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ABSTRACT progress by the flow characteristics of blood [10, 13]. The relevance

of computational simulations in the development of cardiovascular

A model is developed for the flow of blood, within a thermodynamic devices, in particular blood pumps, has been highlighted in a recent

framework that takes cognizance of the fact that viscoelastic fluids article [3], and there is a need for powerful, yet simple, models that

can remain stress free in several configurations, ie, such bodies have can capture the complex rheological response of blood over a range of

multiple natural configurations (see Rajagopal [19], Rajagopal and flow conditions. In this article, we advance a model for blood and

Srinivasa [20]). This thermodynamic framework leads to blood being investigate its efficacy under conditions of steady and oscillatory

characterized by four independent parameters that reflect the flow.

elasticity, the viscosity of the plasma, the formation of rouleaus and Blood consists in multiple constituents namely red blood cel1s

their effect on the viscosity of blood, and the shear thinning that takes (RBCs), white blood cells, platelets, etc, suspended in a medium

place during the flow. The model emerges in a hierarchy of (plasma) of proteins and water, The plasma is a Newtonian fluid. The

increasingly complex nonsimple viscoelastic fluid models, and in this haematocrit (cel1 matter that consists primarily of RBCs) forms

study two other models in the same class (proposed by Rajagopal and approximately 45% of the volume of normal human blood. Chien, et

Srinivasa [20]) are also considered, The efficacy of these models in al [4, 5] were among the earliest to relate the shear-thinning nature of

describing the response of blood is investigated. Among the models blood to the tendency of RBC-rouleau aggregates (which form at low

studied, the proposed model is not only best able to describe the shear) to disaggregate upon the application of shear. Upon increasing

response of blood but is the first to have rigorous thermodynamic the shear rate, the RBCs become :fluid-like' and lose their ability to

moorings, The predictions of the model agree exceptional1y wel1 with store elastic energy [24]; they also align themselves with the flow

the data that is available for steady flow and osci11atory flow field and tend to slide upon plasma layers formed in between [32].

experiments, while the two other models are inadequate to describe Thurston [27] was among the earliest to recognize the viscoelastic

oscillatory flows (a serious shortcoming as osci11atory flows are the nature of blood, and that the viscoelastic behavior is less prominent

most natural flows that blood undergoes). with increasing shear rate [28, 31].

The procedure for determining (assigning) the material parameters In summary, we may state the fol1owing about the rheological

that characterize blood wi11 be outlined in detail and the results of behavior of blood:

numerical simulations are compared with the data. This method is I I h .b. h h.. d d I.k . I . I' .
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3. Platelet activation and temperature effects are not considered. By the motion of a body we mean a one to one mapping that
The model is developed in an isothermal setting, and the assigns to each point X e I<: R(B) , a point x e I<: (B), for each t, ie,various parameters can be extended to capture the effect of '

haematocrit on the rheological properties. x = 'V (X I). (I),. ". ".'

. One of .the earliest to att~pt t? incorporate the shear-thinning and We assume that the motion is sufficiently smooth and invertible. We
Vlscoelastlc nature of blood In a single model, ~urston [31] proposed shall, for the sake of convenience, suppress B in the notation
an extended Maxwell model that was applicable to 1-0 flow
situations. Later, Thurston observed that there exists a critical shear I<: R (B), etc.

rate beyond which the assumptions of linear viscoelasticity and
Newtonian behavior (respectively) of blood cease to hold, and related
the non-linear behavior to the microstructural changes that occur in
blood with increasing shear rate [33, 34]. The most recent Oldroyd-B
type model of Yeleswarapu et at [40] is an improvement over earlier
proposals like that due to Phillips and Deutsch [16] (see [39] for a
detailed literature survey). However, even this model has its
limitations given that the relaxation times do not depend on the shear
rate, a dependence that can be gleaned from experiments.

A thermomechanical framework for developing models for rate-
type fluids has been proposed by Rajagopal and Srinivasa [20], and
rate models due to Maxwell, Oldroyd, Burgers, and others are special
models within this framework. This approach is well suited for
describing bodies whose response functions change as it undergoes
deformation. Blood, being such a material, can be modeled within this
framework. Importantly, this framework allows for changes in the
response of materials due to activation. It has been used to study
crystallization [22, 23], and the glass transition phenomenon in FIGURE I
polymers [12], for instance. In the future, we intend to incorporate the
process of clot formation due to platelet activation in blood flow, the Schematic of the natural configurations associated with a
clot being modeled as a viscoelastic fluid or solid (there is some viscoelastic fluid having a single relaxation mechanism, and
debate on this issue). Additionally, morphological studies of clots capable of instantaneous elastic response.
have shown certain directional properties due to the fibrin strands that
get laid out along the flow direction. Although experimental data for The deformation gradients, F ,and the left and right Cauchy-
the extent of anisotropy is not available as yet, this framework would ",
be a natural choice to study a transition from a viscoelastic fluid to an Green stretch tensors, B", and C", ' are defined through:

anisotropic solid/liquid. In an isothermal setting, the framework a
involves a choice for the stored energy function and the rate of F = ~ B = F F: and C = FT F (2)
dissipation. The constitutive relation that is picked maximizes the rate ", ax",' ", ", ",' ", ", ",'

of dissipation amongst the class of models that are possible candidates
for the material in question. The assumption that the rate of The left Cauchy-Green stretch tensor associated with the
dissipation is maximized allows us to specify the equation for the instantaneous elastic response from the natural configuration 1( is
evolution of the natural configurations associated with the viscoelastic p(t)
fluid. defined in like fashion:

We model blood as a shear-thinning viscoelastic fluid with the B - F FT (3)
relaxation time (characterizing the evolution of natural configurations 'pi') - "p", 'pi,,'

associated with the fluid) being deformation dependent. This is in Th .. I . . fk . . h h b . th h . I . h fblood ' e pnnclpa Invanants 0 B are
eeplng WIt t e 0 servatlon at t e VlSCoe astlc c aracter 0 IS rp,,'

less prominent with increasing shear rate, and also that the relaxation
time characterizing the underlying cellular aggregate at a particular I = tr(B ), II. =.!. {[tr(B )f - tr(B2 )}, and III = det(B ) .
shear rate varies significantly [28, 3 ! ]. . rp," 2 rp(,' "p,,' . rp,,'

(4)

PRELIMINARIES For homogeneous deformations, F K denotes the deformation
pIt)

The framework for the development of the constitutive theory for gradient between the natural configuration and the current
viscoelastic fluids (possessing multiple natural configurations) has configuration. The mapping G is defined through:

been outlined in [20], and the notation introduced therein is adhered
to here. Let I<:R(B) and I<: (B) denote the reference and the current G = F = F-1 F . (5)

t r,-+'"" r"" r,
configuration of the body B at time t, respectively. Let I<: (B)
denote the stress-free configuration that is reached by instanta:~usIY The velocity gradients, Land LKp(t) , are defined through

unloading the body, which is at the configuration I<:,(B) (Figure I). L:= F- F-1 and L =GG-1 (6)
r, r, rpl" '

As the body continues to deform these natural configurations I<: (B)
h ( h ffi ( ) ' d . d h. hI' h h . P~') h where the dot signifies the material time derivative.

can c ange t e su x p t IS use In or er to Ig Ig t t at It IS t e
preferred stress free state corresponding to the deformed Th t .

art f L d L d fi edthr he symme nc p soan ,are e In oug
configuration at time t. See Rajagopal [19] for a detailed discussion "",.

of the notion of natural configurations). D=.!.(L+LT)andD =.!.(L +11 ). (7)
2 r",. 2 'p", r""
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r---=~ "'"V"". Oldroyd derivative of B ,B ~ ,is given ). = 3 (17) '""'~

I The upper C( ~,w ,(0) tr(B-1 )'

~'('.~" ,co; through .. " r -1 (18)

Dr =8 -LB -B LT=-2F D FT . (8) n=-; n>O."" r"" r"" r"" r"" r"" r"" 1 - 2 r

As we shall assume that blood is incompressible, we shall require The relaxation time governing the evolution of B~ (I) is
.that

(9) [2(~ )1+211 (tr (B ) - 3)')" ]-1 , and is dependent on the elastic stretch. In
tr(D)=O, a rpt"

d like fashion, as the shear rate varies, the underlying rouleau sizean tr D = 0 . (10) varies as does the corresponding r~laxa~ion time. However the.

( ~"O) relaxation time and the apparent VISCOSIty (as seen from the equatIons

that will be developed shortly) tend to 00 as D -+ 0 (as shear rate
CONSTITUTIVE ASSUMPTIONS FOR BLOOD tends to zero). This requires some explanation. Earlier, it was

believed that blood in the quiescent state exhibited a yield-stress
The rate of dissipation f associated of the material is defined behavior3; the once popular Casson model reflects this idea as does

through the more recent model of Sun and DeKee [26]. However, there is the "
~ = T. D- W . (II) possibility that the difficulty in measuring viscosity at low shear rates

The form chosen for the rate of dissipation in this study is might be at the root of the assumption that,u app -+ 00 as shear rate

f - (D .B D Y + D.D (12) tends to zero (see [7]). In order to ensure that the zero-shear viscosity- a ~.(I) ~p(l) ~.(I) 771 . is finite, we introduce a Heaviside function into the expressions for

.. . . the viscosity and shear thinning index, .

Such a form for the rate of dIssIpatIon corresponds to a mIxture of a

viscoelastic fluid that has a power-law ~scosity and. a N~wtonian - - - - (19)
fluid. Such a choice is particularly approprIate as blood IS a mIxture of a-a fH(I. 10) +ao(1 H(I. 10»,

a Newtonian fluid (plasma) and the other constituents such as cells are r = rH(I. - 10) + (1- H(I. - 10» , (20)
elastic membranes containing fluids. The RBC-based microstructure - 2( - ) (21)
.evolves upon the application of shear, the evolution at a particular ao - 770 1]" , co' ,

shear rate depending on the type of rouleau formed (at that shear rate), . . . . ,/~

and becomes progressively liquid-like. While treating blood as a where 170' 1700 are the asymptOtIC VISCOSItIes of blood at low and ""~
single continuum, we may thus include the entropy production due to high shear rates, and 10 is a suitably chosen constant. We shall find it ."

the various mechanisms (viscous dissipation and disaggregation of .. od th t t.. . convement to Intr uce e no a Ion
rouleau structures). As a first step, It IS assumed that these
mechanisms are not interrelated. Additionally, it is assumed that the ,u 1+211 (22)
rate of dissipation is non-negative (a, '7t >0) satisfying the second K = (-;) .
law.

The Helmholtz potential associated with the elastic response is OTHER CONSTITUTIVE MODELS

assumed to be that of a neo-Hookean material): . . .. .
Different choices for the rate of dISsipatIon In Equation (II) lead, of

= -!:!.. - (13) course, to di~erent mode!s. In p~rticular, the ~odel~ propos~d in [20]W - P'// - 2 (I. 3). are also studIed to examine theIr relevance vIs-a-vIs modeling blood

flow. The Generalized Oldroyd-B (GOB) model developed by j
Following the procedure of constrained maximisation outlined in Rajagopal and Srinivasa [20] has the following form:

I [20], the following model (14-18) is obtained2: i
I . T=-pl+S, (23)

T=-pl+S, (14) S=,uB +1]0 (24)
~"o l'

S=,uBKp(I)+17,O, (15) S+~S=1]I(D+-f;D)+ ,u}.,l, (25)

B~ =-2(E.)1+211(tr(B )-3).)"[B -).1], (16) 2j1
pIt) a K,(O ~,(O

3: ). = -I . (26)

! 1 It is only the rouleau network at zero-shear that is randomly tr(BK",.)

arranged. The underlying rouleau formations at higher shear rates A related model, the Generalized Maxwell (GM) model is, unlike
i consist of RBCs arranged in a certain fashion. Thus, if the underlying the Generalized Oldroyd-B model, capable of an instantaneous elastic
! microstructure is related to the elastic response, although the response. The equations for this model are:

configuration is initially isotropic, it evolves into one whose stress-
free state is not. Directional effects may thus come into play, and it T=-pl+S, (27)
would be interesting to see if morphological observations that seem to
point to a possible transverse isotropy in the underlying elastic j While one often finds the assumption of a yield condition for certain

response can be confirmed through a suitably designed experiment. fluids that are referred to as Bingham fluids the notion of yield is
Rajagop.al and Sri?ivasa [21] point o~t that ~e ef!e~ts of ani~otropy counter to what is meant by a fluid. A body is said to be a fluid if it .
may be Important In the context of an ISOtrOpIC fluId Infused with rod- cannot sustain a shear. Thus, a fluid will flow, however small the
like suspensions and these issues may be of critical importance in shear stress. While the flow might not be perceptible for short times,
whole blood given that 45% by volume is cell matter. given sufficient time it will be perceptible. Thus, it is not meaningful
2 This model is not capable of an instantaneous elastic response. See to .allow fluids to h.ave a. yield-s~e.ss (see Murali Krishnan and

discussion in [20]. RaJagopal [15] for a dIscussIon of thIs Issue).
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r \ S = JiB (28) and angular speeds so that the intervening approximations may be

\7 K,(I) , reduced, and the material parameters may be fixed with greater

BK = -2~[B -AI] (29) precision. Data in the literature that has been reviewed is reported as
p(') 17 Kp(" ' apparent viscosity, though.

- 3 (30) The flow field between the cylinders is assumed to be of theA - tr(B-' ) . following form:
Kp(I)

v = u(r)ee = rw(r)ee (35)
It has been shown that the above models can be reduced to, or

expressed equivalently, in the manner of the classical Oldroyd-B and Substituting the constitutive equations (14)-(18) in the equations
upper-convected Maxwell models [20]. While the models given above for balance of linear momentum and assuming an axisymmetric two
have a thermodynamic basis, the model proposed by Yeleswarapu dimensional stress field, the following expression is obtained for the
[39] does not. wall shear stress (from which the torque is calculated):

The model proposed by Yeleswarapu [39] is a generalization of the
Oldroyd-B model which was obtained by fitting the model to - -7- + 171 du U 36 -

experimental data. He showed that this model seemed to fit the data TpiJ -(~)(d--)' ( )
better than the models that were being used at that time. The r r

consti"tutive equation for this model is as given below: Assuming that the shear rate is nearly constant across the gap ("thin

gap assumption"), we obtain:
T=-pl+S, (31)(.

J du u dwS+~ S-LS-SLT =v(A1)A1+170~(A1-LA,-A,LTJ, -d --=Ro~' (37)
r r ur

(32)
where v(A) is given by the following: where Ro is the radius of the outer cylinder, ~w is the difference in, angular velocity between the outer and inner rotating cylinders,

A - - 1 + In(1 + At) (33) and Or represents the gap between the cylinders. The apparent
v( I) -17~ + (170 17~)[ 1 + At ], viscosity that will be reported for the model, given the torque and the

1 shear rate, is:
r=[-tr(A:)f/2. (34) pA-

2 =~ (38)

/.lapp 2'
CORROBORATION OF MODEL

where A is determined using the incompressibility condition:
We will now discuss the efficacy of the model that has been det(B ) =1, and it is given by:

Kp(I)developed here, namely the model defined through Equations (14)- 1
(18). The parameters K, f.J, nand 17,' that are used in defining the 1 = (39)

A. 1/3 .
model (Equations (14) - (18» are determined so that the best fit is [1 + -4(ilY.. - .!L)2

]obtained for both steady flow data [39] and oscillatory flow data [29]. 4Z- dr r

The model is corroborated by comparing predictions with the data for At any given shear rate, X is obtained by solving:
steady Poiseuille flow [40]. In our numerical procedures, we treat the [ ] n model without reference to Equations (19)-(21). This is a minor - K 2i~",s I (40)

detail, and relates to setting 10 to correspond to the value of 18 at the X - ~O~~ '

lowest shear rate (in the measurement of apparent viscosity). The 4x'
value of K would then be used to infer a . There is little difference where

f
in th.e results presented if Equations (19)-(21) are required to be met. f =(~-~). (41)
For Instance, we find that 10 = 3.0006 for the data on human blood dr r

(for a lowest measurable shear rate of 0.06 sec"), and 18 almost never W fi . .
reaches this value in our numerical simulations. Applications that e .may IX all four parameters ~sl.ng the above expressIons

demand numerical results of high fidelity should however solve the (EquatIons (38),(39),(40». For the lImIt r ..,ar -+ 0, we find that

full system of equations along with data that report the apparent A \ X -+ <XJ , though this can be fixed using Equations (19-21). For the
viscosity at even lower shear rates. limit Y. -+ <XJ A \ 'V = 0 and" = 2" . The multidimensional

mear ' '" "\ "~

APPARENT VISCOSITY unconstrained minimisation procedure in MATLAB (frninsearch) is
used to fix K, Ji and n for the best fit, with X being solved by the

Apparent viscosity data has been obtained for the steady flow of fzero routine in MATLAB. The constants obtained (for human blood:
blood in the rotating cylinder rheometer [39] by correlating the -

0 0736P - 0 005P - ) K-580725-1I . I I d fr h h Th . 1 170 - . a.s 17 -. a.s A - l4.8ls are -. s,~o utlons ca cu ate om t e t eory. e matena constants are 2 ~ , . .
Inferred from measurements of torque and shear rate. We note that ~ = 0.1611 N/m , n = 0.5859 (n must be pOSItive to ensure shear-
most co~mercial cylindrical rheomet.ers (like the one used to ,?btain thinning behavior), and 111 = 0.01 Pa.s , and are but one among a very
the ,?ata In [3~]) employ a data reduction p:ocedure based on a small large selection that can fit the data equally well. It is seen that the

gap assumption (see [37]). These approxImate the shear rate at the proposed model fits the experimental data better than the model
wall by a constant mean value assuming that the variation of shear d b Y 1 h h" h h 1 .1 (F " 2)" . . " propose y e eswarapu at s ear rates Ig er t an sec 19ure.

rate across the gap IS small" The validIty of such an assumption IS ". . .

questionable for non-Newtonian liquids (see Yeleswarapu [39] for a thThe odcorrlesPO~dlng expressIons for apparent vIscosIty from the
b . f tr. d f h. od 1 . h fl " 0 er m e s are.ne parame IC stu y 0 IS m e In suc a ow sItuatIon).

~owever, we sh~ll pr.oceed by assuming that the measured shear rate Jia (GOB) = ~, (42)
IS a good apprOXImation to the wall shear rate. It is preferable to use PI' 2
data (if available) reporting measured torques (or wall shear stresses)

( )= ~ (43)Jiapp GM ,
2
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r ~~=o.. 2 (47)- ~mocW Op' - -RpjpeVm..n
D E.., ~ d-. - - 3 '
-: - ~U modII iJz f:"'"

(; )dr -+11

'"""' X 1

} '~, subj~c~ to the no-slip boundary. condition and ~he centerline max~mum
~ ""oi condition. (Note that p' represents the appropnate pres.sure ten11 m the
'OJ ~" model: p-liA). We solve for du/dr, at each r, that satisfies the above
,~ 10" '\~, two equations and the centerline maximum condition. Using the
~ "~"'~'~" values of du/dr and U (Rpipe = I) = 0 (No-slip), the velocity profile

a "-"":':-'=":.'"--- can be constructed. The above equations are solved iteratively till
~ dp'/dz is accurate (relative) to within E = 10-4.

For the other three models, the following equations are solved:

~-~~ (48)- ,
dr az 2,tlapp

10"
104 10" 10' 101 101 101 ;\'" -R2 V (49)

vi' pipe meanShear rate (sec-l) -;::: =iR r3 '
v..: "P'

d-r
FIGURE 2 0 2.tlapp

Apparent viscosity of blood. Predictions (of l1app) using the Note that p' represents the appropriate pressure term in the model:
proposed model, the GOB model, and the Yeleswarapu model are P-I1A for GOB and GM, and p for the Yeleswarapu model.
compared with the data for human blood ([39)). The predictions of the (proposed) model agree well with the

experimental data (Figure 3). The overall accuracy is around the same
A = 1. (44) for both the model proposed here and that pr~posed by Yelesw~rapu.

[ 1 +.1,.(.dJL - JL)2 JI/3 Table I summarizes the results. K = 0.3845s ,11 = 0.0667N/m , n =
.," dr r 0.2998 and 111 = 0.013 Pa.s gives a good fit to the apparent viscosity

Here K = 21l111, and 11 refers to the elastic shear modulus in the data for porcine blood [40] (170=0.2Pa.s, 1loo=0.0065Pa.s,

corresponding models. Next, A is obtained using the incompressibility A=II.14s). A good match is also obtained with the Generalized
condition: det(B" ) = 1. The expression for the apparent viscosity Oldroyd-B model (11 = 0.0388N/m2, 11 = 0.387 Pa.s, 111 =

,(I)

for Yeleswarapu's model is as follows: 0.013 Pa.s ), though not with the Generalized Maxwell model.

.u (Ye/) =v(y ) (45)app meas ' D EJPl (Vm -1.582 cm/8)

" EJPl (Vm - 1.946 cm/8)where Y. in Equation (33) is found to be Y. . The apparent 0.8 " EJPl (Vm . 2.478 cm/8)

mms - PIOPOeed model
viscosity expression for the Generalized Oldroyd-B model, like the 0.8 - V8I88_pu mocW
Yeleswarapu model, tends to asymptotic values at zero and infinite - - ::::~:!201f1

shear rates (when A is I and 0, respectively). These are set to ';;;; 0.7

correspond to the asymptotic viscosities for the sample of blood that '~0.8

is tested. Therefore, 111 = 21100 and 11 = 2(110 - 1100)' The (elastic) shear ~

modulus 11 in the GOB model is fixed by a least squares fit to the "-iii 0.5

experimental data. The Generalized Maxwell model cannot capture §
the asymptotic non-zero viscosity at infinite shear rates. We can only i 0.4

fix 11 = 2110 letting the value at infinite shear rate to become zero. The;;; 0.3

graphs of the various expressions for l1app are shown in Fi~re 2. It is ~
seen that the GOB model gives as good a fit as the generalized 0.2

viscosity function in the Yeleswarapu model. The constants in GOB 0.1
for the data in Figure 2 are 11 = 0.0077 N/m2, 11 = 0.1372 Pa.s , and 111 I

= 0.01 Pa.s . 00 0.5 1 1.5 2 4

Velocity (cm/s)

APPLICATION TO STEADY POISEUILLE FLOW
FIGURE 3

The experimental set up is described in detail by Yeleswarapu, et a/
[40]. The equations for steady axisymmetric flow (in dimensional Velocity profiles: Theoretical predictions, for Poiseuille flow,
fon11) are solved numerically, for a specified mean flow velocity using the proposed model, the GOB model, and the GM model,
(Vmean). We use the iterative solvers for non-linear algebraic are compared with the data for porcine blood ([40]).

equations (~solve, fz.er°) available in MATLAB. APPLICATION TO OSCILLATORY FLOW
The followmg equations are solved:

0 ' (46) The model parameters are fixed so that the amplitude of and phase
~ =L r , difference between the pressure gradient and volume flow rate

dr oz ( 7+'71) predicted through a numerical simulation matches the experimental
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\ data for a set of cases, This procedure has not been adopted hitherto4, where

and is essential to validate the model over the gamut of flow s. =-L-B +-.!L~ (56)
conditions that are expected in the hum~ vasculature (such a study of !2 pVe2 1% 2pRVe or. ,

Yeleswarapu's model reveals a shortcoming of the model), ( 2 ), - 3 B rr B rr B zz - B rz (57)
A - 2 2 '

TABLE 1 B rr + 2 B rr B zz - B rz
Comparison of models' predictions (of centerline velocity) with ( )" (58)data 40 for Poiseullle flow of orcine blood Z(BKp(n) = K 2Brl' + Bzz - 32 .

Measured Ref [40] Proposed GOB GM . .
Case Model and R, Ve are the pipe radius and characteristic velocIty respecnvely.

cm/s cm/s cm/s cm/s cm/s (Note: Boo = BIT, B~ = Bez = 0),

I 2.30 2.32 2.341 2.36 2.10 We use the following non-dimensionalisation: t* ~ tVe/R, w* ;
wR/Ve, u* = u/Ve, r* = r/R, z* = zIR, Srz* = Srz/pVe , p* = p/pVe ,

II 2.84 and A* = AR/Ve2.

The above PDEs are solved over the domain 0 < r <1, for t ?: 0,
III 3.44 subject to the following boundary condition:

u.(l,t)=O, (59)
Thurston has proposed a method of infening the complex I ' d. ,I. ( h ' th h od I . h f I' and center- me con Inon:

comp lances t IS presumes at t e m e IS t at 0 a mear
viscoelastic material) from me~surements of the pressure,gradi~nt and au.(O,t) (60)
volume flow (and the phase dIfference between them) m oscIllatory a . = O.
and pulsatile flow through small tubes ([29], [30]). The pressure r

gradient in phase with the volume flow rate (P'), and the component We use the exact solution for pulsatile flow of a Newtonian fluid
in quadrature with the volume flow rate (pit) are measured along with [33] as the initial condition.
the (amplitude of) volume flow rate, and these are used to infer the A predictor-corrector type numerical approach is used to solve
values of the complex compliances (1]', 1]It; see [37] for an explanation these equations, The (coupled) FOEs are decoupled from each other,
of these quantities). Such a data reduction procedure is not correct, and the POE for the velocity is treated as an IBVP, while the others
given that we are dealing with a non-linear viscoelastic fluid; the are treated as IVPs. The coupling is brought about by means of an
pressure gradient and volume flow rate values from the numerical iterative process at each time step, The absence of the spatial
simulations are thus compared with, the values of I:'ressure gradient derivative for Brz, etc, (the components of HI( (t)) in the appropriate
and volume flow rate reported m [29]. Expenmental data at P
frequencies of 2 Hz and 0.5 Hz, though as complex compliances, has equations, implies that it is enough to fix the boundary conditions for
been reported for a similar set-up in [32] and [35] respectively, There the velocity. Once the velocity is obtained, the values of the
are other procedures by which the compliances may be inferred (see components of HI( (t) can be obtained over the entire domain
[36, 37]), and these too have been reported in the literature [6,35]. All P
such data reduction presupposes that the fluid is a linearly viscoelastic (0 ~ r ~ 1).
fluid. The algorithm used is as follows:

We seek a solution for oscillatory flow in a pipe of the form: 1. Compute y~~\ using y~~\ = Yk + I1t f(t'Yk)

v = u(r ,t)ez;p = p(r, z,t). (50) (where ilylat = f(t,y»
2 C (m) ( _1 2 ) . .
, ompute Yk+\ m-, ,... usIng.

A time periodic solution is sought for V , given the time periodicity of

the imposed pressure gradient: Y~~{ =Yk +O.5I1t [f(t'Yk)+f(t+l1t,y~~;I»)J

1 a 3. Carry out the iteration until relative error between consecutive
--~ = Acos(wt). (51) iterates is less than 8 = 10-4, for all variables.

p Here Yk denotes the general variable (u, Brz, etc) at the

Upon substituting Equations (50) and (51) into the balance of linear corresponding instant of time, t = kL\.t. For the variable u, we ~~tain

momentum, we obtain (in non-dimensional form), on assuming that the values on the nodes (2 to n-l), and apply the boundary condlnons
the components of the stress depend only on the radial coordinate, (centerline maxm. with a finite difference scheme of appropriate
that: accuracy, and no-slip). For the variables Brz, etc, we use the above

. .. . scheme on all the nodes including those on the boundary. Natural
~ = - ~ + ~ + ~ (52) cubic splines are used to approximate the spatial derivatives in these. .. ., 2 2
at az r ar equations [9]. The scheme is e «L\.t) , (L\.r) ), and simulations are

I ~ = ~ B-2 B .!. B (53) done with L\.t = 2x 10-4 and L\.r = 0.05. Computations proceed until a
at. or." Z( Kp(n) Ve 1%' periodic solution is obtained. The solution sought permits no axial

oB R dependence for the stress components, and the extra normal stress is
--!!:. = 2Z(B )- (2 - B ), (54) numerically verified to have little variation in the radial direction.at. Kp(n V " 3

e The numerical simulations are performed (p = 1053,6kgim , Ve =

oBzz - 2 au. B 2 R ( 2 B ) (55) 1 cm/sec) for a pipe of radius, R = 0.43 mm, at a frequency, f = 2Hz,
aT - -a;;o 1% + Z(BKp(n) ~ - zz , in like manner to the experiments. How the predictions of the theory

match the experimental data is depicted in Figures 4 and 5 for two
4 -. .. . , --- - choices of parameters, both of which fit the apparent viscosity data

Chmiel and Walitza [7] check the predictions of their model with exceptionally well. However, there is one complication here: the
such data over a smaller range, but use an incorrect procedure to values of K, 11, n that are optimal for fitting the oscillatory flow data
determine the parameters, may not fit the apparent viscosity data equally well. We cannot have
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different values of K, I!, n, etc for different flows and thus we need to A similar procedure for the GOB model and the Yeleswarapu
pick a single set of values that fit a range of experiments adequately. model leads to the results shown in Figures 6 and 7. The GOB model
We thus have a combined optimization problem with a least squares offers little freedom to match data (since the parameters are uniquely
objective function involving three parameters and two systems of determined from the data on apparent viscosity), whereas the two
equations (non-linear algebraic equations for ~p and PDEs for parameters of Yeleswarapu's model can be adjusted to match
oscillatory flow) as constraints. The fit shown can be made better the data. The non-dimensionalised PDEs for Yeleswarapu's model are
through better optimization procedures, but we shall not adopt given in [17], and they are solved using the numerical procedure
elaborate techniques here given the convergence characteristics of the already outlined. The relaxation times used in [17] do not satisfy the

numerical procedures adopted. Our aim is to focus on a method to usual constraint for the Oldroyd-B model namely that A] > (A2110 111«».

corroborate the viscoelastic models for blood, and to show that the A simple Gau~s-Newton methodS is used to find the range of A] and
agreement with experiments can be improved by working in a A2 which gives the best agreement with data. The results (for Al =
reasonable range of the parameters. .0.1530 s, A2 = 0.0101 s) fit the experimental data (for human blood)

10' quite well.
-+- P" (P~ Mod8I)

~ 0 P" (0818.1878) 10"~ --- po (PIopOMd Mod8I) ~ A po (TN-. 1171)~ A P' 'd 0 ~~~I)
~ 10' 1 ::: po (1\0 - 73.s..-)
C ~ 10" -.- po <110 -18OoP)
:4 ~ -<>- po (1\0 - 18OcP)

~ :4
8. E 10'

8 1 0' ;;;::~;~--:~~~-:~A c ~
tJ A C A

-:: A 0 A..0 0 tJ A
,§ 0 00 0 ~ 0" 0
'0 AA '\ 61 0

~ ;, ,-
~ 10' 0 0 POCOI ,,+) ~

~ ~ 10"

j
1004 10.

10. 10" 10. 10. 10. 10" 10" 10"

Flow rate, nns (cc/sec) Flow rate, nns (cc/sec)

FIGURE 4 FIGURE 6

Pressure (gradient) components in phase, P', and in quadrature, Pressure (gradient) components in phase, P' and in quadrature

P", with (amplitude ot) volum_~ flow rate. The rredictions of the P", with (amplitude ot) volum~ flow rate. The predictions of th;

proposed model (K = 5.2908 s , J1 = 0.053 N/m , n = 0.5925, and GOB model [20J, are compared with the data for human blood

111 = 0.01 Pa.s), are compared with the data for Human blood ([29J) (11 = 0.35208 Pa.s, 11] = 0.00792 Pa.s, J1 = 0.0083 N/m2 in

([29J). GOB for 110 = 180 cP).

10' A P'(D818 -1871) Interestingly, for this set of relaxation times, Yeleswarapu's model6

~ -:- ~ (~~ predicts flow reversals for a pulsatile pressure gradient of the form:

'd -+-P"
l10' _.!..?E = A{I+cos(wt)) (61)
~ P OZ

~ the (relative) magnitude of flow reversal decreasing with increasing
~ amplitude of the pressure gradient (Figure 8, see Table 2). This is a
e 10' ::~::~~h'::--:-:~\{A A corroboration of the experimental evidence that the elastic properties

8 A A of blood become less prominent with an increase in shear rate; inertia!
~ A 0 0 0 coo 0 effects being more important at higher shear rates, and elastic effects

1 A r dominating at low shear rates. It would be interesting to demonstrate
~ 100 0 0 "oj P"(+) this experimentally and to report the actual extent of flow reversal.

~ However, no such data is available at the moment. A similar study
~ with the Classical Oldroyd-B model (110 = 11«> = 0.01 Pa.s, A] =

10.' 0.1530 S, A2 = 0.0101 s) shows that the extent of flow reversal is a

10. 10" 10" 10" constant. Table 2 gives a clearer picture of this result (p = 1050kg/m3,
Flow rate, nns (cc/sec) R = 0.5 mm, Ve = Immlsec, and f= 2Hz, for this set of simulations).

The set of experjmental data we have used is just one among the
FIGURE 5 many that can be used to infer and corroborate the viscoelastic nature

Pressure (gradient) components in phase, p', and in quadrature, S ..,
P", with (amplitude ot) volume flow rate. The predictions of the Although It IS posslbl.e th.at one or even a f~w s~s of values .can be
proposed model (K = 1.2056 s-1, J1 = 0.0227 N/m"", n = 0.7525, and matched by two combinatIons of the relaxatIon tImes, there IS only

111 = 0.01 fa,s), are compared with the data for Human blood ~ne choice of A], A2 which yields the best fit for the entire set.

([29]), This result is obtained for the proposed model also.
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"" 10" using the model proposed here (see [21] for shear stress variation

~ ~ =-- ~= ~~') (with time) from the moment of imposition of a steady shear flow, for
~ ::::::: =--(Y~=[38J) an anisotropic fluid). The usefulness of a similar model, for stress-
~ relaxation data (upon sudden cessation of steady shear flow), is
j 10" illustrated in [25], and in this case (unlike the data in [25]) there is no

of uncertainty in the initial state of strain. In all the above cases (as apart
5 from the set of data we h~ve studied which involved an IBVP), we
& , need to solve an IVP involving a coupled system of rOEs, and the
§ 10 parameters will have to be adjusted so that the solution of this IVP

~ matches the experimental data. There is no data for the normal stress
~ differences for the flow of blood, and Copley and King [8] have
~ 10" reported measurements that confirm that negligible normal stress

~ a P"(-) ",.) 7

~ differences manifest themselves during the flow of blood. The

~ approach we have followed highlights the efficacy of our model in
£ matching a body of experimental data. A simpler procedure would

10" .. .. .. ~ involve matching the data for normal stress differences (if reliable
10 10 10 10, ,

data were avaIlable) as seen, for example, from EquatIon (62):
Flow Tale, nns (cc/sec)

FIGURE 7 (S:: -Srr)= 2(v(Y..eas)~ -l1o..1.2).Y;eas (62)

Pressure (gradient) components in phase, p', and in quadrature, 1A - ,"

P", with (amplitude ot) volume flow rate. The predictions of the ~l2O~
1.2 Yeleswarapu model [39] ().1=0.1530 s, ).2=0.0101 s), are compared , .

with the data for human blood ([29J). 1 ",' Z' " "".

1'A 1:, - OJ,
'OJ 0.1 , .IS ' 1 OJ ', 0 , ..

OJ 0.8 ,
0 ""'.. :; 1 CIj' ':.',

§ Z OA '~ .in ~ ' I: -,

OJ ~ ,.
E -0.2 ' ,- ~ ~

"9 '",

§ 0 ~~~ E.. 10" 10" 10'

~ Shear rate ('0;-1)
!;:

~ FIGURE 9
~

First Normal stress difference during the flow of human blood.

The predictions of '1'1, for all the models, are compared.
.,zoo 0.2 OA 0.8 0.8 1 1.2 1A 1.8 1.8 Z Parameters for the proposed model are the same as in Figure 4;

Time (non-dimensional) the other models' parameters are those used in Figure 2.

FIGURE 8 A BRIEF PARAMETER STUDY OF THE YELESWARAPU

. MODEL [39J
Mean flow (and reversal) for various (non-zero mean (Equation

(61») pressure gradients for ).1=0.1530 s, ).2=0.0101 s. Yeleswarapu ([39], Page 126) observes that the relaxation times are

important8, but also states that his study "is inconclusive with regards
TABLE 2 t h ,. ffi f . I ' b h . f blood .

FI I ( d . . l ot e quantItatIve e ects 0 VISCoe astlc e avlor 0 since the
ow reversa non- Imenslona) with the Yeleswarapu [39J (Yele)

and Classical Oldrovd-B (Old-B) models normal ranges for the constants (AI, A2) are not known at this stage",

A Flow Mean flow/cycle Extent of The absence of quantitative information regarding A( and A2 was,
reversal/cycle reversal/cycle thus far, a shortcoming ofYeleswarapu's model. We shall show that

Yele [39] Old-B Yele Old-B Yele Old-B AI and A2 have a significant influence on the model predictions (the

[39] [39] effect of AI, A2 in Yeleswarapu's model on the predictions, under
3.0 0.2959 ~.991158.4778 30.8307 0.51% 32.41% pulsatile flow conditions for instance, was, thus far, not documented).

1.0 0.2487 ~.330418.3001 10.2769 1.38% 32.41%
0.125 0.0965 0.4163 1.4421 1.2846 7.17% 32.41% 7 This observation is corroborated by the predictions of the first

0.0625 0.0420 0.20810.4811 0.6424 9.57% 32.39% normal stress difference coefficient ('1'1) for the various models which

show a steep drop in the normal stress difference at shear rates above

of blood, Some of the experiments that need to be mentioned in this 1 sec-1 (Figure 9) with the model proposed here and that proposed by

regard are the hysteresis experiments, among others, by Bureau, et af Yeleswarapu predicting negligible normal stress difference in the
[1, 2], These experiments are mentioned in [26], and can be verified entire range of shear rates studied.
for the model proposed here. Other experiments include the stress 8See [39] for a parametric study of the Classical Oldroyd-B model, as

(formation and)-relaxation data due to Joly, et af [11] and McMiIlan, also the effect of choice of the relaxation times on the velocity
et af [14] (see Quemada [18]). Both sets of data can be explained profiles and mean flow rates (Figures 25, 37, and 47 in [39]).
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The procedure to fix A), A2 has already been outlined. The results in
Figures 10, II, 12 and 13 highlight the variations in mean flow rate, .

wall shear stress, phase differences and velocity profiles, for some
3 :

choices of A) and A2 (p = 1050 kgim , R = 0.5 mm, Ve = Imm/sec, c.;~;..;.:.:i;..- - :

and f= 2Hz for this set of simulations, A = I in Equation (61)). There,""", : :
is not much variation in the wall shear stresses (Figure II) for the ~ ~:

0 z ... range of A), A2 studied, the wall shear stress being 1800 out ofphase.~ t t ~

with the mean flow. There is significant variation in the mean flow ~ ~ ~~._-~
rate amplitude (Figure 10) and phase difference (Figures 10 and 12). "-9 0 f i.'..'fc ..
The velocity profiles in a cycle, for one choice of A), A2 are shown in 5 ~,!'::
Figure 13. .f-a .~;1~~ :$;';.';;:

70 ~ !,:
~ [ ~ ~

\ ..
: '"""' 0 . ...7 0.8 0.8 1

! ~ Radius (non-dimensional)
0
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5 FIGURE 12
e

"-9§ Predictions of velocity profiles at ot = 2400 using the Yeleswarapu

; 1 model (for various relaxation times).
0 40
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0

-E: -- Velocity profiles at various instants in a cycle for the Yeleswarapu

~ model (A)=0.96 s, 1.2=0.03 s).
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