{\prime}(t)\right|^{2}+\frac{1}{4}|w(t)|^{2} e^{-t}\right) d t=b ; \tag{6.3}
\end{equation*}
$$

the last condition is obtained by multiplying equation (6.1) by y and integrating.
We now determine the explicit solution of equation (6.2).
Theorem 6.2 The solution of equation (6.2) is given by

- for $0<R<+\infty$:

$$
\begin{equation*}
w(t)=\gamma\left(K_{0}\left(e^{-t / 2}\right)-\frac{K_{0}(R)}{I_{0}(R)} I_{0}\left(e^{-t / 2}\right)\right)=: \gamma z(t) \tag{6.4}
\end{equation*}
$$

- for $R=+\infty$:

$$
\begin{equation*}
w(t)=\gamma K_{0}\left(e^{-t / 2}\right) \tag{6.5}
\end{equation*}
$$

with unique coefficients $\gamma=\gamma(R, a, b) \in \mathbb{R}^{+}$.
Here $I_{k}(x)$ and $K_{k}(x)$ are the $k-t h$ modified Bessel functions of first and second kind, i.e. the solutions of the equation

$$
-x^{2} u^{\prime \prime}(x)-x u^{\prime}(x)+\left(x^{2}+k^{2}\right) u(x)=0, k=1,2, \ldots
$$

Proof. By inspection.
It is crucial to dermine with precision the value of the coefficient $\gamma=\gamma(R, a, b)$ of $w(t)$. This requires some lengthy calculations.

We begin by recalling the following relations for the modified Bessel functions (see e.g. [1], 9.6.27,28):

$$
\begin{equation*}
\frac{d}{d x} I_{0}(x)=I_{1}(x), \frac{d}{d x} K_{0}(x)=-K_{1}(x), \frac{d}{d x}\left(x K_{1}(x)\right)=-x K_{0}(x) \tag{6.6}
\end{equation*}
$$

and the following integral relations

$$
\begin{align*}
& \int_{a}^{b}\left|K_{0}(r)\right|^{2} r d r=\left[\frac{1}{2} r^{2}\left(K_{0}^{2}(r)-K_{1}^{2}(r)\right)\right]_{a}^{b} \\
& \int_{a}^{b}\left|K_{1}(r)\right|^{2} r d r=\left[\frac{1}{2} r^{2}\left(K_{1}^{2}(r)-K_{0}(r) K_{2}(r)\right)\right]_{a}^{b} \\
& \int_{a}^{b}\left|I_{0}(r)\right|^{2} r d r=\left[\frac{1}{2} r^{2}\left(I_{0}^{2}(r)-I_{1}^{2}(r)\right)\right]_{a}^{b} \tag{6.7}\\
& \int_{a}^{b}\left|I_{1}(r)\right|^{2} r d r=\left[\frac{1}{2} r^{2}\left(I_{1}^{2}(r)-I_{0}(r) I_{2}(r)\right)\right]_{a}^{b} \\
& \int_{a}^{b}\left[I_{1}(r) K_{1}(r)-I_{0}(r) K_{0}(r)\right] r d r=\left[I_{0}(r) K_{1}(r) r\right]_{a}^{b}
\end{align*}
$$

see [1]; for the last relation use integration by parts and (6.6).
Using these relations we will prove:

Theorem 6.3

1) Condition (6.3) yields for the coefficient $\gamma=\gamma(R, a, b)$ in (6.4)

$$
\gamma^{2}=4 \frac{b}{a}\left[1-\frac{4}{a} C(R)\right]+O\left(\frac{1}{a^{3}}\right)
$$

for a large, with
(6.8) $\quad C(R)=\frac{1}{4} R^{2}\left(K_{0}^{2}(R)-K_{0}(R) K_{2}(R)+K_{0}^{2}(R)\left(1-\frac{I_{2}(R)}{I_{0}(R)}\right)\right)+2 R K_{0}(R) K_{1}(R)-2 \frac{K_{0}(R)}{I_{0}(R)}$
and $\quad C(+\infty)=0$.
2) The solution $w(t), \alpha_{R} \leq t \leq a$, of equation (6.2) is given by

- for $0<R<+\infty$:

$$
\begin{equation*}
w(t)=2 \sqrt{\frac{b}{a}}\left(1-\frac{4}{a} C(R)+O\left(\frac{1}{a^{2}}\right)\right)^{1 / 2}\left(K_{0}\left(e^{-t / 2}\right)-\frac{K_{0}(R)}{I_{0}(R)} I_{0}\left(e^{-t / 2}\right)\right) \tag{6.9}
\end{equation*}
$$

- for $R=+\infty$:
(6.10)

$$
w(t)=2 \sqrt{\frac{b}{a}}\left(1+O\left(\frac{1}{a^{2}}\right)\right)^{1 / 2} K_{0}\left(e^{-t / 2}\right)
$$

Proof. Recall the definition of $w(t)$ given in (6.4). We begin by evaluating the expression

$$
W^{2}(a):=\int_{\alpha_{R}}^{a}\left(\left|w^{\prime}(x)\right|^{2}+\frac{1}{4}\left|w^{2}(x)\right|^{2} e^{-x}\right) d x
$$

Using the explicit form of $w(t)$ in (6.4), the change of variable $r=e^{-x / 2}$, and the relations (6.6), we get

$$
\begin{align*}
W^{2}(a) & =\frac{1}{4} \int_{\alpha_{R}}^{a}\left\{\left|K_{0}^{\prime}\left(e^{-x / 2}\right)-\frac{K_{0}(R)}{I_{0}(R)} I_{0}^{\prime}\left(e^{-x / 2}\right)\right|^{2}+\left|K_{0}\left(e^{-x / 2}\right)-\frac{K_{0}(R)}{I_{0}(R)} I_{0}\left(e^{-x / 2}\right)\right|^{2}\right\} e^{-x} d x \\
& =\frac{1}{2} \int_{e^{-a / 2}}^{R}\left\{\left|-K_{1}(r)-\frac{K_{0}(R)}{I_{0}(R)} I_{1}(r)\right|^{2}+\left|K_{0}(r)-\frac{K_{0}(R)}{I_{0}(R)} I_{0}(r)\right|^{2}\right\} r d r \tag{6.11}\\
& =\frac{1}{2} \int_{e^{-a / 2}}^{R}\left\{\left|K_{1}(r)\right|^{2}+\frac{K_{0}^{2}(R)}{I_{0}^{2}(R)}\left|I_{1}(r)\right|^{2}+\left|K_{0}(r)\right|^{2}+\frac{K_{0}^{2}(R)}{I_{0}^{2}(R)}\left|I_{0}(r)\right|^{2}\right. \\
& \left.+2 \frac{K_{0}(R)}{I_{0}(R)}\left(K_{1}(r) I_{1}(r)-K_{0}(r) I_{0}(r)\right)\right\} r d r
\end{align*}
$$

Using the relations (6.7) we get

$$
\begin{align*}
& \frac{1}{2}\left\{\left[\frac{1}{2} r^{2}\left(K_{1}^{2}(r)-K_{0}(r) K_{2}(r)\right)\right]_{e^{-a / 2}}^{R}+\frac{K_{0}^{2}(R)}{I_{0}^{2}(R)}\left[\frac{1}{2} r^{2}\left(I_{1}^{2}(r)-I_{0}(r) I_{2}(r)\right)\right]_{e^{-a / 2}}^{R}\right. \\
& \quad+\left[\frac{1}{2} r^{2}\left(K_{0}^{2}(r)-K_{1}^{2}(r)\right)\right]_{e^{-a / 2}}^{R}+\frac{K_{0}^{2}(R)}{I_{0}^{2}(R)}\left[\frac{1}{2} r^{2}\left(I_{0}^{2}(r)-I_{1}^{2}(r)\right)\right]_{e^{-a / 2}}^{R} \\
& \left.\quad+2 \frac{K_{0}(R)}{I_{0}(R)}\left[I_{0}(r) K_{1}(r) r\right]_{e^{-\alpha / 2}}^{R}\right\} \tag{6.12}\\
& =\frac{1}{2}\left\{\left[\frac{1}{2} r^{2}\left(K_{0}^{2}(r)-K_{0}(r) K_{2}(r)+\frac{K_{0}^{2}(R)}{I_{0}^{2}(R)}\left(I_{0}^{2}(r)-I_{0}(r) I_{2}(r)\right)\right)\right]_{e^{-a / 2}}^{R}\right. \\
& \left.\quad+2 \frac{K_{0}(R)}{I_{0}(R)}\left[I_{0}(r) K_{1}(r) r\right]_{e^{-a / 2}}^{R}\right\}
\end{align*}
$$

Evaluating at the boundaries we obtain

$$
\begin{align*}
& \frac{1}{4} R^{2}\left(K_{0}^{2}(R)-K_{0}(R) K_{2}(R)+K_{0}^{2}(R)\left(1-\frac{I_{2}(R)}{I_{0}(R)}\right)\right)+2 R K_{0}(R) K_{1}(R) \\
& \quad-\frac{1}{4} e^{-a}\left\{K_{0}^{2}\left(e^{-a / 2}\right)-K_{0}\left(e^{-a / 2}\right) K_{2}\left(e^{-a / 2}\right)\right. \\
& \left.\quad+\frac{K_{0}^{2}(R)}{I_{0}^{2}(R)}\left[I_{0}^{2}\left(e^{-a / 2}\right)-I_{0}\left(e^{-a / 2}\right) I_{2}\left(e^{-a / 2}\right)\right]\right\} \tag{6.13}\\
& \quad-2 e^{-a / 2} \frac{K_{0}(R)}{I_{0}(R)} I_{0}\left(e^{-a / 2}\right) K_{1}\left(e^{-a / 2}\right)
\end{align*}
$$

For the terms with argument $e^{-a / 2}, a$ large, we now use the following behavior of the Bessel functions for $x>0$ small, see [1],9.6.7-9: :

$$
\begin{array}{lll}
K_{0}(x) \sim-\log x & K_{1}(x) \sim \frac{1}{x} & K_{2}(x) \sim \frac{2}{x^{2}} \\
I_{0}(x) \sim 1 & I_{1}(x) \sim \frac{1}{2} x & I_{2}(x) \sim \frac{1}{8} x^{2} \tag{6.14}
\end{array}
$$

We get

$$
\begin{align*}
& \frac{1}{4} R^{2}\left(K_{0}^{2}(R)-K_{0}(R) K_{2}(R)+K_{0}^{2}(R)\left(1-\frac{I_{2}(R)}{I_{0}(R)}\right)\right)+2 R K_{0}(R) K_{1}(R) \\
& \quad-\frac{1}{4} e^{-a}\left\{\left(-\log \left(e^{-a / 2}\right)\right)^{2}-\left(-\log \left(e^{-a / 2}\right)\right) \frac{2}{e^{-a}}\right. \\
& \left.\quad+\frac{K_{0}^{2}(R)}{I_{0}^{2}(R)}\left[1-\frac{1}{8} e^{-a}\right]\right\}-2 e^{-a / 2} \frac{K_{0}(R)}{I_{0}(R)} \frac{1}{e^{-a / 2}} \\
& =\frac{1}{4} R^{2}\left(K_{0}^{2}(R)-K_{0}(R) K_{2}(R)+K_{0}^{2}(R)\left(1-\frac{I_{2}(R)}{I_{0}(R)}\right)\right)+2 R K_{0}(R) K_{1}(R) \\
& \left.\quad-\frac{1}{4} e^{-a}\left\{\left(\frac{a}{2}\right)^{2}-\frac{a}{2} 2 e^{a}+\frac{K_{0}^{2}(R)}{I_{0}^{2}(R)}\left[1-\frac{1}{8} e^{-a}\right)\right]\right\}-2 \frac{K_{0}(R)}{I_{0}(R)} \tag{6.15}\\
& =\frac{1}{4} R^{2}\left(K_{0}^{2}(R)-K_{0}(R) K_{2}(R)+K_{0}^{2}(R)\left(1-\frac{I_{2}(R)}{I_{0}(R)}\right)\right)+2 R K_{0}(R) K_{1}(R) \\
& \quad+\frac{1}{4} a-2 \frac{K_{0}(R)}{I_{0}(R)}+O\left(a^{2} e^{-a}\right) \\
& =\frac{1}{4} a+C(R)+O\left(a^{2} e^{-a}\right),
\end{align*}
$$

with $C(R)$ as in (6.8). Conditions (6.3) and (6.4) yield now

$$
\begin{equation*}
b=\gamma^{2} W^{2}(a)=\gamma^{2}\left(\frac{1}{4} a+C(R)+O\left(a^{2} e^{-a}\right)\right) \tag{6.16}
\end{equation*}
$$

We rewrite (6.16) as

$$
\begin{equation*}
\gamma^{2} \frac{a}{4}\left(1+\frac{4}{a} C(R)+O\left(a e^{-a}\right)\right)=b \tag{6.17}
\end{equation*}
$$

which yields for $\gamma=\gamma(a, b)$

$$
\begin{equation*}
\gamma^{2}=4 \frac{b}{a}\left[1-\frac{4}{a} C(R)\right]+O\left(\frac{1}{a^{3}}\right) \tag{6.18}
\end{equation*}
$$

This proves 1). Assertion 2) follows now from (6.4). Formula (6.10) follows from (6.9), noting that $C(+\infty)=0$ and $K_{0}(+\infty) / I_{0}(+\infty)=0$.

With this information we can now calculate the value $\|w\|_{\infty}^{2}=w^{2}(a)$:
Proposition 6.4 Let $w(t)$ denote the solution of (6.2), (6.3) and hence of (5.1). Then

$$
\|w\|_{\infty}^{2}=w^{2}(a)=b[a-D(R)]+O\left(\frac{1}{a}\right)
$$

Proof. By (6.4) we have, using (6.14)

$$
\begin{align*}
w^{2}(a) & =\gamma^{2}\left(K_{0}\left(e^{-a / 2}\right)-\frac{K_{0}(R)}{I_{0}(R)} I_{0}\left(e^{-a / 2}\right)\right)^{2} \\
& =4 \frac{b}{a}\left[\left(1-\frac{4}{a} C(R)\right)+O\left(\frac{1}{a^{2}}\right)\right]\left(K_{0}\left(e^{-a / 2}\right)-\frac{K_{0}(R)}{I_{0}(R)} I_{0}\left(e^{-a / 2}\right)\right)^{2} \tag{6.19}\\
& =4 \frac{b}{a}\left[\left(1-\frac{4}{a} C(R)\right)\right]\left(\frac{a}{2}-\frac{K_{0}(R)}{I_{0}(R)}\right)^{2}+O\left(\frac{\log a}{a^{3}}\right) \\
& =b\left[a-4 C(R)-4 \frac{K_{0}(R)}{I_{0}(R)}\right]+O\left(\frac{1}{a}\right)
\end{align*}
$$

Set

$$
\begin{equation*}
D(R)=4 C(R)+4 \frac{K_{0}(R)}{I_{0}(R)} \tag{6.20}
\end{equation*}
$$

then (6.19) becomes

$$
\begin{equation*}
w^{2}(a)=b[a-D(R)]+O\left(\frac{1}{a}\right) \tag{6.21}
\end{equation*}
$$

7 Construction of optimal concentrating sequences

In this section we show that the upper bounds for the Carleson-Chang limit

$$
\begin{equation*}
\underset{\left\|u_{n}\right\|_{S} \leq 1}{\mathrm{cc}-\lim _{\Omega}} \int_{\Omega}\left(e^{4 \pi u^{2}}-1\right) d x \leq \pi e^{1-D(R)} \tag{7.1}
\end{equation*}
$$

given in Theorem 1.2 are sharp for $\Omega=B_{R}$ and $\Omega=\mathbb{R}^{2}$. We do this by constructing explicit optimal SNC-sequences $\left\{w_{n}\right\}$ for (7.1) for which the Carleson-Chang limit is equal to the bound on the right.

The construction of this sequence follows closely the proof of the upper bound for the CarlesonChang limit, section 4, in combination with information on the optimal sequence for the corresponding Dirichlet-norm problem, see [7].

We begin by defining the sequence $\left\{w_{n}(t)\right\}$ on $\left[\alpha_{R}, n\right]$: in Theorem 6.3 , set $a=n$ and $b=1-\frac{2 \log n}{n}$. Then, for $0<R \leq+\infty$, let $w_{n}(t)$ be given by (6.9) or (6.10), respectively. Thus, $w_{n}(t)$ satisfies equation (6.2) with $a=n$, and condition (6.3) with $b=1-\frac{2 \log n}{n}$. Furthermore, we have by Proposition 6.4

$$
\begin{equation*}
w_{n}^{2}(n)=\sup \left\{\left\|w_{n}\right\|_{\infty}^{2} \mid w_{n} \in S_{n}\right\}=n-2 \log n-D(R)+O\left(\frac{1}{n}\right) \tag{7.2}
\end{equation*}
$$

where $S_{n}=\left\{u \in H^{1}\left(\alpha_{R}, n\right) \mid u\left(\alpha_{R}\right)=0, \int_{\alpha_{R}}^{n}\left(\left|u^{\prime}\right|^{2}+\frac{1}{4}|u|^{2} e^{-t}\right) d t=1-\frac{2 \log n}{n}\right\}$. We remark that formula (7.2) constitutes a (late) motivation for the choice of a_{n} in (4.9).

It remains to define $\left\{w_{n}(t)\right\}$ in $[n,+\infty)$. Here we can follow [7] where an optimal Dirichlet normalized concentrating sequence was constructed by analyzing carefully the proof of Carleson-Chang [6].

The complete definition of the optimal SNC-sequence $\left\{w_{n}(t)\right\}$ is:
Definition 7.1 Let $w_{n}(t)$ be given by:

$$
w_{n}(t)=\left\{\begin{array}{lll}
w_{n}(t), \quad \begin{array}{l}
\text { given by }(6.9) \text { or }(6.10), \text { respectively, }
\end{array} & \alpha_{R} \leq t \leq n \tag{7.3}\\
\quad \text { with } a=n \text { and } b=1-\frac{2 \log n}{n} & \\
w_{n}(n)+\frac{1}{w_{n}(n)} \log \frac{1+A_{n}}{A_{n}+e^{-(t-n)}} & t \geq n
\end{array}\right.
$$

where $A_{n} \in \mathbb{R}^{+}$is such that

$$
\begin{equation*}
\int_{\alpha_{R}}^{\infty}\left(\left|w_{n}^{\prime}(t)\right|^{2}+\frac{1}{4}\left|w_{n}(t)\right|^{2} e^{-t}\right) d t=1 \tag{7.4}
\end{equation*}
$$

We show that $A_{n} \in \mathbb{R}^{+}$can be chosen as in Definition 7.1, i.e. satisfying (7.4), with the estimate

Lemma 7.2

$$
\begin{equation*}
A_{n}=\frac{1}{n^{2} e}+O\left(\frac{1}{n^{4}}\right) \tag{7.5}
\end{equation*}
$$

Proof. First note that by condition (6.3)

$$
\begin{equation*}
\int_{\alpha_{R}}^{n}\left(\left|w_{n}^{\prime}\right|^{2}+\frac{1}{4}\left|w_{n}\right|^{2} e^{-t}\right) d t=1-\frac{2 \log n}{n} \tag{7.6}
\end{equation*}
$$

Thus, we look for a constant A_{n} such that

$$
\begin{equation*}
\int_{n}^{\infty}\left(\left|w_{n}^{\prime}\right|^{2}+\frac{1}{4}\left|w_{n}\right|^{2} e^{-t}\right) d t=\frac{2 \log n}{n} \tag{7.7}
\end{equation*}
$$

Assume that $A_{n} \geq \frac{1}{3 n^{2}}$, then one has

$$
\log \left(\frac{1+A_{n}}{A_{n}+e^{-(t-n)}}\right) \leq \log \left(1+\frac{1}{A_{n}}\right) \leq \log \left(1+3 n^{2}\right)
$$

and then by (7.3) and using that $w_{n}(n)=n+O(\log n)$ (by Proposition 6.4)

$$
w_{n}(t) \leq w_{n}(n)+\frac{1}{w_{n}(n)} \log \left(1+3 n^{2}\right) \leq 2 n, \text { for } t \geq n, n \text { large }
$$

and hence

$$
\int_{n}^{\infty}\left|w_{n}\right|^{2} e^{-t} d t \leq 4 n^{2} e^{-n}
$$

Therefore, condition (7.7) becomes

$$
\begin{equation*}
\int_{n}^{\infty}\left|w_{n}^{\prime}\right|^{2}=\frac{2 \log n}{n}+O\left(n^{2} e^{-n}\right) \tag{7.8}
\end{equation*}
$$

One proves as in [7] that this yields

$$
A_{n}=\frac{1}{n^{2} e}+O\left(\frac{1}{n^{4}}\right)
$$

We now give an asymptotic lower bound for $\pi \int_{\alpha_{R}}^{\infty}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t$, as $n \rightarrow \infty$:
Theorem 7.3 Let $\left\{w_{n}\right\}$ denote the sequence (7.3), and let $D(R)$ be given by (6.20). Then

$$
\pi \int_{\alpha_{R}}^{\infty}\left(e^{w_{n}^{2}}-1\right) e^{-t} \geq e \pi e^{-D(R)}\left(1+2 D(R) \frac{\log n}{n}\right)+O\left(\frac{1}{n}\right) .
$$

Proof.
a) First note that

$$
\begin{equation*}
\pi \int_{\alpha_{R}}^{n}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t \geq 0, \text { for all } n \tag{7.9}
\end{equation*}
$$

b) Consider now

$$
\pi \int_{n}^{\infty}\left(e^{w_{n}^{2}}-1\right) e^{-t}=\pi \int_{n}^{\infty} e^{w_{n}^{2}-t}+O\left(e^{-n}\right)
$$

Performing the change of variables $s=t-n$, setting

$$
v_{n}(s)=\frac{1}{w_{n}(n)} \log \frac{A_{n}+1}{A_{n}+e^{-s}}
$$

and using that by Proposition 6.4

$$
\begin{aligned}
w_{n}^{2}(n) & =\left(1-\frac{2 \log n}{n}\right)[n-D(R)]+O\left(\frac{1}{n}\right) \\
& =n-D(R)-2 \log n+\frac{2 \log n}{n} D(R)+O\left(\frac{1}{n}\right)
\end{aligned}
$$

we obtain

$$
\begin{align*}
& \pi \int_{\alpha_{R}}^{\infty} \exp \left(\left[w_{n}(n)+v_{n}(s)\right]^{2}-s-n\right) d s \\
& \quad \geq \pi \int_{\alpha_{R}}^{\infty} \exp \left(w_{n}^{2}(n)+2 w_{n}(n) v_{n}(s)-s-n\right) d s \\
& \quad \geq \pi \int_{\alpha_{R}}^{\infty} \exp \left(n-2 \log n-D(R)+2 D(R) \frac{\log n}{n}+O\left(\frac{1}{n}\right)+2 \log \frac{A_{n}+1}{A_{n}+e^{-s}}-s-n\right) \\
& \quad=\pi \int_{0}^{\infty} \exp \left(-2 \log n-D(R)+2 \log \frac{A_{n}+1}{A_{n}+e^{-s}}-s+2 D(R) \frac{\log n}{n}+O\left(\frac{1}{n}\right)\right) \tag{7.10}\\
& \quad=\pi e^{-D(R)} \frac{1}{n^{2}} \int_{0}^{\infty}\left(\frac{1+A_{n}}{A_{n}+e^{-s}}\right)^{2} e^{-s} d s\left(1+2 D(R) \frac{\log n}{n}+O\left(\frac{1}{n}\right)\right) \\
& \quad=\pi e^{-D(R)} \frac{1}{n^{2}} \frac{1+A_{n}}{A_{n}}\left(1+2 D(R) \frac{\log n}{n}+O\left(\frac{1}{n}\right)\right) \\
& \quad=e \pi e^{-D(R)}\left(1+2 D(R) \frac{\log n}{n}\right)+O\left(\frac{1}{n}\right), \text { as } n \rightarrow \infty
\end{align*}
$$

Joining (7.9) and (7.10) we get

$$
\pi \int_{\alpha_{R}}^{\infty}\left(e^{w_{n}^{2}}-1\right) e^{-t} d t \geq e \pi e^{-D(R)}\left(1+2 D(R) \frac{\log n}{n}\right)+O\left(\frac{1}{n}\right)
$$

and hence the theorem is proved.

We conclude this section by proving some properties of the function $D(R)$:
Lemma 7.4 Let $D(R)$ given by (6.20). Then

$$
\begin{equation*}
D(R)=4 R K_{0}(R) K_{1}(R)-2 \frac{K_{0}(R)}{I_{0}(R)} \tag{7.11}
\end{equation*}
$$

Furthermore, $D(R)>0$, for all $R \in \mathbb{R}^{+}$, and

$$
D(R) \sim-2 \log R, \quad \text { as } \quad R \rightarrow 0
$$

and

$$
D(R) \sim \frac{\pi}{R} e^{-2 R}, \quad \text { as } \quad R \rightarrow+\infty
$$

Proof. The explicit form of $D(R)$ is

$$
\begin{aligned}
D(R) & =4 C(R)+4 \frac{K_{0}(R)}{I_{0}(R)} \\
& =R^{2}\left(K_{0}^{2}(R)-K_{0}(R) K_{2}(R)+K_{0}^{2}(R)\left(1-\frac{I_{2}(R)}{I_{0}(R)}\right)\right)+8 R K_{0}(R) K_{1}(R)-4 \frac{K_{0}(R)}{I_{0}(R)}
\end{aligned}
$$

Using the relations (see [1], 9.6.26)

$$
K_{2}(x)-K_{0}(x)=\frac{2}{x} K_{1}(x) \quad \text { and } \quad I_{0}(x)-I_{2}(x)=\frac{2}{x} I_{1}(x)
$$

we get

$$
\begin{equation*}
D(R)=6 R K_{0}(R) K_{1}(R)+\left(2 R K_{0}(R) I_{1}(R)-4\right) \frac{K_{0}(R)}{I_{0}(R)} \tag{7.12}
\end{equation*}
$$

which simplifies, using (see [1], 9.6.15)

$$
\begin{equation*}
K_{1}(x) I_{0}(x)+K_{0}(x) I_{1}(x)=\frac{1}{x} \tag{7.13}
\end{equation*}
$$

to (7.11).
We prove that $D(R)>0$, for all $R>0$: by (7.11) we get, using again (7.13)

$$
\begin{aligned}
D(R) & =2 \frac{K_{0}(R)}{I_{0}(R)}\left[R K_{1}(R) I_{0}(R)-1+R K_{1}(R) I_{0}(R)\right] \\
& =2 \frac{K_{0}(R)}{I_{0}(R)}\left[R K_{1}(R) I_{0}(R)-1+1-R K_{0}(R) I_{1}(R)\right]>0
\end{aligned}
$$

since $K_{1}(x)>K_{0}(x)$ and $I_{0}(x)>I_{1}(x)$, for all $x>0$.
Next, using the behavior of the Bessel functions (6.14), for $R>0$ small, we have

$$
D(R) \sim-4 \log R-2(-\log R)=-2 \log R, \text { for } R>0 \text { small }
$$

For the behavior of $D(R)$ at $+\infty$ we use the asymptotic behavior of the Bessel functions at $+\infty$, see [1], 9.7.1-2:

$$
\begin{align*}
& I_{i}(x) \sim \frac{1}{\sqrt{2 \pi x}} e^{x}\left(1-\frac{4 i^{2}-1}{8 x}\right) \tag{7.14}\\
& K_{i}(x) \sim \frac{\pi}{\sqrt{2 \pi x}} e^{-x}\left(1+\frac{4 i^{2}-1}{8 x}\right)
\end{align*}
$$

Hence, we obtain by (7.11)

$$
\begin{align*}
D(R) & \sim 4 R \frac{\pi}{\sqrt{2 \pi R}} e^{-R}\left(1-\frac{1}{8 R}\right) \frac{\pi}{\sqrt{2 \pi R}} e^{-R}\left(1+\frac{3}{8 R}\right) \\
& -2 \frac{\pi}{\sqrt{2 \pi R}} e^{-R}\left(1+\frac{-1}{8 R}\right) \sqrt{2 \pi R} e^{-R}\left(1-\frac{1}{8 R}+O\left(\frac{1}{R^{2}}\right)\right) \tag{7.15}\\
\sim & 2 \pi e^{-2 R}\left(1+\frac{1}{4 R}\right)-2 \pi e^{-2 R}\left(1-\frac{1}{4 R}\right)=\frac{\pi}{R} e^{-2 R}
\end{align*}
$$

8 The Supremum is attained

In this section we show that the supremum

$$
\sup _{\|u\|_{S} \leq 1} \int_{\Omega}\left(e^{4 \pi u^{2}}-1\right) d x
$$

is attained for any ball $\Omega=B_{R}(0)$, as well as for $\Omega=\mathbb{R}^{2}$.
By Proposition 3.3 it suffices to prove
Theorem 8.1 Let $0<R \leq+\infty$. Then

$$
\sup _{\|u\|_{S} \leq 1} \pi \int_{\alpha_{R}}^{\infty}\left(e^{u^{2}}-1\right) e^{-t} d t>\underset{\left\|u_{n}\right\|_{S} \leq 1}{\mathrm{cc}-\lim _{2}} \pi \int_{\alpha_{R}}^{\infty}\left(e^{u_{n}^{2}}-1\right) e^{-t} d t
$$

Proof. This follows immediately by Theorem 7.3: Choose an element of the maximizing sequence $\left\{w_{n}\right\}$, with n sufficiently large. Then

$$
\sup _{\|u\|_{S}=1} \pi \int_{\alpha_{R}}^{\infty}\left(e^{u^{2}}-1\right) e^{-t} \geq \pi \int_{\alpha_{R}}^{\infty}\left(e^{w_{n}^{2}}-1\right) e^{-t}>\pi e^{1-D(R)}=\underset{\left\|u_{n}\right\|_{S} \leq 1}{\operatorname{cc}-\lim _{\alpha_{R}}} \int_{\alpha^{\infty}}^{\infty}\left(e^{u_{n}^{2}}-1\right) d x .
$$

This completes the proof of Theorem 1.3.

References

[1] M. Abramowitz, A. Segun, Handbook of Mathematical Functions, Dover Publ., New York, (1968)
[2] S. Adachi and K. Tanaka, Trudinger type inequalities in \mathbb{R}^{N} and their best exponents, Proc. Amer. Math. Soc. 128 (2000), 2051-2057.
[3] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[4] H. Berestycki and P.L. Lions, Nonlinear Scalar field equations, I. Existence of ground state, Arch. Rat. Mech. Anmal., 82 (1983), 313-346.
[5] D.M. Cao, Nontrivial solution of semiliner elliptic equation with critical exponent in \mathbb{R}^{2}, Comm. Partial Diff. Eq. 17 (1992), 407-435.
[6] L. Carleson and A. Chang, on the existence of an extremal function for an inequality of J. Moser, Bull. Sc. Math. 110 (1986), 113-127.
[7] D.G. De Figueiredo, J.M. do Ó and B. Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equation, Comm. Pure Appl. Math. 55 (2002), 1-18.
[8] D.G. De Figueiredo, B. Ruf. On a superlinear Sturm-Liouville equation and a related bouncing problem, J. Reine Angew. Math. 421, (1991), 1-22.
[9] M. Flucher, Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comm. Math. Helv. 67 (1992), 471-479.
[10] P.L. Lions, The concentration-compactness principle in the calculus of variations. the limit case, part 1, Riv. Mat. Iberoamericana 1, (1985) 145-201.
[11] J. Moser, A sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J. 30 (1967), 473-484.
[12] S.I. Pohozhaev, The Sobolev embedding in the case $p l=n$, Proc. Tech. Sci. Conf. on Adv. Sci. Research 1964-1965, Mathematics Section, 158-170, Moskov. Ènerget. Inst. Moscow, 1965.
[13] W.A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys. 55, (1977), 149-162.
[14] N.S. Trudinger, On imbeddings into orlicz spaces and some applications, J. Math. Mech. 75 (1980), 59-77.

Bernhard Ruf
Dipartimento di Matematica
Università degli Studi di Milano
Via Saldini, 50
20123 Milano, Italia
e-mail: ruf@mat.unimi.it

