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Abstract Two-dimensional bootstrap percolation is a cellular automaton in which
sites become ‘infected’ by contact with two or more already infected nearest neigh-
bours. We consider these dynamics, which can be interpreted as a monotone version
of the Ising model, on an n × n square, with sites initially infected independently
with probability p. The critical probability pc is the smallest p for which the prob-
ability that the entire square is eventually infected exceeds 1/2. Holroyd determined
the sharp first-order approximation: pc ∼ π2/(18 log n) as n → ∞. Here we sharpen
this result, proving that the second term in the expansion is −(log n)−3/2+o(1), and
moreover determining it up to a poly(log log n)-factor. The exponent −3/2 corrects
numerical predictions from the physics literature.
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1 Introduction

Bootstrap percolation is a cellular automaton in which, given a (typically random)
initial set of ‘infected’ vertices in a graph G, new vertices are infected at each time
step if they have at least r infected neighbours. In this paper we shall study two-neigh-
bour bootstrap percolation on the square grid [n]2. We shall determine the second
term of the critical threshold for percolation up to a poly(log log n)-factor, and hence
confirm a conjecture of Gravner and Holroyd [29].

We begin by defining the bootstrap process, which was introduced by Chalupa
et al. [19] in 1979. Let G be a graph with vertex set V (G), and for each vertex
v ∈ V (G), let N (v) denote the set of neighbours of v in G. Now, given an integer
r ∈ N, and a set of initially infected vertices A ⊂ V (G), define At recursively as
follows: set A0 = A, and

At+1 = At ∪ {v ∈ V (G) : |N (v) ∩ At | ≥ r}

for each integer t ≥ 0. We say that the vertices of At have been infected by time t .
Let [A] = ⋃

t At denote the closure of A under the r -neighbour bootstrap process,
and say that the set A percolates if the entire vertex set is eventually infected, i.e., if
[A] = V (G).

We shall be interested in the case in which A is a random subset of V (G). More
precisely, let us choose the elements of A independently at random, each with prob-
ability p, and denote by Pp the corresponding probability measure. Throughout the
paper, A will be assumed to be a random subset selected according to this distribution,
unless otherwise stated. It is clear that the probability of percolation is increasing in p,
and so we define the critical probability, pc(G, r) as follows:

pc(G, r) := inf
{

p : Pp (A percolates in the r -neighbour process on G) ≥ 1/2
}
.

Our aim is to give sharp bounds on pc(G, r).
Bootstrap percolation has been studied extensively by mathematicians [2,6,16,31,

40], as well as by physicists [1,11,30] and sociologists [26,41], amongst others. The
bootstrap process was originally introduced in the context of disordered magnetic
systems, and may be thought of as a monotone version of the Glauber dynamics of
the Ising model. Indeed, if spins are allowed to flip in only one direction (from − to
+, say), and if they flip only if they have at least r neighbours in state +, then one
immediately obtains the cellular automaton described above. We refer the interested
reader to the applications of bootstrap percolation in [24,38], and the closely related
models studied in [18,20,21,27,36,39].

We focus on the graph G = [n]d with vertex set {1, . . . , n}d , and with an edge
between vertices u and v if and only if ‖u − v‖1 = 1. Aizenman and Lebowitz [2]
determined the asymptotic behaviour of pc([n]d , 2) up to multiplicative constants, and
Cerf and Cirillo [16] (in the crucial case d = r = 3) and Cerf and Manzo [17] proved
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Bootstrap percolation in two dimensions 3

the corresponding result for all d ≥ r ≥ 2. The first sharp threshold for bootstrap
percolation was proved by Holroyd [31], who showed that

pc([n]2, 2) = π2

18 log n
+ o

(
1

log n

)

. (1)

This was the first result of its type, and has prompted a flurry of generalizations. Sharp
thresholds have since been determined for pc([n]d , r) for all fixed d and r [6,8],
for more general update rules in two dimensions [22], and in high dimensions (i.e.,
d = d(n) → ∞ sufficiently fast) for the majority rule, i.e., r = d [5], and in the case
r = 2 [7]. Some of the techniques from these papers have been used to prove results
about the Glauber dynamics of the Ising model [24,38]. The bootstrap process has
also been studied on infinite trees [9,13,23], on ‘locally tree-like’ graphs [5], on the
random regular graph [10,34], and on the Erdős-Rényi random graph Gn,p [35].

In this paper we shall study the two-neighbour bootstrap process on the graph
G = [n]2 in more detail. One of the most striking facts about the result (1) stated
above is that it contradicted estimates of limn→∞ pc log n given by simulations—in
fact, such estimates were out by a factor of more than two. (See, for example, [28] or
[30] for a discussion of the reasons behind these discrepancies.) Gravner and Holroyd
[28] gave a rigorous (partial) explanation for this phenomenon, by giving the following
improvement of (1):

pc([n]2, 2) ≤ π2

18 log n
− c

(log n)3/2 ,

where c > 0 is a small constant. In [29], the same authors proved an almost matching
lower bound for a simpler model (called ‘local’ bootstrap percolation), and conjectured
that the upper bound is essentially sharp for the usual bootstrap process.

Conjecture 1 (Gravner and Holroyd [29]) For every ε > 0, if n is sufficiently
large then

pc([n]2, 2) ≥ π2

18 log n
− 1

(log n)3/2−ε
.

In this paper we shall prove Conjecture 1 in a slightly stronger form. To be precise,
we shall prove the lower bound in the following theorem; the upper bound was proved
in [28].

Theorem 1 There exist constants C > 0 and c > 0 such that

π2

18 log n
− C(log log n)3

(log n)3/2 ≤ pc([n]2, 2) ≤ π2

18 log n
− c

(log n)3/2

for every sufficiently large n ∈ N.
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Our result again corrects numerical predictions, this time for the power of log n in
the second term. Specifically, in work reported in [1], Stauffer interpolated between
simulations and the rigorous result (1) to obtain the prediction

pc([n]2, 2) ≈ π2

18 log n
− 0.45

(log n)1.2 ,

which is inconsistent with the lower bound in Theorem 1 in the limit n → ∞. Since
3/2 > 1.2, the true asymptotic approach to the first approximation π2/(18 log n) is
faster than in the above numerical prediction. Furthermore, in Sect. 5 we shall discuss
how the proof of Theorem 1 can be adapted to a variant of bootstrap percolation called
the Froböse model. In this case, the resulting power 3/2 of log n corrects the prediction
1.388 made in [30] on the basis of computer calculations for the local Froböse model.

The proof of Theorem 1 will use many of the tools and techniques of [31], together
with some of the ideas of [29], and some new ideas. In particular, we shall bound the
probability of percolation by the expected number of ‘good’ and ‘satisfied’ hierarchies
(see Lemma 7, below). We will define a hierarchy as in [31] (see Sect. 3), except that
our hierarchies will be much finer, each step being of order 1/

√
p, instead of 1/p.

This means that we will have far too many hierarchies; however, almost all of these
have many ‘large’ seeds, and we shall show that these contribute a negligible amount
to the sum. In order to do so, we shall need a better bound on the probability that a seed
is internally spanned than the straightforward bound that sufficed in [31]. Fortunately,
the bound we need follows easily from the simple (folklore) fact that a spanning set for
a rectangle R must contain no fewer than φ(R)/2 elements, where φ(R) denotes the
semi-perimeter of R (see Lemmas 2 and 3). Surprisingly, it appears that our proof does
not extend directly to the “modified” bootstrap percolation model; it is the analogous
bound for seeds that is missing in this case (see Sect. 5 for more information).

We finish this section by making a few definitions which we shall use throughout
the proof. First, we say a set S is spanned by the set A if S ⊂ [A], and that S is
internally spanned by A if S ⊂ [A ∩ S]. An event is simply a collection A of subsets
of [n]2; we say A holds if A ∈ A. In order to keep our formulae relatively compact,
we shall sometimes write I (S) for the event that S is internally spanned by A.

Next, define two functions, β and g, by

β(u) := u + √
u(4 − 3u)

2
and g(z) := − log

(
β
(
1 − e−z)).

We remark that β is increasing on [0, 1], and so g is decreasing on (0,∞), and that
g(z) ≤ 2e−z when z is large (see Proposition 3 of [6]). Note that β(u) ∼ √

u as u → 0,
and so g(z) ∼ − log

√
z as z → 0, where g(z) ∼ h(z) means that g(z)/h(z) → 1.

A rectangle is a set of the form

R = [(a, b),(c, d)] := {(x, y) : a ≤ x ≤ c, b ≤ y ≤ d} ⊂ Z
2,

where a, b, c, d ∈ Z. The dimensions of R are dim(R) = (c − a + 1, d − b + 1), the
long and short side-lengths of R are respectively sh(R) = min{c − a + 1, d − b + 1}
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Bootstrap percolation in two dimensions 5

and lg(R) = max{c − a + 1, d − b + 1}, and the semi-perimeter of R is φ(R) =
sh(R) + lg(R).

We say that a rectangle R = [(a, b), (c, d)] is crossed from left-to-right by A ⊂ R if

R ⊂
[

A ∪
{
(x, y) ∈ Z

2 : x ≤ a − 1
}]

,

i.e., if R is spanned by A together with the set of all sites to the left of R. Note that this
is equivalent to there being no ‘double gap’ (i.e., no adjacent ‘empty’ pair of columns)
in R, and the final column being occupied. (Here ‘empty’ means ‘contains no element
of A’ and ‘occupied’ means ‘not empty’.)

For each p ∈ (0, 1), let q = − log(1 − p), so that p ∼ q as p → 0. To motivate
this definition (and the definition of g(z), above), note (from Lemma 8 of [31]) that
for any rectangle R with dimensions (a, b), then

Pp(A crosses R from left-to-right) ≤ e−ag(bq).

We shall use the notation f (x) = O(h(x)) throughout to mean that there exists an
absolute constant C > 0, independent of all other variables (unless otherwise stated),
such that f (x) ≤ Ch(x) for all x = (x1, . . . , xk). If the constant C depends on some
other parameter y, then we shall write f (x) = Oy(h(x)).

We shall write R+ for the positive reals, and if a, b ∈ R
2, then we shall write

a ≤ b if a1 ≤ b1 and a2 ≤ b2. Thus a path in R
2 is ‘increasing’ if it is increasing in

both coordinates. Finally, if G is a directed graph, then �NG(v) will denote the set of
out-neighbours of a vertex v in G.

The rest of the paper is organised as follows. In Sect. 2 we give an upper bound
on the probability that a sufficiently small rectangle (a seed) is internally spanned.
In Sect. 3 we recall from [31] the notion of a hierarchy, which is fundamental to the
proof of Theorem 1, together with some important lemmas from [29,31]. In Sect. 4
we prove Theorem 1, and in Sect. 5 we mention some open questions.

2 A lemma on seeds

In this section we shall prove the following lemma, which bounds the probability that
a small rectangle is internally spanned. Recall that q = − log(1 − p).

Lemma 2 There exists δ > 0 such that, for any p > 0, and any rectangle R with
dim(R) = (a, b), where a ≤ b and ap ≤ δ then

Pp ([A ∩ R] = R) ≤ 3φ(R) exp (−φ(R)g(aq)).

We begin by recalling a lovely and well-known exercise for high school students
(see [14] or [42], for example). Lemma 2 follows from it almost immediately.

Lemma 3 If R is a rectangle, and A internally spans R, then |A ∩ R| ≥ φ(R)/2.

We also make a simple observation.
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6 J. Gravner et al.

Observation 4 If z > 0 is sufficiently small then

log(1/
√

z) − √
z ≤ g(z) ≤ log(1/

√
z) + z.

Proof We use the estimates z − z2 ≤ 1 − e−z ≤ z, and
√

u ≤ β(u) ≤ √
u + u, which

are valid for small z and u. It follows that

g(z) ≥ − log β(z) ≥ − log(
√

z + z) = − log
√

z − log(1 + √
z) ≥ − log

√
z − √

z.

The proof of the upper bound is similar. ��
We can now easily deduce Lemma 2.

Proof of Lemma 2. Let m = |A ∩ R|. By Lemma 3, if A internally spans R then
m ≥ (a + b)/2. There are at most

(ab
m

)
ways to choose the set A ∩ R, given m, and

each occurs with probability at most pm . Thus, by the union bound,

Pp ([A ∩ R] = R) ≤
∑

m≥(a+b)/2

(
ab

m

)

pm ≤ (6aq)(a+b)/2.

The final inequality follows since
(ab

m

)
pm ≤ (

eabp
m )m ≤ (6aq)m/2 if δ > 0 is suffi-

ciently small, and since 6aq ≤ 12δ < 1/2. In the second inequality we used p ∼ q
and m ≥ b/2.

But log(1/
√

aq) ≥ g(aq) − aq, by Observation 4, so

(aq)(a+b)/2 ≤ exp (−(a + b)g(aq) + (a + b)aq).

The result now follows, since aq ≤ 2δ, and
√

6e2δ < 3 if δ is sufficiently small. ��

3 Hierarchies

In this section we shall recall some important definitions and lemmas from [29] and
[31]; for the proofs, we refer the reader to those papers. In particular, we define a
hierarchy as in Sect. 9 of [31].

Definition A hierarchy H for a rectangle R ⊂ [n]2 is an oriented rooted tree GH,
with all edges oriented away from the root (‘downwards’), together with a collection
of rectangles (Ru ⊂ [n]2 : u ∈ V (GH)), one for each vertex of GH, satisfying the
following criteria.

(a) The root of GH corresponds to R.
(b) Each vertex has at most 2 neighbours below it.
(c) If v ∈ �NGH(u) then Ru ⊃ Rv .
(d) If �NGH(u) = {v,w} then [Rv ∪ Rw] = Ru .
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Bootstrap percolation in two dimensions 7

A vertex u with �NGH(u) = ∅ is called a seed. Given two rectangles S ⊂ R, we
write D(S, R) for the event (depending on the set (A ∩ R) \ S) that

R = [(A ∪ S) ∩ R],

i.e., the event that R is internally spanned by A ∪ S.
An event A is increasing if A ∈ A and A ⊂ A′ implies that A′ ∈ A. Two increasing

events B and C are said to occur disjointly if there exist disjoint sets B ⊂ A and C ⊂ A
with B ∈ B and C ∈ C. We write B ◦C for the collection of such sets A, i.e., the event
that B and C occur disjointly. We say a hierarchy occurs (or is satisfied by the set A)
if the following events all occur disjointly.

(e) For each seed u: Ru is internally spanned by A.
(f) For each pair (u, v) satisfying �NGH(u) = {v} : D(Rv, Ru) occurs.

Given two rectangles S ⊂ R, with dimensions (a1, a2) and (b1, b2) respectively,
define

d j (S, R) := b j − a j

b j

for j = 1, 2, and let d(S, R) = max{d1(S, R), d2(S, R)}.
The following definition is slightly different to that in [31], and is motivated by

the method of [29] (see also Lemma 9 below). This definition is necessary because in
order to prove a sharper result, we need to take a finer hierarchy. In our application
we shall take T = √

q and Z = log3(1/q)/
√

q .

Definition A hierarchy is good for (T, Z) ∈ R
2+ if is satisfies the following.

(g) If �NGH(u) = {v} and | �NGH(v)| = 1 then T ≤ d(Rv, Ru) ≤ 2T .
(h) If �NGH(u) = {v} and | �NGH(v)| �= 1 then d(Rv, Ru) ≤ 2T .
(i) If | �NGH(u)| = 2 and v ∈ �NGH(u), then d(Rv, Ru) ≥ T .
(j) u is a seed if, and only if, sh(Ru) ≤ Z .

Before continuing, we make a simple observation about the height, h(H) of a hier-
archy H, by which we mean the maximum distance in GH of a leaf from the root.

Lemma 5 Let R be a rectangle, let Z > 1 > T > 0, and let H be a hierarchy for R
which is good for (T, Z). Then

h(H) ≤ 8

T
log

(
φ(R)

Z

)

+ 1.

Proof Consider a path P of length h(H) from the root to a leaf u. Let w be the parent
(i.e., the neighbour) of u in GH, and note that sh(Rw) > Z . Note also that in every
two steps backwards along P , at least one of the dimensions of the corresponding
rectangle increases by a factor of at least 1 + T . Hence one of the dimensions goes up
by this factor at least (h(H) − 1)/4 times (on the path from w to the root), and so

Z(1 + T )(h(H)−1)/4 ≤ φ(R).
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8 J. Gravner et al.

The result follows by rearranging and using the inequality log(1 + T ) ≥ T/2, which
is valid for all T ∈ (0, 1). ��

The following key lemma about hierarchies was proved in [31]. Although our def-
inition of hierarchy is slightly different, the proof in our case is almost identical.

Lemma 6 (Proposition 32 of [31]) Let Z > 1 > T > 0, let R be a rectangle, and
suppose A internally spans R. Then there exists a hierarchy H for R, which is good
for (T, Z), and which is satisfied by A.

Sketch of proof. We use induction on φ(R); if φ(R) ≤ Z then the result is trivial.
Now, assume φ(R) > Z and apply Proposition 30 of [31] (see also [3] or [4]) repeat-
edly, each time choosing the rectangle S which minimizes d(S, R). We stop when we
obtain a rectangle S such that either φ(S) ≤ Z , or d(S, R) ≥ T .

There are three cases. If φ(S) ≤ Z and d(S, R) ≤ 2T , then H has two vertices. If
φ(S) > Z and d(S, R) ≤ 2T , the root of H has degree one, and the rest of H can be
found by applying the induction hypothesis to S.

So assume that d(S, R) > 2T , and consider the last application of Proposition
30 of [31]. We deduce that there exist rectangles S′ and U with [S ∪ S′] = U , with
d(U, R) ≤ T, φ(U ) > Z and d(S′, R) > 2T , and such that S and S′ are disjointly
internally spanned by A. But d(S, U ) ≥ d(S, R) − d(U, R) ≥ T , and similarly for
S′. Thus, applying the induction hypothesis to S and S′, we obtain a hierarchy H as
required. ��

Finally, recall the following fundamental lemma of van den Berg and Kesten [12].

The van den Berg–Kesten Lemma. Let A and B be any two increasing events, and
let p ∈ (0, 1). Then

Pp(A ◦ B) ≤ Pp(A)Pp(B).

We can now easily deduce, as in Sect. 10 of [31], our basic bound on the probability
of percolation. Given a rectangle R and a pair (T, Z) ∈ R

2, we write H(R, T, Z) for
the collection of hierarchies for R which are good for (T, Z).

Recall that Pp(I (R)) and Pp(D(S, R)) denote the probabilities in Pp of the events
“R is internally spanned by A” and “R is internally spanned by A ∪ S” respectively.

Lemma 7 Let R be a rectangle in [n]2, let Z > 1 > T > 0, and let p > 0. Then

Pp ([A ∩ R] = R) ≤
∑

H∈H(R,T,Z)

⎛

⎜
⎝

∏

�NGH (u)={v}
Pp (D(Rv, Ru))

⎞

⎟
⎠

(
∏

seeds u

Pp (I (Ru))

)

.

(Above and in subsequent usage, the first product is over all pairs of vertices (u, v)

of H that satisfy the given condition �NGH(u) = {v}, and the second product is over
all seeds u of H.)
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Bootstrap percolation in two dimensions 9

Proof of Lemma 7. By Lemma 6, if A internally spans R then there exists a hierarchy
in H(R, T, Z) which is satisfied by A. Hence the probability that A internally spans R
is bounded above by the expected number of such hierarchies. Since the events I (Ru)

and D(Rv, Ru) are all monotone, and all occur disjointly (see (e) and ( f ) above), the
result follows by the van den Berg-Kesten Lemma. ��

We recall the following lemma of Aizenman and Lebowitz [2], which is a standard
tool for proving lower bounds on pc([n]d , 2).

Lemma 8 Suppose A internally spans [n]2. Then, for all 1 ≤ L ≤ n, there exists a
rectangle R, internally spanned by A, with

L ≤ lg(R) ≤ 2L .

We recall also the following bound on Pp(D(R, R′)) from [29].

Lemma 9 (Lemma 5 of [29]) Let R ⊂ R′ be rectangles of dimensions (a, b) and
(a + s, b + t) respectively, and let p > 0. Then

Pp
(
D(R, R′)

) ≤ exp
(
−sg(bq) − tg(aq) + 2 (g(bq) + g(aq)) + (qst)e2g(bq)+2g(aq)

)
.

The following observation follows exactly as in Lemma 10 of [29].

Observation 10 (Lemma 10 of [29]) Let B > 0 be sufficiently large, and let a ∈ N

and q > 0 satisfy a ≤ B/q. Then

e2g(aq) ≤ 4B

aq
.

Proof Let z > 0 and u = 1 − e−z , and recall that e−g(z) = β(u). Recall also that
β(u) ∼ √

z when z → 0 and that β(u) → 1 as z → ∞. Thus, since B > 0 is
sufficiently large, it follows that

β(u) ≥ 1

2

√
z

B

for every z ≤ B, as required. ��
We shall need a couple more definitions in order to rewrite Lemmas 7 and 9 in a

more useful form. Given a, b ∈ R
2+ with a ≤ b, let

Wg(a, b) := inf
γ :a→b

∫

γ

(g(y) dx + g(x) dy) ,

where the infimum is taken over all piecewise linear, increasing paths from a to b in
R

2 (see Sect. 6 of [31]). Now, for any two rectangles R ⊂ R′, and given p > 0, define
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10 J. Gravner et al.

U (R, R′) = Wg

(
q dim(R), q dim(R′)

)
.

The following observation is immediate from the definition.

Observation 11 (Proposition 13 of [31]) Let R ⊂ R′ be rectangles of dimensions
(a, b) and (a + s, b + t) respectively, and let p > 0. Then

sg(bq) + tg(aq) ≥ 1

q
U (R, R′).

Let N (H) denote the number of vertices in a hierarchy H, and M(H) denote the
number of vertices of H which have outdegree two. The following technical lemma
was proved in [31]. Again, although our definition is slightly different, the proof is
identical.

Lemma 12 (Lemma 37 of [31]) Let T, Z ∈ R+, let H be a hierarchy for the rectangle
R which is good for the pair (T, Z), and let p > 0. There exists a rectangle S ⊂ R,
called the ‘pod’ of H, such that

dim(S) ≤
∑

seeds u

dim(Ru)

and

∑

�NGH (v)={w}
U (Rw, Rv) ≥ U (S, R) − 2q M(H)g(Zq).

We remark that although the rectangle S is not necessarily unique, Lemma 12 allows
us to select such a rectangle S(H) for each good hierarchy H ∈ H(R, T, Z). We shall
refer to this rectangle as ‘the pod of H’.

We shall use the following observation to bound U (S, R) from below, and again
later in the proof of Theorem 1.

Observation 13 There exists C > 0 such that, for every 0 < a < ∞, we have

a∫

0

g(z) dz ≤ a

2
log

(

1 + 1

a

)

+ Ca.

Proof Let ε > 0 be such that Observation 4 holds when z ≤ ε. Then, if a ≤ ε we
have

a∫

0

g(z) dz ≤ 1

2

a∫

0

− log z + 2z dz ≤ a

2
log

1

a
+ a + a2,

123



Bootstrap percolation in two dimensions 11

as required. Moreover, since g is decreasing, we have

a∫

ε

g(z) dz ≤ ag(ε),

and so the observation follows, since if a > ε then
∫ a

0 g(z) dz ≤ 1 + ag(ε) = O(a).
��

Finally, we shall use the following lemma, which follows from Lemma 16 of [31]
(see also Lemma 7 of [29]).

Lemma 14 Let q > 0 and S ⊂ R, with dim(S) = (a, b) and dim(R) = (A, B),
where A ≤ B. If b ≤ A, then

1

q
U (S, R)≥ 2

q

Aq∫

0

g(z) dz+(B − A) g(Aq)− φ(S)

2
log

(

1 + 1

φ(S)q

)

−O (φ(S)) .

If b > A, then

1

q
U (S, R) ≥ (A − a)g(bq) + (B − b) g(Aq).

Proof Assume first that b ≤ A. By Lemma 16 of [31], the path integral is minimized
by paths which follow the main diagonal as closely as possible. Assuming for sim-
plicity that a ≤ b, by following the piecewise linear path (aq, bq) → (bq, bq) →
(Aq, Aq) → (Aq, Bq) we obtain

1

q
U (S, R) ≥ (b − a)g(bq) + 2

q

Aq∫

bq

g(z) dz + (B − A) g(Aq).

Now, by Observation 13, we have

2

q

bq∫

0

g(z) dz ≤ b log

(

1 + 1

bq

)

+ O(b),

and by Observation 4 we have g(bq) ≥ 1
2 log(1+1/bq)− O(1). (Note that inequality

is trivial if bq is not sufficiently small.) Hence

(b − a)g(bq) − 2

q

bq∫

0

g(z) dz ≥ −a + b

2
log

(

1 + 1

bq

)

− O(b),

as required. The inequality for b > A can be obtained by following the path
(aq, bq) → (Aq, bq) → (Aq, Bq), and applying Lemma 16 of [31]. ��
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12 J. Gravner et al.

4 The proof of Theorem 1

In this section we shall put together the pieces and prove Theorem 1. Recall that, given
p > 0, we define q = − log(1 − p) ∼ p as p → 0.

Proposition 15 Let C > 0 and ε > 0 be constants, let p = p(C, ε) > 0 be suffi-
ciently small, and let R be a rectangle with dimensions (a, b), where

ε

q
≤ a ≤ b ≤ C

q
log

(
1

q

)

.

Then

Pp ([A ∩ R]= R) ≤ exp

⎛

⎝−
⎡

⎣ 2

q

aq∫

0

g(z) dz+(b−a)g(aq)

⎤

⎦+ OC (1)√
q

(

log
1

q

)3
⎞

⎠.

We remark that the constant implicit in the OC (1) term depends on the constant C ,
but not on the variables p, a and b (and also not on the constant ε).

We begin by defining some of the parameters we shall use. First, set B =
C log(1/q), so that a ≤ b ≤ B/q, set T = √

q , and set

Z = 1√
q

(

log
1

q

)3

.

Let S = S(H) denote the pod of a hierarchy H, given by Lemma 12.

Lemma 16 Let C, ε, p > 0, a, b ∈ N and the rectangle R be as in the statement of
Proposition 15, and let B, T and Z be as defined above. Then

Pp (I (R))

≤
∑

H∈H(R,T,Z)

exp

[

− 1

q
U (S, R)+ OC

(

N (H)

(

log
1

q

)2
)]

∏

seeds u

Pp (I (Ru)) .

Proof First note that by Observation 11 and Lemma 12, the pod S = S(H) ⊂ R of
H satisfies

∑

�NGH (ui )={vi }
sig(bi q) + tig(ai q) ≥ 1

q

∑

�NGH (u)={v}
U (Rv, Ru)

≥ 1

q
U (S, R) − 2M(H)g(Zq),

where (ai , bi ) and (ai + si , bi + ti ) are the dimensions of Rvi and Rui respectively.
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Bootstrap percolation in two dimensions 13

Now, by the definition of a hierarchy, we have si ≤ 2T (ai + si ) ≤ 3T ai , and
similarly ti ≤ 3T bi , for every pair (ui , vi ) with N �GH(ui ) = {vi }. Recall that g(z) is
decreasing, so

max {g(Zq), g(ai q), g(bi q)} ≤ g(q) ≤ log
1

q
,

by Observation 4 (applied with z = q). Recall also that ai , bi ≤ b ≤ B/q.
By Observation 10, it follows that si e2g(ai q) ≤ 4Bsi/ai q ≤ 12BT/q, and similarly

ti e2g(bi q) ≤ 12BT/q. Thus

g(Zq) + 2g(ai q) + 2g(bi q) + (qsi ti )e
2g(ai q)+2g(bi q) ≤ 5 log

1

q
+ O

(
B2T 2

q

)

,

and hence, since T 2 = q, B = OC (log(1/q)) and M(H) ≤ N (H),

2M(H)g(Zq) +
∑

�NGH (u)={v}

(
2g(bq) + 2g(aq) + (qst)e2g(bq)+2g(aq)

)

= OC

(

N (H)

(

log
1

q

)2
)

.

Hence, by Lemma 9, we have

∏

�NGH (u)={v}
Pp (D(Rv, Ru)) ≤ exp

[

− 1

q
U (S, R) + OC

(

N (H)

(

log
1

q

)2
)]

,

and so the lemma follows by Lemma 7. ��
We can now deduce Proposition 15 from Lemma 16. The main difficulty lies in the

fact that there are too many hierarchies: there could be as many as 21/
√

q vertices in
GH, and for each vertex u we have many choices for the rectangle Ru . However, most
of these hierarchies have many seeds, and those with many large seeds have rather
small weight in the sum. This turns out to be the key idea in the proof.

Indeed, given a hierarchy of R which is good for (T, Z), define a large seed to be
one with φ(Ru) ≥ Z/3. We make the following key observation.

Observation 17 Let H ∈ H(R, T, Z), and assume that 4T ≤ 1 and Z ≥ 6. Then
every vertex of H is either a seed, or lies above at least one large seed.

Proof By the definition of a good hierarchy, either u is a seed, or φ(Ru) > Z and
either �NGH(u) = {v} or �NGH(u) = {v,w}. In the former case we have

φ(Rv) ≥ (1 − 2T ) φ(Ru) ≥ Z

2
,

since 4T ≤ 1. In the latter case, we have φ(Rv) + φ(Rw) ≥ φ(Ru) − 2, and so
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14 J. Gravner et al.

max {φ(Rv), φ(Rw)} ≥ Z

3
,

as required. ��
Let the number of large seeds in a hierarchy H be denoted m(H).

Proof of Proposition 15. Let R ⊂ [n]2, p > 0, B = C log(1/q), T = √
q , and

Z = (1/
√

q)(log 1
q )3 be as described above, and suppose that H is a hierarchy for R

which is good for the pair (T, Z). Recall that p > 0 is chosen sufficiently small, and
that a ≤ b ≤ B/q. By Lemma 5, H has height at most (10/

√
q) log(1/q), and hence

the number of vertices N (H) in GH satisfies

N (H) ≤ 2m(H) · h(H) = O

(
m(H)√

q
log

1

q

)

. (2)

Therefore, the number of hierarchies with m large seeds (i.e., with m(H) = m) is at
most

∑

N

(
B

q

)4N

≤ exp

(

O(1)
m√

q

(

log
1

q

)2
)

. (3)

Now, for each hierarchy H, define

X (H) :=
∑

seeds u

φ(Ru),

and note that X (H) ≥ m(H)Z

3
, and that φ(S(H)) ≤ X (H), by Lemma 12. By

Lemma 2, for every seed Ru we have

Pp (I (Ru)) ≤ 3φ(Ru) exp (−φ(Ru)g(Zq)),

since sh(Ru) ≤ Z = o(1/q) as q → 0, and g(z) is decreasing in z. Thus

∏

seeds u

Pp (I (Ru)) ≤ 3X (H) exp (−X (H)g(Zq)). (4)

We split into two cases. The first is easier to handle, and we shall not have to approx-
imate too carefully; in the second the calculation is much tighter.

Case 1: lg(S) > a.
We have, by Lemma 16 combined with (2) and (4),

Pp (I (R)) ≤
∑

H∈H(R,T,Z)

3X (H) exp

[

− 1

q
U (S, R) − X (H)g(Zq)

+OC

(
m(H)√

q

(

log
1

q

)3
)]

.
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Bootstrap percolation in two dimensions 15

Recall that a < φ(S) ≤ X (H), by Lemma 12, and so
1

q
U (S, R) ≥ (b− X (H))g(aq),

by Lemma 14. Hence the summand above is at most

3X (H) exp

[

−bg(aq) − X (H) (g(Zq) − g(aq)) + OC

(
m(H)√

q

(

log
1

q

)3
)]

.

Now, since g is decreasing, X (H) ≥ m(H)Z/3 and a/Z ≥ q−1/3, by Observation 4
we have

X (H) (g(Zq)− g(aq)) ≥ X (H)

7
log

(
1

q

)

= 1

o(1)
m(H)Z = 1

o(1)

m(H)√
q

(

log
1

q

)3

as q → 0. It follows that

Pp (I (R)) ≤
∑

H
exp

(

−bg(aq) − X (H)

8
log

1

q

)

≤ exp

⎛

⎝− 2

q

aq∫

0

g(z) dz − bg(aq)

⎞

⎠ ,

as required. Indeed, we showed that X (H)(g(Zq)−g(aq)) is at least X (H)
7 log 1

q , and

much bigger than m(H)√
q

(
log 1

q

)3
, so the first inequality holds. For the last inequality,

first note that

2

q

aq∫

0

g(z) dz ≤ a log

(

1 + 1

aq

)

+ O(a) = o

(

X (H) log
1

q

)

as q → 0, by Observation 13. Here we used the facts that aq ≥ ε and a < X (H).
Finally, note that, by (3), there are at most eX hierarchies with X (H) = X . Hence we
obtain a geometrically decreasing sum over X , and the claimed bound follows.

Case 2: lg(S) ≤ a.
By Lemma 14, and since φ(S) ≤ X (H), we have

1

q
U (S, R) ≥ 2

q

aq∫

0

g(z) dz + (b − a) g(aq)

− X (H)

2
log

(

1 + 1

X (H)q

)

− O (X (H)) .
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16 J. Gravner et al.

Hence, by (2), (4) and Lemma 16, we have

Pp (I (R)) ≤
∑

H∈H(R,T,Z)

exp

⎡

⎣− 2

q

aq∫

0

g(z) dz − (b − a) g(aq)

+ X (H)

2
log

(

1 + 1

X (H)q

)

+ O (X (H))

+OC

(
m(H)√

q

(

log
1

q

)3
)

− X (H)g(Zq)

]

.

But by Observation 4,

X (H)

(
1

2
log

(

1+ 1

X (H)q

)

+c1 − g(Zq)

)

≤− X (H)

2
log

(
X (H)

C1 Z (1+X (H)q)

)

,

where C1 = e2c1+1. Note that, for any u, v > 0, the function x log
(

x
ux+v

)
is increas-

ing if x ≥ ux + v, and recall that X (H) ≥ m(H)Z

3
. Thus, the right-hand side above

is decreasing in X (H) if m(H) is sufficiently large, and hence either m(H) = O(1),
or

− X (H)

2
log

(
X (H)

C1 Z (1 + X (H)q)

)

≤ −m(H)Z

6
log

(
m(H)

4C1

)

,

and m(H)Zq ≤ 1, or the left-hand side is at most −m(H)Z
6 log(1/q).

Finally, recalling that Z = 1√
q log3(1/q), we have

−m(H)Z

6
log

(
m(H)

4C1

)

+ OC

(
m(H)√

q

(

log
1

q

)3
)

≤ OC (1)√
q

(

log
1

q

)3

− m(H)√
q

(

log
1

q

)3

,

since either m(H) = OC (1), or the first (negative) term dominates.
Putting these various bounds together gives

Pp (I (R)) ≤
∑

H∈H(R,T,Z)

exp

⎡

⎣− 2

q

aq∫

0

g(z) dz − (b − a) g(aq)

+ OC (1) − m(H)√
q

(

log
1

q

)3
]

.
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Bootstrap percolation in two dimensions 17

Hence, using (3), and summing over m(H), we obtain

Pp (I (R)) ≤ exp

⎡

⎣− 2

q

aq∫

0

g(z) dz − (b − a) g(aq) + OC (1)√
q

(

log
1

q

)3
⎤

⎦ ,

as required. ��
Before deducing Theorem 1 from Proposition 15, we need to recall the following

fact from [31], and to make an easy observation.

Lemma 18 (Proposition 5 of [31])

∞∫

0

g(z) dz = π2

18
.

The following observation follows almost immediately from Lemma 18.

Observation 19 Let p > 0 be sufficiently small, and let a, b ∈ R+, with a ≤ b and
b ≥ B/2p, where B = 10 log(1/p). Then

2

q

aq∫

0

g(z) dz + (b − a)g(aq) ≥ 2λ

q
− 1,

where λ = π2/18.

Proof If a ≤ B/4p, then this follows since
∫∞

aq g(z) dz = O(g(aq)), uniformly over
a ∈ (0,∞), and so

(b − a)g(aq) − 2

q

∞∫

aq

g(z) dz ≥
(

B

4p

)

g(aq) − O

(
g(aq)

q

)

> 0.

If a ≥ B/4p then it holds because g(z) ≤ 2e−z for z large, and so

2

q

∞∫

aq

g(z) dz ≤ 4

q
e−aq ≤ 4

q
e−B/5 ≤ 1,

as required. ��
Finally, we deduce Theorem 1 from Proposition 15.

Proof of Theorem 1. Let C2 > 0 be a large constant to be chosen later, let n ∈ N be
sufficiently large, and let

p = π2

18 log n
− C2(log log n)3

(log n)3/2 .
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18 J. Gravner et al.

Note that q = − log(1 − p) < p + p2, and so q also satisfies this equality (with a
slightly different constant C2).

Let the elements of A ⊂ [n]2 be chosen independently at random, each with prob-
ability p, and suppose that A percolates. Then, by Lemma 8, there exists a rectangle
R ⊂ [n]2, which is internally spanned by A, and with B/2p ≤ lg(R) ≤ B/p, where
B = 10 log(1/p). Let dim(R) = (a, b), and assume without loss of generality that
a ≤ b. There are at most n2(B/p)2 potential such rectangles, and each is internally
spanned with probability at most

Pp ([A ∩ R] = R) ≤ exp

⎛

⎝−
⎡

⎣ 2

q

aq∫

0

g(z) dz + (b − a)g(aq)

⎤

⎦+ O(1)√
q

(

log
1

q

)3
⎞

⎠

if sh(R) ≥ 1/q, by Proposition 15, and with probability at most

e−bg(aq) ≤ e−B/40p = p1/4p ≤
(

1

n

)100

if a = sh(R) ≤ 1/q and n is sufficiently large, since g(aq) ≥ g(1) = − log β
( e−1

e

)
>

1/20 and b ≥ B/2p. Note that, since we apply Proposition 15 with C = 10, we obtain
an absolute constant O(1) in the expression above.

By Observation 19, we have

2

q

aq∫

0

g(z) dz + (b − a)g(aq) ≥ 2λ

q
− 1,

where λ = π2/18. Thus, using the identity 1
x−y = 1

x + y
x(x−y)

, this gives, as n → ∞,

Pp

(
[A] = [n]2

)
≤ n2(B/p)2 exp

(

−2λ

q
+ O(1)√

q

(

log
1

q

)3
)

≤ n2(B/p)2 exp

(

−2 log n − C2

λ
(log log n)3√log n + O(1)√

q

(

log
1

q

)3
)

≤ n2(log n)3 exp
(
−2 log n − (log log n)3√log n

)
→ 0

if C2 is sufficiently large, as required. ��

5 Extensions and open questions

In this paper we have studied bootstrap percolation on one particular graph, the two-
dimensional grid with nearest-neighbour bonds. It is natural to ask whether our method
can be applied to bootstrap percolation on other graphs; here we shall discuss two such
possible generalizations.
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Bootstrap percolation in two dimensions 19

The most obvious (and most extensively studied) generalization is to consider boot-
strap percolation in d dimensions (i.e., on the graph [n]d ), with nearest neighbour
interaction and threshold 2 ≤ r ≤ d (as studied in, for example, [2,6,8,16,17,40]).
The sharp metastability thresholds for these models (with d fixed, and as n → ∞)
were determined in [8], and it is likely that the methods of this paper (and those of [28])
could be adapted to give improved bounds in the case of r = 2 and general d.

Problem 1 Bound the second term in the asymptotic expansion of pc([n]d , 2) as
n → ∞.

The case r ≥ 3 is more complicated, and the following problem is likely to be
difficult.

Problem 2 Bound the second term in the asymptotic expansion of pc([n]3, 3) as
n → ∞.

We remark that in very high dimensions (d � log n, say) new ideas are required,
and much less is known in general. However, results analogous to Theorem 1 have
been proved in the special cases r = 2 and r = d, see [5,7].

A second natural generalization is to consider bootstrap percolation in two dimen-
sions, but with a different update rule. For example, in the ‘modified’ bootstrap process
(see [32]), a vertex is infected if at least one of its neighbours in each dimension is
already infected; in the ‘k-cross’ process (see [33,15]), a vertex v is infected if at least
k vertices in the cross-shaped set

⋃

0 �= j∈[−k+1,k−1]
{v + (0, j), v + ( j, 0)}

are previously infected; and in the Froböse process (introduced by Froböse [25] in
1989) a site of [n]2 is infected if it has one already-infected neighbour in each dimen-
sion, along with the next-nearest neighbour in the corner between them. In general,
one could consider an arbitrary neighbourhood N (v) of each vertex v, an arbitrary
(monotone) family A(v) of subsets of N (v), and say that v becomes infected if the
already-infected subset of its neighbours is in A(v).

Holroyd [31] (see also [32]) determined the sharp threshold for the modified and
Froböse models, and Holroyd, Liggett and Romik [33] did so for the k-cross process
for all fixed k ∈ N. Moreover, Duminil-Copin and Holroyd [22] have recently shown,
for a large family of such models (including all of the examples above, and other sim-
ilar models), that there exists a sharp metastability threshold. It is not unreasonable to
hope that our method (together with that of [28]) might yield improved bounds on the
critical probability for a more general collection of bootstrap processes, of the type
considered in [22]. Indeed, for two of the processes described above this is the case.

Let p(F)
c ([n]2) denote the critical probability for percolation in the Froböse pro-

cess on [n]2, and let p(+)
c ([n]2, k) denote the critical probability for percolation in the

k-cross process. The upper bounds in the following theorem were proved by Gravner
and Holroyd [28] (for the Froböse model) and by Bringmann and Mahlburg [15] (for
the k-cross process). The lower bounds follow by the methods of this paper.
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20 J. Gravner et al.

Theorem 20

p(F)
c ([n]2) = π2

6 log n
− 1

(log n)3/2+o(1)
.

as n → ∞. Let k ∈ N, and let λk = π2/3k(k + 1). Then

p(+)
c ([n]2, k) = λk

log n
− 1

(log n)3/2+o(1)

as n → ∞.

In fact the bounds we prove (and those from [15,28]) are a little stronger than those
stated above; they are like the bounds in Theorem 1.

Sketch of proof of Theorem 20. For the first part, it suffices to show that (in the Froböse
process) on R = [m]×[n], all spanning sets have size at least m+n−1. The result then
follows in exactly the same way as Theorem 1. Indeed, simply replace the function g
by the function

h(z) = − log
(
1 − e−z),

and note that a rectangle is crossed if, and only if, it has no empty column. The rest
of the proof carries over essentially verbatim, the key point being that

∫ x
0 h(z) dz ∼

x log(1/x) when x → 0, and Pp(I (Ru)) ≈ exp(−φ(Ru)h(aq)) when u is a seed, so
the corresponding terms in the final calculation are of the same order.

We shall give two proofs that if [A] = R then |A| ≥ m +n−1. The first is standard,
using Proposition 30 of [31] and induction on φ(R) (see Lemma 7 of [4] or Problem 35
of [14]). For the second, consider the (bipartite) graph G whose vertices are the rows
and columns of R, with an edge from row x to column y if and only if (x, y) ∈ A.

To prove that G has at least m + n − 1 edges, we shall show that it is connected.
Indeed, if G is not connected then exists a set of rows X and a set of columns Y such
that A ⊂ S = (X ∩ Y ) ∪ (Xc ∩ Y c). But then [S] = S �= R, so A does not percolate,
as required.

For the second part, we need the following idea from [33]: first couple the k-cross
process with an ‘enhanced process’ (see [33, Section 5]) in which the closed sets are
rectangles. In the enhanced process the minimum number of sites required to infect
an [m] × [n] rectangle is about (m + n)/k, which is also the typical number required.
(To prove this, apply the standard proof, by induction on m + n.)

The result now follows by the proof of Theorem 1, replacing the function g by the
function − log f (e−z), where f : [0, 1] → [0, 1] is decreasing and satisfies

f k − f k+1 = xk − xk+1,

and noting that if a rectangle is crossed in the enhanced process, then it has no ‘k-gap’
of k successive empty columns (see Lemma 12 of [33]).
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Bootstrap percolation in two dimensions 21

We obtain a sufficiently strong bound on Pp(I (Ru)), where u is a seed, using the
proof of Lemma 2; this works because our lower bound on |A ∩ R| is also the typical
size of a percolating set in R when φ(R) � 1/p. It follows that the contribution
of the large seeds to the final calculation is of the same order as that of the integral∫ x

0 − log f (e−z) dz, where x is the semi-perimeter of the pod. Modulo a little basic
analysis, the rest of the proof works as above; we leave the details to the reader. ��

Gravner and Holroyd [28] also improved the upper bounds for the modified process.
However, the proof of Theorem 1 does not work for the modified process, since we
do not have a result analogous to Lemma 2. In particular, it is possible to internally
span an m × n rectangle with max{m, n} infected sites, but the proportion of such
minimal-size sets which percolate is very small.

Let p(M)
c ([n]d) denote the critical probability for percolation in the modified boot-

strap process on the graph [n]d , i.e., the infimum over p such that the probability of
percolation is at least 1/2. We have the following conjecture; it is the analogue of
Conjecture 1 for the modified process.

Conjecture 2 As n → ∞,

p(M)
c ([n]2) = π2

6 log n
− 1

(log n)3/2+o(1)
.

Given a rectangle R, we say that a set A ⊂ R is a minimal percolating set if A
spans R, but no proper subset of A does so (see [37], for example). Given m ≥ n and
x ≥ 0, let F(m, n, x) denote the number of minimal percolating sets of size m + x in
modified bootstrap percolation on R = [m]×[n]. We remark that Conjecture 2 would
follow from the method of this paper, together with following bound:

F(m, n, x) ≤ nm−n+2x+o(n).

Note that even if we restrict ourselves to ‘threshold’ models, in which a vertex is
infected if at least r elements of its neighbourhood are infected, we still run into simi-
lar problems. Indeed, consider the model in which a vertex is infected if at least four of
its eight neighbours (including diagonals) are infected. A typical seed R is shaped like
an octagon, and the number of infected sites used to fill R (in the random process) is
roughly φ(R) (which we define to be the number of external vertices plus the number
of external edges), while the minimal number required to span R is only φ(R)/2.

Finally, returning to the standard bootstrap process, recall that Theorem 1 deter-
mines the second term of pc([n]2, 2) up to a poly(log log n)-factor. We ask whether
this error term can be removed.

Problem 3 Determine α ∈ [0, 3], if it exists, such that

pc([n]2, 2) = π2

18 log n
− (log log n)α+o(1)

(log n)3/2

as n → ∞.
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22 J. Gravner et al.

As usual in bootstrap percolation, it would not be unreasonable to suspect that the
upper bound in Theorem 1 is closer to the truth.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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