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A Short Description of DL_POLY 
 
W. Smith and I.T. Todorov 
Computational Science and Engineering Department, Daresbury Laboratory, 
CCLRC, Daresbury, Warrington WA4 4AD, United Kingdom. 
 
Abstract 
 
DL_POLY is a general purpose molecular dynamics simulation package with 
in-built parallel algorithms. It may be run on a wide selection of distributed 
memory parallel computers, from national supercomputers with thousands of 
processors, to single processor workstations and can simulate small systems 
with order 100 atoms, to systems with millions of atoms. This introduction 
provides an outline of the features of the package and the underlying 
methodology. 
 
Keywords: DL_POLY, molecular dynamics, scientific software. 
 
Word count: 5743 
 

1. Introduction 

 
The DL_POLY molecular dynamics (MD) package has been under continual 
development at Daresbury Laboratory since 1994. It was first released to the 
academic community in 1996, so this special issue of Molecular Simulation 
marks its 10th anniversary as a public code. Its prime purpose on first release 
was to provide a simulation package for the UK CCP5 community [1] that 
was capable of exploiting the emerging parallel computers, of which the Intel 
IPSC 860 at Daresbury was a prime example. Since then it has gained 
popularity all over the world and is in considerable demand. It currently 
exists in two forms: DL_POLY_2, which is based on Replicated Data 
parallelism and DL_POLY_3, which is based on Domain Decomposition 
parallelism. Both versions are run on major parallel platforms all over the 
world. 
 
DL_POLY was arguably the first public general purpose MD packages to be 
written specifically for parallel computers. Practical parallel platforms began 
to appear in the late 1980s and Daresbury was active in developing parallel 
algorithms at this early stage [2]. When the demand appeared for a new MD 
program for CCP5 we had already examined a number of possible strategies 
including Replicated Data (RD) [3], Systolic Loops [4] and Domain 
Decomposition [5,6]. The RD strategy was initially chosen because it offered 
the simplest approach to complex force fields, with reasonable scaling 
properties on platforms with up to 100 processors. The first version 
incorporating this strategy was developed in-house as DL_POLY_1 in 1994 
and was circulated among close collaborators for testing and early 
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exploitation. The first generally available package was eventually released in 
1996 as DL_POLY_2 and was written by T. Forester and W. Smith. These 
codes were intended for distributed memory machines and this assumption 
underpins all DL_POLY codes to this day. 
 
In the following sections we outline the features available in the DL_POLY 
codes, including the force field specification, the parallel strategies that the 
codes are based on, techniques for modelling electrostatic interactions, the 
implementation of rigid bonds for parallel processing and the integration 
algorithms. 
 

2. The DL_POLY Force Field 

 
The DL_POLY package does not provide any particular set of force field 
parameters to describe the interatomic interactions, as with more specific 
packages such as AMBER [7], GROMOS [8] and CHARMM [9]. This is 
impractical given that the simulation code caters for widely disparate kinds of 
molecular system. It does, however, implement an enormous selection of 
functional forms for the interaction potentials arising in many of the force 
fields commonly used in molecular simulation.  It is also easy, due to the 
structure of the software, for the user to add new potential functions and it 
should be noted that the user may use many different kinds of potential in the 
same simulation, which is not therefore confined to purely Lennard-Jones or 
purely Buckingham descriptions for example. 
 
The total potential energy for DL_POLY is expressed by the formula: 
 
 
 
 
 
 
 
 
 
 
 
 
DL_POLY contains all the commonly used pair potentials (Upair(rij)), including 
Lennard-Jones, Buckingham, 12-6, N-M and Morse potentials. The 
electrostatic interactions, indicated by the  qiqj/rij terms, are available as point 
charge and polarisable shell models, for which a variety of summation 
techniques may be selected (see section 5). In DL_POLY polarisation is treated 
with the shell model of Dick and Overhauser [10] by the adiabatic method of 
Fincham [11] and the relaxation model of Lindan [12]. The three-body (U3-

body(•ijk)) and four-body (U4-body(•ijkn))  interactions are non-specific angular 
potentials (suitable for glass simulations) and again offer a variety of 
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functional forms. Many-body interactions, an increasing common 
requirement for modelling complex systems, are available in the Finnis-
Sinclair form [13] for metals (terms UFS(rij) and FFS(•ij)) and Tersoff form [14] for 
covalent systems (terms UTer(rij), •ij and VTer(rij)). All these mentioned forms are 
for non-bonded inter-molecular interactions. 
 
For intra-molecular interactions DL_POLY has a wide selection of bond 
potentials (Ubond), angle potentials (Uangle), dihedral angle potentials (Udihed), and 
inversion angle potentials (Uinvers). The forms of these are taken from many 
published force fields including AMBER [7], GROMOS [8] and CHARMM [9] 
and Dreiding [15]. 
 
Lastly, DL_POLY permits the user to implement external force fields. This 
capability is useful for modelling transport (e.g. conduction), or containment 
(e.g. pores) or mechanical intervention (e.g. shearing).  
 

3. Integration Algorithms 

 
The integration algorithms in DL_POLY handle the dynamics of the system 
being simulated. From the current positions of the atoms, the forces may be 
calculated from the first derivatives of the potential functions outlined above 
and used to update the atomic velocities and positions. The integration 
progresses in a sequence of finite steps in time, each time step being of the 
order 1~10 fs. The algorithms for this purpose in DL_POLY are based on the 
Verlet leapfrog (LF) and velocity Verlet (VV) schemes [16].  
 
In addition to providing a numerical solution to the equations of motion, the 
integration algorithm also defines the thermodynamic ensemble. At the base 
level, both LF and VV provide the NVE (constant energy ensemble), but we 
have also implemented in DL_POLY the  NVT (canonical) ensembles of Evans 
[17], Hoover [18] (after Melchionna et al. [19]) and the pseudo canonical 
ensemble of Berendsen [20]. For constant pressure work the isotropic 
isothermal-isobaric (NPT) ensemble has available in both Hoover and 
Berendsen forms and complemented by the anisotropic forms (NST) for 
simulation of phase transitions in solids. 
 
As well as the integration/ensemble algorithms DL_POLY also accepts 
molecular structures defined by rigid bonds and, in the case of DL_POLY_2 
only, rigid bodies. The types of molecular structures that may be 
accommodated in a DL_POLY simulation are shown in Figure 1. It is 
important to note that all such structures may be present in one simulation!  
 
Rigid bonds adapt easily within the framework of LF and VV, though the well 
known algorithms SHAKE (LF) [21] and RATTLE (VV) [22] and we have 
devised versions of these for DL_POLY that are both parallel and appropriate 
for the above ensembles. Considerations pertaining to the parallel SHAKE 
algorithm are described in section 6. 
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Rigid bodies may be used to represent structures like aromatic hydrocarbons 
and their derivatives, which arise in all branches of chemistry. In DL_POLY_2 
the dynamical treatment of such entities is based on Euler’s prescription [23] 
augmented by a quaternion treatment of the orientation [24]. For the LF 
integration scheme DL_POLY_2 employs the Fincham implicit quaternion 
algorithm [25] and for the VV scheme the NOSQUISH algorithm of Miller et 
al. [26] is used. The latter algorithm has the advantage of being symplectic 
and therefore stable for long time integrations [26]. 
 
The presence of both rigid bonds and rigid bodies in the same systems raises 
the possibility of rigid bodies linked by rigid bonds. A suite of integration 
routines are available for this situation in DL_POLY_2. These routines are 
derived from the QSHAKE algorithm [27] which was devised by us and is 
able also to generate any of the ensembles described above.  
 

4. Parallelisation Strategies 

 
4.1 Replicated Data Parallelism 
 
In the RD strategy [3] each processor of the parallel machine maintains a 
replica of the configuration of the simulated system i.e. the coordinates {ri}, 
velocities {vi} and forces {fi} for all atoms {i=1,…,N} in the system. Each 
processor may be thought of as running the same simulation, but replication 
of the computational effort is avoided by assigning to each processor a subset 
of the tasks involved. The simulation as a whole is established by 
communicating the results of these concurrent tasks to all processors, so that 
every processor can continue to maintain a full replica of the simulation. The 
communication of these data is inevitably a global operation, since all 
processors need all the data. Key points at which this global operation is 
necessary are in the computation of forces and in the integration of the 
equations of motion. 
 
The principal expense in MD lies in the computation of atomic forces and this 
is where most of the effort lay in developing DL_POLY. Calculation of intra-
molecular forces is handled though bookkeeping arrays that store the 
identities of interacting atoms and the relevant force forms (bonds, angles, 
dihedrals etc.). Parallelism is achieved by simply allocating each processor a 
subset of bookkeeping arrays (Figure 2). The overall efficiency of this 
approach is extremely high. The basic approach is suitable for both RD and 
DD implementations, though there are additional complications with DD (see 
section 4.2). 
 
A more difficult task is the parallel distribution of inter-molecular forces, of a 
type similar to van der Waals (VDW) interactions. The approach adopted is to 
construct a distributed Verlet Neighbour List [16] based on the Brode-
Ahlrichs decomposition of the pair force matrix [29], which is built 
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independently on each processor so that no pair interaction is replicated 
(Figure 3). This is almost ideal parallelism and therefore highly efficient, since 
each processor can build a list without communicating with others, and the 
resulting list is a fraction of that for the whole system. In keeping with the 
Verlet method, the list must be updated at intervals during the simulation, 
which is accomplished by monitoring the distances atoms move and updating 
the list when a tolerance is exceeded. The neighbour list enables efficient 
identification of interacting atom pairs. Intrinsic to our implementation is a 
strategy for omitting VDW interactions from the neighbour list if the atom 
pair concerned is already part of an intra-molecular interaction. 
 
For more complicated intermolecular interactions, such as the Finnis-Sinclair 
[13] or Tersoff [14], which are density dependent, DL_POLY_2 employs a 
Link Cell [29] approach. More problematical however, is the treatment of long 
ranged forces via the Ewald method [30]. This merits special consideration 
and is described in section 5.  
 
It is apparent that distribution of the force calculations under RD results in a 
partial description of the full force field on any one processor. Thus a global 
communication step is required to establish full replication of the force data 
everywhere. In DL_POLY_2 this is accomplished by a global summation of 
the atomic force arrays. This is a relatively expensive step in communication 
terms, and is a principal reason why the RD strategy is not recommended for 
computers with high processor counts. However, experience shows that the 
impact of this step is very dependent on the nature and size of the simulation 
being undertaken and simulations that are large (approaching say 30,000 
atoms) are known to scale quite well, sometimes up to 250 processors with 
good communication hardware. 
 
The second opportunity for exploiting parallelism under RD occurs in the 
numerical integration of the equations of motion. Thus in DL_POLY_2 each 
processor integrates the motion for a subset of atoms only. Replication of the 
coordinate and velocity arrays is established once again by a global 
communication using systolic loops. Integration of the equations of motion 
frequently involves employing the SHAKE algorithm for systems with rigid 
bonds [21]. This is an issue which is dealt with in section 6. 
 
Though DL_POLY_2 proved itself beyond its original design in terms of 
system sizes and processor counts, it became apparent in the early 2000’s that 
the underlying RD strategy was not appropriate for the emerging platforms 
with thousands of processors, so work began on a DD version that would 
scale more efficiently on such platforms. This eventually became the 
DL_POLY_3 code that appeared in 2004 and was written by I.T. Todorov and 
W. Smith [31]. 
 
4.2 Domain Decomposition Parallelism 
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The DD strategy is radically different from RD. Under the DD approach the 
simulation cell is divided spatially into quasi-independent domains which are 
allocated to individual processors.  
If follows immediately that the simulated system must be reasonably isotropic 
if a reasonable degree of load balancing amongst the processors is to be 
achieved. The spatial division naturally does not recognise molecular entities, 
which are therefore usually divided between processors, creating special 
communication difficulties. The implementation of DD in DL_POLY_3 is 
based on Hockney and Eastwood’s Link Cell algorithm [29], which was 
adapted for parallel use by Pinches et al. [5] and Rapaport [6]. A Link Cell 
approach is not entirely essential for DD, but it provides useful constructs to 
aid its implementation and yields order N scaling for large numbers of atoms, 
N. The structural aspects of DD are shown in Figure 4. 
 
Spatial partitioning for DL_POLY_3 demands that the number of processors P 
must have the form P=2n where n is an integer. This is a requirement arising 
from the Ewald calculations described in section 5.2. The MD cell is most 
often divided into near-cubic domains, though exception is made for systems 
with slab geometries to help achieve load balance. Each domain is then sub-
divided into link cells according to the normal prescription, in which the 
width of a link cell must be greater than the cut-off distance applied to all 
interatomic interactions. (In the context of DL_POLY_3, this criterion must 
also include the 1-4 distance in the intramolecular dihedral potentials.)  
Ideally, these requirements should lead to better than a 3x3x3 link cell 
partitioning of the domain in the three principal directions. DL_POLY_3 can 
handle fewer link cells per domain than this, but it raises major efficiency 
issues arising from the construction of the `halo data’. 
 
The `halo data’ represents the construction around each domain of a partial 
image of all neighbouring domains so that calculation of all the forces 
relevant to a domain can take place (Figure 5). In DL_POLY_3 this amounts to 
the transfer of the atomic coordinates of all atoms located in link cells at the 
boundaries of a domain to the processors managing the neighbouring 
domains. This is a six-fold transfer operation that moves data in directions 
North, South, East, West, Up and Down of each domain. These six transfers 
do not happen concurrently, since some data sorting is necessary to populate 
the `corners’ of the halo data. It is apparent from the nature of the link cell 
method, that these transfers are sufficient for a complete calculation of the 
forces on all atoms in any domain. It is also apparent that if the domains have 
relatively few link cells (or their shape is far from cubic), then the transfer of 
the halo data represents the transfer of a major proportion of the contents of a 
domain, which implies a large, possibly prohibitive, communication cost.  
This can be avoided by running the program on fewer processors. 
 
The transfer of the halo data is the main communication cost of the basic DD 
strategy. After the transfer, the atomic forces may be calculated and the 
equations of motion integrated independently on each processor. Atoms that 
move sufficiently far may then be reallocated to a new domain. 
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Computation of intra-molecular forces can be accomplished, in principle, 
using the partitioning scheme described in Figure 2. However, there are 
particular complications arising from the DD scheme. There are two aspects 
to this: firstly the description of the molecular structures (commonly called 
the topology) is `broken’ by the decomposition into domains; and secondly 
the evolution of the system demands that the topology be partially 
reconstructed every time atoms move from one domain to another. In order to 
accomplish this, the package of data transported with each atom that leaves a 
domain contains not only its configurational data (position, velocity and 
force), but also a topological description of the bonding terms associated with 
the atom.  
 

5. The Treatment of Long Ranged Electrostatic Forces 

 
5.1 The Standard Ewald Sum 
 
The treatment of long ranged electrostatic forces represents a particular 
challenge in molecular simulation. Direct summation of the Coulomb pair 
interactions is rarely adequate, except for the treatment of atomic clusters, so 
more sophisticated treatments have evolved. The main methods used in 
DL_POLY are based on the Ewald sum [30].  
 
The Ewald sum casts the sum of Coulomb pair interactions into two separate 
sums (plus a correction term, which is computationally trivial). The first sum 
is a screened Coulomb sum, which resembles the Coulomb formula but each 
term is weighted by a screening function (the complementary error function 
erfc) which compels the sum to converge in a finite range. The second sum is a 
sum of structure factors, which are calculated from reciprocal space vectors, 
and which are again weighted by a screening function (this time a Gaussian) 
which guarantees a finite sum. The first sum is therefore set in real space, 
while the second is set in reciprocal space. The convergence of both sums is 
governed by a single parameter •, which defines the range of both 
convergence functions and is known as the Ewald convergence parameter. 
 
The original implementation of the Ewald sum in DL_POLY_2 was a RD 
adaptation [32] devised by us. Later this was augmented by a similar 
adaptation of the Hautman-Klein-Ewald (HKE) method [33] for systems with 
2D periodicity, and a partially distributed adaptation of the Smoothed Particle 
Mesh Ewald (SPME) [34]. A fully distributed SPME version was implemented 
as the primary method in DL_POLY_3. 
 
The RD adaptation of Ewald’s method [32] requires no special modifications 
for calculating the real-space components. These are treated in the same way 
as the van der Waals terms described above. The reciprocal-space terms, which 
are derived from a Fourier transform of the system charge density, are 
parallelised through an atomic decomposition: each processor is made 
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responsible for a fixed set of atoms. The method involves the global 
summation of the structure factors associated with each reciprocal space 
vector. The cost of this was minimised in later versions by summing the 
structure factors for all vectors simultaneously. The same approach is taken 
with the HKE method.  
 
5.2 The Smoothed Particle Mesh Ewald Sum 
 
The RD adaptation of the SPME method employs the same treatment of the 
real-space terms as for the standard RD Ewald approach. However the key 
difference is in the treatment of reciprocal-space, which is an interpolation of 
the charge distribution, based on Cardinal B-splines [33], on a regular 3D grid. 
This permits the use of a 3D Fast Fourier Transform (FFT) to calculate the 
structure factors, which accelerates the process enormously. An important 
consideration is how to parallelise the method. Distributing the central FFT 
operation risks impairing the supreme efficiency of the FFT algorithm. In 
DL_POLY_2 the decision was made to replicate the full FFT operation on all 
processors, though the construction of the 3D charge array needed for the 
calculation is constructed in a distributed fashion and completed by a single 
global sum operation. This strategy is inevitably expensive in memory terms 
but is simple to implement and does not disrupt the FFT algorithm, which 
therefore retains its efficiency. The method has proved to work with 
acceptable efficiency, scaling reasonably well for large simulations and 
processor counts of order 256. 
 
For the DD approach in DL_POLY_3, a fully distributed implementation of 
the SPME method was essential. This was accomplished through a distributed 
3D FFT algorithm devised by Bush [35]. Known as the Daresbury Advanced 
Fourier Transform (DAFT), this FFT employs a domain decomposition of the 
3D FFT arrays which maps neatly on to the DD structure of DL_POLY_3. This 
means that all computations necessary to build the (partial) arrays can take 
place without inter-processor communication. Furthermore all 
communication required by the FFT algorithm is handled internally. While 
the insertion of communication processes into the heart of the FFT algorithm 
inevitably affects the efficiency of the FFT calculation, DAFT nevertheless 
possesses excellent scaling characteristics and the associated economies in 
data management resulting from its use makes the DL_POLY_3 SPME 
implementation a highly efficient algorithm [36]. Radiation damage 
simulations of order 2 million atoms (and larger) are regularly performed 
with this program [37]. 
 
 

6. The Parallel SHAKE Algorithm 

 
An essential requirement for all molecular dynamics codes intended for 
modelling complex systems is a means of handling rigid interatomic bonds 
(also called constraint bonds). Not only is this necessary to permit practical 
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(i.e. not too short) time step intervals, but also to remove the problem 
nonergodocity (poor coupling of the system degrees of freedom) that delays, or 
even prevents, the onset of equilibrium. Both versions of DL_POLY 
implement the SHAKE algorithm for rigid bonds [21]. 
 
The principles of the SHAKE algorithm are well known. In the first stage the 
motions of atoms are integrated without consideration of the rigid bonds. In 
the second stage, a correction to the displacement of the atoms is applied to 
restore the required bond length. The correction is applied to each bond in 
turn and is applied iteratively, so that perturbations to each bond due to 
corrections applied to neighbouring bonds may be allowed for. The iteration 
ceases when all the bonds have converged, to within a tolerance of order ~10-5 
of the required length. 
 
A parallel implementation of the SHAKE algorithm introduces new 
considerations. In order to distribute the work load over a number of 
processors it is sensible to allocate independent sets of constraint bonds to 
different processors. Since atoms are generally linked into more than one 
bond by virtue of their valency, this inevitable means that some bonded 
atoms will be handled by more than one processor. It follows (see Figure 6) 
that during the iterative stage of SHAKE, it is necessary to communicate 
between processors to ensure that the corrections applied to individual atoms 
take account of the full connectivity of the molecular structure. This problem 
was first solved by the RD_SHAKE algorithm [38] which was intended for RD 
implementation, but the techniques can be carried over to DD. In fact, the 
communication overhead in DD is much less than in RD, since data 
replication at intermediate stages is not required.  
 
The RD implementation of SHAKE therefore requires firstly that the rigid 
bonds for which the processor is responsible be identified and a list compiled 
of the number of such bonds each atom participates in. This list is circulated 
to all other processors, from which each processor may establish a `shared 
atom’ list which records which atoms are shared with which processor. Then 
during the SHAKE iteration, changes in the positions of shared atoms are 
communicated to the appropriate processor, thus avoiding the problem 
indicated in Figure 6. In the RD case the list of shared atoms needs to be 
compiled only once, at the start of the simulation. For DD implementation 
however, the shared atom list must be continually updated during the 
simulation, as atoms move between processors. Fortunately, this is purely a 
data transfer issue and does not involve a repeat of the reconstruction of the 
complete shared atom arrays. 
 
Similar to SHAKE, the RATTLE algorithm was also developed to treat 
constraints, but in the velocity Verlet scheme. It has two parts: the first is an 
iterative correction to the constrained atom positions as in SHAKE; and the 
second is an additional iteration procedure to constrain atom velocities so that 
the component of their relative velocity along the constraint bond is zero, 
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within a given tolerance. Both parts are similar in implementation to the RD 
SHAKE scheme. 
 

7. General Comments 

 
7.1 Extension of the Code 
 
As described above, DL_POLY_2 and DL_POLY_3 contain a common set of 
functionality despite of their differences in strategies of parallelisation. 
(Though we emphasise again that certain aspects of molecular topology e.g. 
rigid bodies, present considerable difficulties in the DD implementation and 
are therefore not currently available.) However, each of the packages also 
contains unique features which were developed in response to demands from 
users. Thus DL_POLY_3 supports defect detection tools and a variable 
timestep algorithm, suitable for highly non-equilibrium simulations such as 
radiation damage studies (with correspondingly large systems), which 
require such features. More information about these can be found in the 
respective manuals [39,40].  However, our vision for the future is to keep 
these two packages as mutually compatible as possible.   
 
The user community is encouraged to extend the current functionality of the 
packages for their own benefit. For this purpose the software is supplied in 
source form. Ideally such modifications would find their way back into the 
standard versions of the programs, but they must comply with the high 
standards of coding and documentation of the overall package. Unfortunately 
we can make no commitment to verify, extend or develop extensions 
contributed by users, but at our discretion we may develop certain 
contributions if we judge they would benefit the wider DL_POLY 
community. 
 
7.2 Porting Issues 
 
The DL_POLY packages are written in highly modularised FORTRAN 90 and 
do not make use of any external libraries. Thus the packages are fully self 
contained. Users can, of course, substitute the DL_POLY FFT routines with 
local or vendor specific versions at compile time, though we do not 
recommend this for DL_POLY_3 on account of the unique matching of the 3D 
FFT to the DD force calculations. 
 
The packages are supplied with template makefiles to handle assembly and 
compilation in serial or parallel modes in either UNIX compatible or UNIX 
emulated environments (e.g. Windows with CygWin [41]). Ideally users 
would find these makefiles entirely sufficient, but a working knowledge of 
compiler flags and optimisation issues is an advantage. While compilation in 
serial mode is straight forward, parallel mode compilation raises additional 
considerations. Inter-processor communications in DL_POLY are 
implemented through FORTRAN MPI calls. For successful compilation and 
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flawless execution users must ensure that their communication hardware has 
stable builds of the MPI software compiled with respect to the corresponding 
FORTRAN 90 compiler. 
 
7.3 The DL_POLY Java GUI 
 
The DL_POLY suite also features a basic GUI for managing some aspects of 
code use. Written in Java, and therefore highly portable, the GUI can help 
with construction of input data, job submission and analysis of the simulation 
output. Given the high degree of versatility of DL_POLY it has not been 
possible to develop a GUI that satisfies every user need. For those willing to 
experiment however, it can prove a valuable aid in exploiting DL_POLY. The 
GUI is supplied with the DL_POLY source and is fully documented [42].  
 
7.4 Obtaining DL_POLY 
 
The DL_POLY programs are available free of charge (to academic researchers) 
from the DL_POLY website [43]. The software is supplied under a licence 
protecting the commercial rights of Daresbury Laboratory and the potential 
user must agree to these terms before downloading the source. 
 

8. Conclusion 

 
The DL_POLY package provides a powerful and versatile set of programs for 
molecular dynamics simulation of complex molecular systems. The potential 
range of applications is vast, as this issue of Molecular Simulation 
demonstrates. Systems as small as 100 atoms and as large as 30 million atoms 
can be simulated with it. The code is free (to academics) and the source is 
open to inspection, verification and extension. Scientists with an intention to 
simulate large or complex systems should seriously consider what it has to 
offer. 
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Figure 1 

Molecular structures supported by DL_POLY. Any or all of such structures 
may be present in a given model at the same time. Rigid bodies however 
(right of diagram) are not available in DL_POLY_3.
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Figure 2 

Division of intramolecular force terms over processors. Here, bond angle 
terms A1 to A16 are evenly allocated to specific processors for computation. 
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Figure 3 

 
The parallel distribution of the Verlet neighbour list in DL_POLY_2 on a 4 
processor machine. The pair force matrix is restructured according to the 
scheme of Brode and Ahlrichs and rows are assigned to processors P0 to P3 

according to the colour scheme, to achieve a reasonable load-balance across 
processors. 
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Figure 4 

Domain Decomposition. The MD cell (large cube) is divided into equal 
domains (middle cubes) each of which is allocated to a specific processor. 
Each domain is divided into link-cells (small cubes) the width of which must 
be greater than the radius of cut-off applied to the inter-atomic force terms. 
The sphere above represents the cut-off sphere defining the interaction range. 
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Figure 5 

Halo data construction in Domain Decomposition. The central cube 
represents a spatial domain that is allocated to a single processor, where it is 
divided into link-cells (small cubes). Surrounding the domain it is necessary 
to add the halo data, which is one link-cell in width (indicated by the isolated 
small cube), as it is composed of the coordinates of atoms found in the link-
cells at the boundaries of the neighbouring domains. It is apparent from this 
construction that the smaller the link cells, the more efficient will be the 
overall algorithm, since less data will need to be transferred. 
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Figure 6 

The SHAKE algorithm on multiple processors. Atoms 1,2 and 3 represent part 
of a molecular structure. The bond 1-2 is handled by processor A and bond 2-
3 is handled by processor B. Stage 1 of the shake algorithm will carry atom 1 
to 1’, 2 to 2’ and 3 to 3’. Stage 2 iterates these positions until the final positions 
1’’,2’’ and 3’’ have conserved bond lengths. It is apparent however, that unless 
processors A and B communicate during iteration, atom 2 will relax to 
different positions on the two processors. 
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