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A SHOOTING APPROACH TO THE LORENZ EQUATIONS

S. P. HASTINGS AND W. C. TROY

Abstract. We announce and outline a proof of the existence of a homoclinic

orbit of the Lorenz equations. In addition, we develop a shooting technique and

two key conditions, which lead to the existence of a one-to-one correspondence

between a set of solutions and the set of all infinite sequences of l's and 3's.

1. Introduction

The system of equations discovered by Lorenz [6] is found in computer sim-

ulations to have chaotic behavior, by practically any definition of that term. A

survey appears in [7]. However, aside from local results and various kinds of

bifurcation analysis, little has been proved about these equations.

We have now been able to prove the existence of a homoclinic orbit for an

open set of parameter values. That is, there is a nonconstant solution tending

to the same equilibrium point, in this case (0,0,0), at ±oo. Such a solution

has long been conjectured to exist and is recognized as an important feature of

these equations. Further, we have proved a theorem, which reduces the ques-

tion of whether there are "chaotic" orbits to one which, in principle, can be

handled for an open set of parameter values with the techniques of rigorous

numerical analysis, such as interval arithmetic [1]. In other words, the amount

of computation required for rigorous verification of the hypotheses of our sec-

ond theorem is finite; whether it is practical remains an open question at this

time. Computer assisted proofs generally leave a gap in understanding, but with

Theorems 1 and 2, we believe the gap is smaller than before.

The use of a "shooting" technique to obtain a homoclinic orbit is clearly

suggested by numerical integrations. However, its analytic implementation is

difficult and has not been done before, to our knowledge. The proof of the

second theorem is easier. Its conclusion is interesting because it discusses the

existence of chaos without reference to any bifurcation phenomena. The hy-

potheses appear to be true (based on standard numerical integrations) for the

"classical" parameter values used for the Lorenz equations.

Our approach is more elementary than some other approaches to these equa-

tions, such as geometric models, which have given deep insights about chaotic

behavior but have not been shown to apply to the system which motivated all

this work. Instead of Poincaré maps we use simple one parameter "shooting."

Therefore, this is a further application of methods begun in [5] and continued

in [3, 4]. Techniques from [8] are also important.
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Theorem 1. For each (s, q) in some neighborhood of the point (10, 1) there is

an R in the interval (1, 1000) such that the system of equations

x' = s(y - x),

(1) y' = Rx -y — xz,

z' = xy - qz

has a homoclinic orbit.

We chose q = 1 as the point to do our analysis instead of the usual value

of 8/3, purely for convenience in the many numerical calculations. The lack of

precision in the R value could easily be reduced dramatically with computer

assistance. Also, the range of parameters (s, q) for which an R exists could be

expanded greatly; but it would be more desirable to find a method that would

reveal the set of such (s, q) analytically, by proving an extension of Lemma 2.

Further homoclinic orbits for a given (s, q) could, in principle, also be found
by our method.

2. Outline of proof that there is a homoclinic orbit

For any R > 1, the equilibrium point (0,0,0) is unstable and has a one-
dimensional unstable manifold, which we denote by y. We analyze the be-

havior of this manifold for R close to 1 and for R = 1000. We prove two

lemmas, which deal with a solution p(t) = (x(t), y(t), z(t)) on the "positive"

branch y+ of the unstable manifold, so that p(t) —► (0, 0, 0) as t —* -oo,

and x(t), y(t), and z(t) are all positive for large negative t.

Lemma 1. For (s, q) in some open neighborhood of (10, 1) and R-l positive

but sufficiently small, x(t), y(t), and z(t) are all positive on the entire line
—oo < t < oo.

Lemma 2. For (s, q) in some open neighborhood of (10, 1) and R = 1000,

x(t) has at least one zero, ti,  and x' changes sign exactly once in (-oo, ii].

Lemma 1 is easy to prove analytically, but Lemma 2 is much more difficult.

With these two results, the existence of a homoclinic orbit is seen fairly quickly.

We let R* be the infimum of all values of R > 1 for which the behavior in

Lemma 2 occurs. For R = R* and (x(t), y(t), z(t)) on y+, we can show

that either (a) x and x' vanish simultaneously, or (b) after xi, the first zero

of x', x decreases as long as the solution exists but never becomes negative.

This requires eliminating other options, such as the bifurcation from some finite
point of new zeros of x' at R*.

In case (a), x = y = 0 at some finite time t, and then the uniqueness theory

for initial value problems implies that x and y are identically zero. This is

impossible on y+. In case (b), it is clear that (x, y, z) must approach an

equilibrium point as t —>■ oo. Only a little more effort is needed to show that
this is the origin and the orbit is homoclinic.

The proof of Lemma 2 requires a careful study of y+. The value R = 1000

is, of course, rather arbitrary. It is not hard to prove that on some initial

interval  (-oo, to], x,   y, and z increase monotonically, reaching a point
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where y = 1, 0.096 < x < 0.1, and x2/20 < z < 0.1 . From this point
the result would follow easily with computer assistance; but in our opinion,

ingenuity, and considerable effort, is required to follow the solution analytically.

We show that x, y, and z continue to rise at least until they reach the levels

z = 1000, 126.4 < x < 135.6, and 798 < y < 1000. From this region y,
and eventually x and z, begin to fall. It is apparent that at a point where y

becomes negative, z must be greater than R. In fact, we show that y — 0 at a

point where 155 < x < 189 and z > 10.4x.
To obtain these inequalities we use (1) for initial estimates over suitable

intervals, and then iterate to obtain better bounds. Use is made of the functions

S = ¿(y2 + z2) - 50x2 and Q = z - x2/2Q. A continuation of this process into

the region where y is negative requires some "tricks" but finally yields the result.

The details have been submitted elsewhere.

3. Criteria for the existence of complicated solutions

In this section we give a theorem with the conclusion that for some values

of (s, q, R), equation ( 1 ) has solutions with very complicated behavior, in

a sense to be made precise. The hypotheses of this theorem seem difficult to

check analytically; however, the result seems to us to be an improvement over

previous work because these hypotheses can be confirmed by examining only

a compact segment of y+ , together with a set of solutions p such that p(0)

is in a compact line segment. This line segment lies in the intersection of the

two planes x = y and z = R - 1. The solutions only have to be followed over

compact time intervals, suggesting that the hypotheses can be checked rigorously

with computer assistance.

Standard numerical analysis indicates that the hypotheses are satisfied, for

some parameters, in a robust fashion so that the errors in the numerical analysis

should not be so great that the result is false. This reinforces our hope that the

theorem can be shown to apply to (1).

We have two principle hypotheses for Theorem 2. The first is an extension
of Lemma 2.

Condition A. If p is a solution of (1) with p(0) e y+, then x' has at least
five sign changes and x has at least one zero. If xi < x2 < T3 < t4 < t5 are

the first five sign changes of x', while t\ < t2 are the first two zeros of x,

then Ti < ?i < T2 < T3 < T4 < T5 < t2. (If x does not have a second zero, set
t2 = 00.)

This condition is obviously more restrictive than the conclusion of Lemma

2. When (s, q) = (10, 1), standard numerical integrations suggest that it holds
for R approximately in the range (8.2, 17.2). If q = 8/3, then the R range

becomes about (14, 46.6). Unpredictable behavior exists outside of this range,

and a straight forward extension of our theorem would partly explain this, but

be harder to check rigorously.

Before stating our second hypothesis, we must describe the "shooting" proce-

dure used to obtain the complicated solutions. The method is to choose initial

conditions p(0) in a certain line segment in the plane x = y and give an induc-

tive procedure for varying p(0) to obtain more and more complex behavior.

To specify this line segment, suppose that Condition A is satisfied. Then the
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branch y+ of y first crosses the plane x = y at some point pi, which can be

shown to lie in the region z > R - 1. Also, since R > 1, there is an equilibrium

point po of ( 1 ) in this plane in the positive octant. At po, z = R— \. Our

shooting set is the line segment L connecting po and pi.

The idea of our second condition is, roughly, that solutions starting on L do

not gain or lose sign changes of x' by bifurcation as the initial point changes

on L. Stated that way, however, it appears necessary to follow these solutions

on 0 < / < oo, clearly not possible numerically. Instead, we consider solutions

starting along the line where zeros of x' bifurcate and follow these backwards.

This is the line M defined by the equations x = y, z = R — 1. Note that this

line intersects L only at po- We will explain below why this should require only

a finite amount of computation.

Condition B. Suppose p is a nonconstant solution of (I) such that p(0) e M.

Then at least one of the following is true.

(2a)   p(t) i L for í < 0
(2b) In some interval containing t - 0, x ^ 0 and x' changes sign four

times.

To check Condition A numerically, it is first necessary to give estimates that

show that y+ intersects a specific planar rectangle close to, but not including,

the origin. It must then be shown that every solution starting in this rectangle

behaves as described in the condition. This process is difficult, because current

methods of interval arithmetic lose about 10 decimal places of accuracy for

every time unit of integration for this system; however it has been successfully

carried out by Hassard and Zhang [2].

To check Condition B, we suggest the use of the well-known result [7] that

the ellipsoid E defined by the inequality

x2+l4y2+l4(z-2R)2<40R
R R

is a positively invariant set for ( 1 ) for a range of values of q and 5 . The line

segment L lies in E. We consider initial points p(0) on the (different) line

segment M n E. Assuming that p is not constant and (2b) cannot be verified,

we would integrate from p(0) backwards in t and show that the solution leaves

E before intersecting the line segment L. Once p leaves E as t decreases, it

cannot reenter E at a lower t value. By its nature, a single integration using

interval arithmetic can verify Condition B for an interval of initial conditions

on M around p(0). The practical difficulty, which up to now has prevented

us from completing this step, is that the length of these intervals is quite small,

so that several thousand initial conditions must be considered. A local anal-

ysis around po results in a bound on the length of the time intervals in our
integrations.

We can now state our second theorem.

Theorem 2. Suppose that Conditions A and B hold for some (s, q, R). Suppose

also that two of the eigenvalues of the linearized system around po are complex.

Moreover, suppose that {Mj}  is any infinite sequence of 1 's and 3 '5.   Then

there is a solution p = (x, y, z) of (I) such that x has an infinite number of

zeros in 0 < t < 00,   and if {t¡} is the sequence of consecutive zeros of x in
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[0, oo) and er, is the number of sign changes of x' in (t¡, t¡+\), then er, = M¡
for 1 < /'  < oo   .

Outline of Proof. Parametrize L by setting pa(0) = apo + (1 - a)p¡, for

0 < a < 1. The proof proceeds by induction, choosing a sequence of a's giving

more and more of the prescribed numbers of critical points between zeros of
x.

Because two of the eigenvalues of the linearized system around po are com-

plex, it follows that if a is close to 1, then p crosses the plane y = x in

0 < t < oo before any possible zero of x. On the other hand, for small a,

x decreases monotonically to below 0, after which x' changes sign at least

four times before x = 0a second time. Therefore, the first positive zero of x,

ti (a), is defined and continuous on some maximal interval of the form [0, á ),
where á < 1.

If xa has at least n positive zeros h(a),... , tn(a), let t„+i(a) denote the

(n + l)st positive zero of x if this exists, or else  tn+\(a) = oo. Also, for

1 < i < n, let Oj = cjj(a) denote the number of sign changes of x' in [/,, t¡+\ ).
Suppose that /„( ) is continuous on some interval /„ c [0, á). We define

three subsets of /„ as follows, where the dependence of the t¡ and a¡ on a is
again understood:

An(I„) = {a£l„\ tn+i < oo, an = 1 and an+x > 4} ,

Bn(In) = {a e I„\ tn+i < oo, fj„ = 3 and ct„+1 > 4} ,

C„(I„) = {ae /„| tn+i < oo, on > 4 and an+x > 4}.

We prove the following, which imply the theorem.

(i) Let Ii = (0, ä). Then Ax(Ii),   Bi(Ii), and Ci(Ii) are all nonempty.
(ii) If, for some n and some /„ , An — A„(I„), B„ , and Cn are all nonempty,

then there are intervals In+i c /„ and I'n+l c /„ such that

(a) tn+i( ) is continuous on 7„+1 and on I'n+l ;

(b) In+i n An and I'n+l n B„ are nonempty;

(c) The sets An+i(In+i), BH+l(In+l), C„+i(/„+1), An+i(I'n+l), BH+l(I'H+l),

and Cn+i(I'n+l) are all non-empty.

We do not have space for the details here, and they have been submitted

elsewhere. Condition B is used to show that as a varies, the number of sign

changes of x'a between consecutive zeros of jc can decrease from four or more

to three, or from two or three to one, only when the fourth or second of these

sign changes tends to infinity on the t axis. The number of sign changes of

x' cannot jump directly from four or more to one without passing through an
open set of a's where there are three.

These theorems have a few simple corollaries, which we will mention when

details of the proofs are published. Since the divergence of the Lorenz vec-

tor field is negative, volumes are reduced by the flow. We hope to investigate

whether our results have any consequences about the existence of "strange at-
tractors."
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