
HAL Id: hal-00515003
https://hal.archives-ouvertes.fr/hal-00515003

Submitted on 4 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Short Description of DL_POLY
William Smith, Ilian Todorov Todorov

To cite this version:
William Smith, Ilian Todorov Todorov. A Short Description of DL_POLY. Molecular Simulation,
Taylor & Francis, 2007, 32 (12-13), pp.935-943. �10.1080/08927020600939830�. �hal-00515003�

https://hal.archives-ouvertes.fr/hal-00515003
https://hal.archives-ouvertes.fr

For Peer Review
 O

nly

A Short Description of DL_POLY

Journal: Molecular Simulation/Journal of Experimental Nanoscience

Manuscript ID: GMOS-2006-0162

Journal: Molecular Simulation

Date Submitted by the
Author:

02-Aug-2006

Complete List of Authors: Smith, William; Daresbury Laboratory, CSED
Todorov, Ilian; Daresbury Laboratory, CSED

Keywords: DL_POLY, molecular dynamics, scientific software

http://mc.manuscriptcentral.com/tandf/jenmol

For Peer Review
 O

nly

A Short Description of DL_POLY

W. Smith and I.T. Todorov
Computational Science and Engineering Department, Daresbury Laboratory,
CCLRC, Daresbury, Warrington WA4 4AD, United Kingdom.

Abstract

DL_POLY is a general purpose molecular dynamics simulation package with
in-built parallel algorithms. It may be run on a wide selection of distributed
memory parallel computers, from national supercomputers with thousands of
processors, to single processor workstations and can simulate small systems
with order 100 atoms, to systems with millions of atoms. This introduction
provides an outline of the features of the package and the underlying
methodology.

Keywords: DL_POLY, molecular dynamics, scientific software.

Word count: 5743

1. Introduction

The DL_POLY molecular dynamics (MD) package has been under continual
development at Daresbury Laboratory since 1994. It was first released to the
academic community in 1996, so this special issue of Molecular Simulation
marks its 10th anniversary as a public code. Its prime purpose on first release
was to provide a simulation package for the UK CCP5 community [1] that
was capable of exploiting the emerging parallel computers, of which the Intel
IPSC 860 at Daresbury was a prime example. Since then it has gained
popularity all over the world and is in considerable demand. It currently
exists in two forms: DL_POLY_2, which is based on Replicated Data
parallelism and DL_POLY_3, which is based on Domain Decomposition
parallelism. Both versions are run on major parallel platforms all over the
world.

DL_POLY was arguably the first public general purpose MD packages to be
written specifically for parallel computers. Practical parallel platforms began
to appear in the late 1980s and Daresbury was active in developing parallel
algorithms at this early stage [2]. When the demand appeared for a new MD
program for CCP5 we had already examined a number of possible strategies
including Replicated Data (RD) [3], Systolic Loops [4] and Domain
Decomposition [5,6]. The RD strategy was initially chosen because it offered
the simplest approach to complex force fields, with reasonable scaling
properties on platforms with up to 100 processors. The first version
incorporating this strategy was developed in-house as DL_POLY_1 in 1994
and was circulated among close collaborators for testing and early

Page 1 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

exploitation. The first generally available package was eventually released in
1996 as DL_POLY_2 and was written by T. Forester and W. Smith. These
codes were intended for distributed memory machines and this assumption
underpins all DL_POLY codes to this day.

In the following sections we outline the features available in the DL_POLY
codes, including the force field specification, the parallel strategies that the
codes are based on, techniques for modelling electrostatic interactions, the
implementation of rigid bonds for parallel processing and the integration
algorithms.

2. The DL_POLY Force Field

The DL_POLY package does not provide any particular set of force field
parameters to describe the interatomic interactions, as with more specific
packages such as AMBER [7], GROMOS [8] and CHARMM [9]. This is
impractical given that the simulation code caters for widely disparate kinds of
molecular system. It does, however, implement an enormous selection of
functional forms for the interaction potentials arising in many of the force
fields commonly used in molecular simulation. It is also easy, due to the
structure of the software, for the user to add new potential functions and it
should be noted that the user may use many different kinds of potential in the
same simulation, which is not therefore confined to purely Lennard-Jones or
purely Buckingham descriptions for example.

The total potential energy for DL_POLY is expressed by the formula:

DL_POLY contains all the commonly used pair potentials (Upair(rij)), including
Lennard-Jones, Buckingham, 12-6, N-M and Morse potentials. The
electrostatic interactions, indicated by the qiqj/rij terms, are available as point
charge and polarisable shell models, for which a variety of summation
techniques may be selected (see section 5). In DL_POLY polarisation is treated
with the shell model of Dick and Overhauser [10] by the adiabatic method of
Fincham [11] and the relaxation model of Lindan [12]. The three-body (U3-

body(•ijk)) and four-body (U4-body(•ijkn)) interactions are non-specific angular
potentials (suitable for glass simulations) and again offer a variety of

() ()

() () () () (){ }

() () ()

() () (1)

2

1

2

1

4

1

1

4

321

i

N

i

external

N

i

abcdinversinvers

N

i

abcddiheddihed

N

i

abcangleangle

N

i

abbondbond

N'

i,j

ijTerijijTer

N

i

iFSij

N'

i,j

FS

N'

i,j,k,n

ijknbody

N'

i,j,k

ijkbody

N'

i,j ij

ji
N'

i,j

ijpairN

rΦ,iU

,iU,iU,riU

rVrUFrUU

U
r

qq

πε
rU)r,.....,r,rV(

invers

invers

dihed

dihed

angle

angle

bond

bond

r

rrr

∑∑

∑∑∑

∑∑∑∑

∑∑∑

=

−

−

+

+++

+++








++

+++=

ψ

φθ

γρφ

θ

Page 2 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

functional forms. Many-body interactions, an increasing common
requirement for modelling complex systems, are available in the Finnis-
Sinclair form [13] for metals (terms UFS(rij) and FFS(•ij)) and Tersoff form [14] for
covalent systems (terms UTer(rij), •ij and VTer(rij)). All these mentioned forms are
for non-bonded inter-molecular interactions.

For intra-molecular interactions DL_POLY has a wide selection of bond
potentials (Ubond), angle potentials (Uangle), dihedral angle potentials (Udihed), and
inversion angle potentials (Uinvers). The forms of these are taken from many
published force fields including AMBER [7], GROMOS [8] and CHARMM [9]
and Dreiding [15].

Lastly, DL_POLY permits the user to implement external force fields. This
capability is useful for modelling transport (e.g. conduction), or containment
(e.g. pores) or mechanical intervention (e.g. shearing).

3. Integration Algorithms

The integration algorithms in DL_POLY handle the dynamics of the system
being simulated. From the current positions of the atoms, the forces may be
calculated from the first derivatives of the potential functions outlined above
and used to update the atomic velocities and positions. The integration
progresses in a sequence of finite steps in time, each time step being of the
order 1~10 fs. The algorithms for this purpose in DL_POLY are based on the
Verlet leapfrog (LF) and velocity Verlet (VV) schemes [16].

In addition to providing a numerical solution to the equations of motion, the
integration algorithm also defines the thermodynamic ensemble. At the base
level, both LF and VV provide the NVE (constant energy ensemble), but we
have also implemented in DL_POLY the NVT (canonical) ensembles of Evans
[17], Hoover [18] (after Melchionna et al. [19]) and the pseudo canonical
ensemble of Berendsen [20]. For constant pressure work the isotropic
isothermal-isobaric (NPT) ensemble has available in both Hoover and
Berendsen forms and complemented by the anisotropic forms (NST) for
simulation of phase transitions in solids.

As well as the integration/ensemble algorithms DL_POLY also accepts
molecular structures defined by rigid bonds and, in the case of DL_POLY_2
only, rigid bodies. The types of molecular structures that may be
accommodated in a DL_POLY simulation are shown in Figure 1. It is
important to note that all such structures may be present in one simulation!

Rigid bonds adapt easily within the framework of LF and VV, though the well
known algorithms SHAKE (LF) [21] and RATTLE (VV) [22] and we have
devised versions of these for DL_POLY that are both parallel and appropriate
for the above ensembles. Considerations pertaining to the parallel SHAKE
algorithm are described in section 6.

Page 3 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Rigid bodies may be used to represent structures like aromatic hydrocarbons
and their derivatives, which arise in all branches of chemistry. In DL_POLY_2
the dynamical treatment of such entities is based on Euler’s prescription [23]
augmented by a quaternion treatment of the orientation [24]. For the LF
integration scheme DL_POLY_2 employs the Fincham implicit quaternion
algorithm [25] and for the VV scheme the NOSQUISH algorithm of Miller et
al. [26] is used. The latter algorithm has the advantage of being symplectic
and therefore stable for long time integrations [26].

The presence of both rigid bonds and rigid bodies in the same systems raises
the possibility of rigid bodies linked by rigid bonds. A suite of integration
routines are available for this situation in DL_POLY_2. These routines are
derived from the QSHAKE algorithm [27] which was devised by us and is
able also to generate any of the ensembles described above.

4. Parallelisation Strategies

4.1 Replicated Data Parallelism

In the RD strategy [3] each processor of the parallel machine maintains a
replica of the configuration of the simulated system i.e. the coordinates {ri},
velocities {vi} and forces {fi} for all atoms {i=1,…,N} in the system. Each
processor may be thought of as running the same simulation, but replication
of the computational effort is avoided by assigning to each processor a subset
of the tasks involved. The simulation as a whole is established by
communicating the results of these concurrent tasks to all processors, so that
every processor can continue to maintain a full replica of the simulation. The
communication of these data is inevitably a global operation, since all
processors need all the data. Key points at which this global operation is
necessary are in the computation of forces and in the integration of the
equations of motion.

The principal expense in MD lies in the computation of atomic forces and this
is where most of the effort lay in developing DL_POLY. Calculation of intra-
molecular forces is handled though bookkeeping arrays that store the
identities of interacting atoms and the relevant force forms (bonds, angles,
dihedrals etc.). Parallelism is achieved by simply allocating each processor a
subset of bookkeeping arrays (Figure 2). The overall efficiency of this
approach is extremely high. The basic approach is suitable for both RD and
DD implementations, though there are additional complications with DD (see
section 4.2).

A more difficult task is the parallel distribution of inter-molecular forces, of a
type similar to van der Waals (VDW) interactions. The approach adopted is to
construct a distributed Verlet Neighbour List [16] based on the Brode-
Ahlrichs decomposition of the pair force matrix [29], which is built

Page 4 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

independently on each processor so that no pair interaction is replicated
(Figure 3). This is almost ideal parallelism and therefore highly efficient, since
each processor can build a list without communicating with others, and the
resulting list is a fraction of that for the whole system. In keeping with the
Verlet method, the list must be updated at intervals during the simulation,
which is accomplished by monitoring the distances atoms move and updating
the list when a tolerance is exceeded. The neighbour list enables efficient
identification of interacting atom pairs. Intrinsic to our implementation is a
strategy for omitting VDW interactions from the neighbour list if the atom
pair concerned is already part of an intra-molecular interaction.

For more complicated intermolecular interactions, such as the Finnis-Sinclair
[13] or Tersoff [14], which are density dependent, DL_POLY_2 employs a
Link Cell [29] approach. More problematical however, is the treatment of long
ranged forces via the Ewald method [30]. This merits special consideration
and is described in section 5.

It is apparent that distribution of the force calculations under RD results in a
partial description of the full force field on any one processor. Thus a global
communication step is required to establish full replication of the force data
everywhere. In DL_POLY_2 this is accomplished by a global summation of
the atomic force arrays. This is a relatively expensive step in communication
terms, and is a principal reason why the RD strategy is not recommended for
computers with high processor counts. However, experience shows that the
impact of this step is very dependent on the nature and size of the simulation
being undertaken and simulations that are large (approaching say 30,000
atoms) are known to scale quite well, sometimes up to 250 processors with
good communication hardware.

The second opportunity for exploiting parallelism under RD occurs in the
numerical integration of the equations of motion. Thus in DL_POLY_2 each
processor integrates the motion for a subset of atoms only. Replication of the
coordinate and velocity arrays is established once again by a global
communication using systolic loops. Integration of the equations of motion
frequently involves employing the SHAKE algorithm for systems with rigid
bonds [21]. This is an issue which is dealt with in section 6.

Though DL_POLY_2 proved itself beyond its original design in terms of
system sizes and processor counts, it became apparent in the early 2000’s that
the underlying RD strategy was not appropriate for the emerging platforms
with thousands of processors, so work began on a DD version that would
scale more efficiently on such platforms. This eventually became the
DL_POLY_3 code that appeared in 2004 and was written by I.T. Todorov and
W. Smith [31].

4.2 Domain Decomposition Parallelism

Page 5 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

The DD strategy is radically different from RD. Under the DD approach the
simulation cell is divided spatially into quasi-independent domains which are
allocated to individual processors.
If follows immediately that the simulated system must be reasonably isotropic
if a reasonable degree of load balancing amongst the processors is to be
achieved. The spatial division naturally does not recognise molecular entities,
which are therefore usually divided between processors, creating special
communication difficulties. The implementation of DD in DL_POLY_3 is
based on Hockney and Eastwood’s Link Cell algorithm [29], which was
adapted for parallel use by Pinches et al. [5] and Rapaport [6]. A Link Cell
approach is not entirely essential for DD, but it provides useful constructs to
aid its implementation and yields order N scaling for large numbers of atoms,
N. The structural aspects of DD are shown in Figure 4.

Spatial partitioning for DL_POLY_3 demands that the number of processors P
must have the form P=2n where n is an integer. This is a requirement arising
from the Ewald calculations described in section 5.2. The MD cell is most
often divided into near-cubic domains, though exception is made for systems
with slab geometries to help achieve load balance. Each domain is then sub-
divided into link cells according to the normal prescription, in which the
width of a link cell must be greater than the cut-off distance applied to all
interatomic interactions. (In the context of DL_POLY_3, this criterion must
also include the 1-4 distance in the intramolecular dihedral potentials.)
Ideally, these requirements should lead to better than a 3x3x3 link cell
partitioning of the domain in the three principal directions. DL_POLY_3 can
handle fewer link cells per domain than this, but it raises major efficiency
issues arising from the construction of the `halo data’.

The `halo data’ represents the construction around each domain of a partial
image of all neighbouring domains so that calculation of all the forces
relevant to a domain can take place (Figure 5). In DL_POLY_3 this amounts to
the transfer of the atomic coordinates of all atoms located in link cells at the
boundaries of a domain to the processors managing the neighbouring
domains. This is a six-fold transfer operation that moves data in directions
North, South, East, West, Up and Down of each domain. These six transfers
do not happen concurrently, since some data sorting is necessary to populate
the `corners’ of the halo data. It is apparent from the nature of the link cell
method, that these transfers are sufficient for a complete calculation of the
forces on all atoms in any domain. It is also apparent that if the domains have
relatively few link cells (or their shape is far from cubic), then the transfer of
the halo data represents the transfer of a major proportion of the contents of a
domain, which implies a large, possibly prohibitive, communication cost.
This can be avoided by running the program on fewer processors.

The transfer of the halo data is the main communication cost of the basic DD
strategy. After the transfer, the atomic forces may be calculated and the
equations of motion integrated independently on each processor. Atoms that
move sufficiently far may then be reallocated to a new domain.

Page 6 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Computation of intra-molecular forces can be accomplished, in principle,
using the partitioning scheme described in Figure 2. However, there are
particular complications arising from the DD scheme. There are two aspects
to this: firstly the description of the molecular structures (commonly called
the topology) is `broken’ by the decomposition into domains; and secondly
the evolution of the system demands that the topology be partially
reconstructed every time atoms move from one domain to another. In order to
accomplish this, the package of data transported with each atom that leaves a
domain contains not only its configurational data (position, velocity and
force), but also a topological description of the bonding terms associated with
the atom.

5. The Treatment of Long Ranged Electrostatic Forces

5.1 The Standard Ewald Sum

The treatment of long ranged electrostatic forces represents a particular
challenge in molecular simulation. Direct summation of the Coulomb pair
interactions is rarely adequate, except for the treatment of atomic clusters, so
more sophisticated treatments have evolved. The main methods used in
DL_POLY are based on the Ewald sum [30].

The Ewald sum casts the sum of Coulomb pair interactions into two separate
sums (plus a correction term, which is computationally trivial). The first sum
is a screened Coulomb sum, which resembles the Coulomb formula but each
term is weighted by a screening function (the complementary error function
erfc) which compels the sum to converge in a finite range. The second sum is a
sum of structure factors, which are calculated from reciprocal space vectors,
and which are again weighted by a screening function (this time a Gaussian)
which guarantees a finite sum. The first sum is therefore set in real space,
while the second is set in reciprocal space. The convergence of both sums is
governed by a single parameter •, which defines the range of both
convergence functions and is known as the Ewald convergence parameter.

The original implementation of the Ewald sum in DL_POLY_2 was a RD
adaptation [32] devised by us. Later this was augmented by a similar
adaptation of the Hautman-Klein-Ewald (HKE) method [33] for systems with
2D periodicity, and a partially distributed adaptation of the Smoothed Particle
Mesh Ewald (SPME) [34]. A fully distributed SPME version was implemented
as the primary method in DL_POLY_3.

The RD adaptation of Ewald’s method [32] requires no special modifications
for calculating the real-space components. These are treated in the same way
as the van der Waals terms described above. The reciprocal-space terms, which
are derived from a Fourier transform of the system charge density, are
parallelised through an atomic decomposition: each processor is made

Page 7 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

responsible for a fixed set of atoms. The method involves the global
summation of the structure factors associated with each reciprocal space
vector. The cost of this was minimised in later versions by summing the
structure factors for all vectors simultaneously. The same approach is taken
with the HKE method.

5.2 The Smoothed Particle Mesh Ewald Sum

The RD adaptation of the SPME method employs the same treatment of the
real-space terms as for the standard RD Ewald approach. However the key
difference is in the treatment of reciprocal-space, which is an interpolation of
the charge distribution, based on Cardinal B-splines [33], on a regular 3D grid.
This permits the use of a 3D Fast Fourier Transform (FFT) to calculate the
structure factors, which accelerates the process enormously. An important
consideration is how to parallelise the method. Distributing the central FFT
operation risks impairing the supreme efficiency of the FFT algorithm. In
DL_POLY_2 the decision was made to replicate the full FFT operation on all
processors, though the construction of the 3D charge array needed for the
calculation is constructed in a distributed fashion and completed by a single
global sum operation. This strategy is inevitably expensive in memory terms
but is simple to implement and does not disrupt the FFT algorithm, which
therefore retains its efficiency. The method has proved to work with
acceptable efficiency, scaling reasonably well for large simulations and
processor counts of order 256.

For the DD approach in DL_POLY_3, a fully distributed implementation of
the SPME method was essential. This was accomplished through a distributed
3D FFT algorithm devised by Bush [35]. Known as the Daresbury Advanced
Fourier Transform (DAFT), this FFT employs a domain decomposition of the
3D FFT arrays which maps neatly on to the DD structure of DL_POLY_3. This
means that all computations necessary to build the (partial) arrays can take
place without inter-processor communication. Furthermore all
communication required by the FFT algorithm is handled internally. While
the insertion of communication processes into the heart of the FFT algorithm
inevitably affects the efficiency of the FFT calculation, DAFT nevertheless
possesses excellent scaling characteristics and the associated economies in
data management resulting from its use makes the DL_POLY_3 SPME
implementation a highly efficient algorithm [36]. Radiation damage
simulations of order 2 million atoms (and larger) are regularly performed
with this program [37].

6. The Parallel SHAKE Algorithm

An essential requirement for all molecular dynamics codes intended for
modelling complex systems is a means of handling rigid interatomic bonds
(also called constraint bonds). Not only is this necessary to permit practical

Page 8 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

(i.e. not too short) time step intervals, but also to remove the problem
nonergodocity (poor coupling of the system degrees of freedom) that delays, or
even prevents, the onset of equilibrium. Both versions of DL_POLY
implement the SHAKE algorithm for rigid bonds [21].

The principles of the SHAKE algorithm are well known. In the first stage the
motions of atoms are integrated without consideration of the rigid bonds. In
the second stage, a correction to the displacement of the atoms is applied to
restore the required bond length. The correction is applied to each bond in
turn and is applied iteratively, so that perturbations to each bond due to
corrections applied to neighbouring bonds may be allowed for. The iteration
ceases when all the bonds have converged, to within a tolerance of order ~10-5
of the required length.

A parallel implementation of the SHAKE algorithm introduces new
considerations. In order to distribute the work load over a number of
processors it is sensible to allocate independent sets of constraint bonds to
different processors. Since atoms are generally linked into more than one
bond by virtue of their valency, this inevitable means that some bonded
atoms will be handled by more than one processor. It follows (see Figure 6)
that during the iterative stage of SHAKE, it is necessary to communicate
between processors to ensure that the corrections applied to individual atoms
take account of the full connectivity of the molecular structure. This problem
was first solved by the RD_SHAKE algorithm [38] which was intended for RD
implementation, but the techniques can be carried over to DD. In fact, the
communication overhead in DD is much less than in RD, since data
replication at intermediate stages is not required.

The RD implementation of SHAKE therefore requires firstly that the rigid
bonds for which the processor is responsible be identified and a list compiled
of the number of such bonds each atom participates in. This list is circulated
to all other processors, from which each processor may establish a `shared
atom’ list which records which atoms are shared with which processor. Then
during the SHAKE iteration, changes in the positions of shared atoms are
communicated to the appropriate processor, thus avoiding the problem
indicated in Figure 6. In the RD case the list of shared atoms needs to be
compiled only once, at the start of the simulation. For DD implementation
however, the shared atom list must be continually updated during the
simulation, as atoms move between processors. Fortunately, this is purely a
data transfer issue and does not involve a repeat of the reconstruction of the
complete shared atom arrays.

Similar to SHAKE, the RATTLE algorithm was also developed to treat
constraints, but in the velocity Verlet scheme. It has two parts: the first is an
iterative correction to the constrained atom positions as in SHAKE; and the
second is an additional iteration procedure to constrain atom velocities so that
the component of their relative velocity along the constraint bond is zero,

Page 9 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

within a given tolerance. Both parts are similar in implementation to the RD
SHAKE scheme.

7. General Comments

7.1 Extension of the Code

As described above, DL_POLY_2 and DL_POLY_3 contain a common set of
functionality despite of their differences in strategies of parallelisation.
(Though we emphasise again that certain aspects of molecular topology e.g.
rigid bodies, present considerable difficulties in the DD implementation and
are therefore not currently available.) However, each of the packages also
contains unique features which were developed in response to demands from
users. Thus DL_POLY_3 supports defect detection tools and a variable
timestep algorithm, suitable for highly non-equilibrium simulations such as
radiation damage studies (with correspondingly large systems), which
require such features. More information about these can be found in the
respective manuals [39,40]. However, our vision for the future is to keep
these two packages as mutually compatible as possible.

The user community is encouraged to extend the current functionality of the
packages for their own benefit. For this purpose the software is supplied in
source form. Ideally such modifications would find their way back into the
standard versions of the programs, but they must comply with the high
standards of coding and documentation of the overall package. Unfortunately
we can make no commitment to verify, extend or develop extensions
contributed by users, but at our discretion we may develop certain
contributions if we judge they would benefit the wider DL_POLY
community.

7.2 Porting Issues

The DL_POLY packages are written in highly modularised FORTRAN 90 and
do not make use of any external libraries. Thus the packages are fully self
contained. Users can, of course, substitute the DL_POLY FFT routines with
local or vendor specific versions at compile time, though we do not
recommend this for DL_POLY_3 on account of the unique matching of the 3D
FFT to the DD force calculations.

The packages are supplied with template makefiles to handle assembly and
compilation in serial or parallel modes in either UNIX compatible or UNIX
emulated environments (e.g. Windows with CygWin [41]). Ideally users
would find these makefiles entirely sufficient, but a working knowledge of
compiler flags and optimisation issues is an advantage. While compilation in
serial mode is straight forward, parallel mode compilation raises additional
considerations. Inter-processor communications in DL_POLY are
implemented through FORTRAN MPI calls. For successful compilation and

Page 10 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

flawless execution users must ensure that their communication hardware has
stable builds of the MPI software compiled with respect to the corresponding
FORTRAN 90 compiler.

7.3 The DL_POLY Java GUI

The DL_POLY suite also features a basic GUI for managing some aspects of
code use. Written in Java, and therefore highly portable, the GUI can help
with construction of input data, job submission and analysis of the simulation
output. Given the high degree of versatility of DL_POLY it has not been
possible to develop a GUI that satisfies every user need. For those willing to
experiment however, it can prove a valuable aid in exploiting DL_POLY. The
GUI is supplied with the DL_POLY source and is fully documented [42].

7.4 Obtaining DL_POLY

The DL_POLY programs are available free of charge (to academic researchers)
from the DL_POLY website [43]. The software is supplied under a licence
protecting the commercial rights of Daresbury Laboratory and the potential
user must agree to these terms before downloading the source.

8. Conclusion

The DL_POLY package provides a powerful and versatile set of programs for
molecular dynamics simulation of complex molecular systems. The potential
range of applications is vast, as this issue of Molecular Simulation
demonstrates. Systems as small as 100 atoms and as large as 30 million atoms
can be simulated with it. The code is free (to academics) and the source is
open to inspection, verification and extension. Scientists with an intention to
simulate large or complex systems should seriously consider what it has to
offer.

References

[1] For information on CCP5 see the project website at:
http://www.ccp5.ac.uk.

[2] W. Smith, “Molecular Dynamics on Distributed (MIMD) Parallel
Computers”, Theoretica. Chim. Acta. 84 (1993) 385.

[3] W. Smith, “Molecular Dynamics on Hypercube Parallel Computers”,
Comput. Physics Comm. 62 (1991) 229.

[4] A.R.C. Raine, D. Fincham and W. Smith, “Systolic Loop Methods for
Molecular Dynamics using Multiple Transputers”, Comp. Phys. Commun. 55
(1989) 13.

Page 11 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://www.ccp5.ac.uk/

For Peer Review
 O

nly

[5] M.R.S. Pinches, D. Tildesley and W. Smith, “Large Scale Molecular
Dynamics on Parallel Computers using the Link Cell Algorithm”, Molecular
Simulation, 6 (1991) 51.

[6] D.C. Rapaport, “Multi-million particle molecular dynamics. II. Design
considerations for distributed processing”, Comput. Phys. Commun. 62 (1991)
217.

[7] S.J. Weiner, P.A. Kollman, D.T. Nguyen and D.A. Case, “An All Atom
Force Field for Simulations of Proteins and Nucleic Acids”, J. Comp. Chem. 7
(1986) 230.

[8] W.F. van Gunsteren and H.J.C. Berendsen, “Groningen Molecular
Simulation (GROMOS) Library Manual”, published by BIOMOS, Nijenborgh,
9747 Ag Groningen, The Netherlands,
(1987).

[9] A. D. MacKerell, Jr., B. Brooks, C. L. Brooks, III, L. Nilsson, B. Roux, Y.
Won, and M. Karplus , “CHARMM: The Energy Function and its
Parameterization with an Overview of the Program”, in: The Encyclopedia of
Computational Chemistry, Vol. 1, P. v. R. Schleyer, N. L. Allinger, T. Clark, J.
Gasteiger, P. A. Kollman, H. F. Schaefer

[10] B.G. Dick and A.W. Overhauser, “Theory of dielectric constants of alkali
halide crystals”, Phys. Rev. B 112 (1958) 90.

[11] D. Fincham P.J. Mitchell, “Shell model simulations by adiabatic
dynamics”, J. Phys. Condens. Matter, 5 (1993) 1031.

[12] P.J.D. Lindan and M.J. Gillan, “Shell-model molecular-dynamics
simulation of superionic conduction in CAF2”, J. Phys. Condens. Matter, 5
(1993) 1019

[13] M.W. Finnis and J.E. Sinclair, “A simple empirical N body potential for
transition metals”, Philos. Mag. A, 50 (1984) 45.

[14] J. Tersoff, “Modelling solid state chemistry: Interaction potentials for
multicomponent systems”, Phys. Rev. B, 39 (1989) 5566.

[15] S.L. Mayo, B.D. Olafson and W.A.Goddard, “DREIDING: A generic force
field for molecular simulations”, J. Phys. Chem., 94 (1990) 8897.

[16] M.P. Allen and D.J. Tildesley, “Computer Simulation of Liquids”,
Clarendon Press, Oxford (1989)

[17] D.J. Evans and G.P. Morriss, “Non-Newtonian molecular dynamics”,
Computer Physics Reports, 1 (1984) 297.

Page 12 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

[18] W.G. Hoover, “Canonical dynamics: Equilibrium phase-space
distributions”, Phys. Rev. A, 31 (1985) 1695.

[19] S. Melchionna, G. Ciccotti and B. Holian, “Hoover NPT dynamics for
systems varying in shape and size”, Molecular Physics,
78 (1993) 533.

[20] H.J.C Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola and J.R.
Haak, “Molecular dynamics with coupling to an external bath”, J. Chem.
Phys., 81 (1984) 3684).

[21] J.P. Ryckaert, G. Ciccotti. and H.J.C. Berendsen, “Numerical integration
of the Cartesian equations of motion of
a system with constraints: molecular dynamics of n-alkanes”, J. Comput.
Phys., 23 (1977) 327.

[22] H.C. Andersen, “Rattle: a velocity version of the SHAKE algorithm for
molecular dynamics calculations”, J. Comput. Phys., 52 (1983) 24.

[23] H. Goldstein, “Classical Mechanics”, Addison Wesley (1980).

[24] D.J. Evans, “On the representation of orientation space”,
Molecular Physics, 34 (1977) 317.

[25] D. Fincham, “Leapfrog rotational algorithms”, Molecular Simulation, 8
(1992) 165.

[26] T.F. Miller, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, and G.J.
Martyna, “Symplectic quaternion scheme for biophysical molecular
dynamics”, J. Chem. Phys., 116 (2002) 8649.

[27] T.R. Forester and W. Smith, “Shake, Rattle and Roll: Efficient constraint
algorithms for linked rigid bodies”, J Computational Chemistry, 19 (1998) 102.

[28] S. Brode and R. Ahlrichs, “An optimised MD program for a vector
computer Cyber 205”, Comput. Phys. Commun., 42 (1986) 41.

[29] R.W. Hockney and J.W. Eastwood, “Computer Simulation Using
Particles”, McGraw-Hill International (1981).

[30] C. Kittel, Solid State Physics, John Wiley and Sons (1986).

[31] I.T. Todorov, W. Smith, K. Trachenko and M.T. Dove, “DL_POLY_3: new
dimensions in molecular dynamics simulations via massive parallelism”, J.
Mater. Chem. 16 (2006) 1911.

Page 13 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

[32] W. Smith, “A replicated data molecular dynamics strategy for the parallel
Ewald sum”, Comput. Phys. Commun., 67 (1992) 392.

[33] J. Hautman, J. and M.L. Klein, “An Ewald summation method for planar
surfaces and interfaces”, Molecular Physics, 75 (1992) 379.

[34] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden,
 H. Lee, and L.G. Pedersen, “A smooth particle mesh Ewald method”, J.
Chem. Phys., 103 (1995) 8577.

[35] I.J. Bush, “The Daresbury Advanced Fourier Transform”, Daresbury
Laboratory (1999).

[36] I.J. Bush, I.T. Todorov and W. Smith, “A DAFT DL_POLY Distributed
Memory Adaptation of the Smoothed Particle Mesh Ewald Method”,
Accepted for publication Comput. Phys. Commun. (2006).

[37] K. Trachenko, M.T. Dove, E. Artacho, I.T. Todorov and W. Smith,
“Atomistic simulations of resistance to amorphization by radiation damage”,
Phys. Rev. B, 73 (2006) 174207.

[38]] W. Smith and T.R. Forester, “Parallel Macromolecular Simulations and
the Replicated Data Strategy II: The RD-SHAKE Algorithm”, Comput. Phys.
Comm. 79 (1993) 63.

[39] W. Smith, I.T. Todorov, T.R. Forester and M. Leslie, “The DL_POLY_2
User Manual”, Daresbury Laboratory (2006) available from the DL_POLY
website[43].

[40] I.T. Todorov and W. Smith, “The DL_POLY_3 User Manual”, Daresbury
Laboratory (2006) available from the DL_POLY website[43].

[41] The CygWin Linux API emulator is available from:
http://sources.redhat.com/cygwin/

[42] W. Smith, “The DL_POLY Java Graphical User Interface II”, Daresbury
Laboratory (2003) available from the DL_POLY website[44].

[43] The DL_POLY website is located at: http://www.ccp5.ac.uk/DL_POLY/

Page 14 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://sources.redhat.com/cygwin/

For Peer Review
 O

nly

Figure 1

Molecular structures supported by DL_POLY. Any or all of such structures
may be present in a given model at the same time. Rigid bodies however
(right of diagram) are not available in DL_POLY_3.

Page 15 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 2

Division of intramolecular force terms over processors. Here, bond angle
terms A1 to A16 are evenly allocated to specific processors for computation.

Page 16 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 3

The parallel distribution of the Verlet neighbour list in DL_POLY_2 on a 4
processor machine. The pair force matrix is restructured according to the
scheme of Brode and Ahlrichs and rows are assigned to processors P0 to P3

according to the colour scheme, to achieve a reasonable load-balance across
processors.

Page 17 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 4

Domain Decomposition. The MD cell (large cube) is divided into equal
domains (middle cubes) each of which is allocated to a specific processor.
Each domain is divided into link-cells (small cubes) the width of which must
be greater than the radius of cut-off applied to the inter-atomic force terms.
The sphere above represents the cut-off sphere defining the interaction range.

Page 18 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 5

Halo data construction in Domain Decomposition. The central cube
represents a spatial domain that is allocated to a single processor, where it is
divided into link-cells (small cubes). Surrounding the domain it is necessary
to add the halo data, which is one link-cell in width (indicated by the isolated
small cube), as it is composed of the coordinates of atoms found in the link-
cells at the boundaries of the neighbouring domains. It is apparent from this
construction that the smaller the link cells, the more efficient will be the
overall algorithm, since less data will need to be transferred.

Page 19 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 6

The SHAKE algorithm on multiple processors. Atoms 1,2 and 3 represent part
of a molecular structure. The bond 1-2 is handled by processor A and bond 2-
3 is handled by processor B. Stage 1 of the shake algorithm will carry atom 1
to 1’, 2 to 2’ and 3 to 3’. Stage 2 iterates these positions until the final positions
1’’,2’’ and 3’’ have conserved bond lengths. It is apparent however, that unless
processors A and B communicate during iteration, atom 2 will relax to
different positions on the two processors.

Page 20 of 20

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

