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““Geometry…supplied God with pat-
terns for the creation of the world.””
Johannes Kepler[1]

1. Introduction

Herein we describe some properties
and the occurrences of a beautiful geo-
metric figure that is ubiquitous in
chemistry and materials science, how-
ever, it is not as well-known as it should
be. We call attention to the need for
mathematicians to pay more attention
to the richly structured natural world,
and for materials scientists to learn a
little more about mathematics. Our
account is informal and eschews any
pretence of mathematical rigor, but does
start with some necessary mathematics.

Regular figures such as the five
regular Platonic polyhedra are an en-
during part of human culture and have
been known and celebrated for thou-
sands of years. Herein we consider them
as the five regular tilings on the surface
of a sphere (a two-dimensional surface
of positive curvature). A flag of a tiling
of a two-dimensional surface consists of

a combination of a coincident tile, edge,
and vertex. A generally accepted defi-
nition of regularity is flag transitivity,
which means that all flags are related by
symmetries of the tiling (i.e. there is just
one kind of flag). In addition to the five
Platonic solids, there are three regular
tilings of the plane (a surface of zero
curvature), and these are the familiar
coverings of the plane by triangles,
squares, or hexagons tiled edge-to-edge.
The corresponding regular tilings of
three-dimensional space are also well-
known. Flags are now a polyhedron
(tile) with a coincident face, edge, and
vertex, and the regular tilings of the
three-sphere are the six nonstellated
regular polytopes of four dimensional
space. We remark that four dimensions
is the richest space in this regard; higher
dimensions have only three regular
polytopes (and of course three dimen-
sions has five). However, in flat three-
dimensional (Euclidean) space, the
space of our day-to-day experience,
there is disappointingly only one regular
tiling—the familiar space filling by
cubes sharing faces (face-to-face). The
classic reference to these figures is
Coxeter!s Regular Polytopes, in which
he remarks on the tilings of three-
dimensional Euclidean space: “For the
development of a general theory, it is an
unhappy accident that only one honey-
comb [tiling] is regular…”.[2]

Unhappy indeed, because, perhaps as
a consequence, the rich world of periodic
graphs, which are the underlying top-
ology of crystal structures, has been
largely neglected by mathematicians.
The graph associated with (carried by)
the regular tiling by cubes is the set of
edges and vertices. It is notably the
structure of a form of elemental poloni-
um, and chemists often refer to it as the

a-Po net. Recently a system of symbols
for nets has been developed and this net
has the symbol pcu.[3] Our review is
concerned with another such periodic
graph, and an associated surface.

2. Nets and Tilings

Some years ago in an effort to
develop a taxonomy of three-periodic
nets (which are special kinds of a
periodic graph), it was decided to focus
on the nets, rather than the tilings that
carried them.[3,4] Regular nets were
defined as those for which the symmetry
required the figure (vertex figure), de-
fined by the vertices neighboring a given
vertex, to be a regular polygon or
polyhedron. Five such nets were identi-
fied; these have vertex figures that are
an equilateral triangle, square, tetrahe-
dron, octahedron, and cube (see Fig-
ure 1). For each of the nets there is a
unique natural tiling, but the tiles are
not necessarily polyhedra in the usual
sense, as they may have vertices at which
only two edges meet (Figure 1). We note
that in the case of the regular nets, the
natural tiling is the unique tiling that has
the full symmetry of the net. Interest-
ingly these five nets appear to be the
only ones with natural tilings that have
one kind of vertex, one kind of edge, one
kind of face, and one kind of tile
(transitivity 1111).[3] These five nets play
an essential role in the geometry of
crystals and periodic materials in gen-
eral.

3. The srs Net and K4

Independent of the work on regular
nets, Toshikazu Sunada recently asked,
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in a stimulating paper, what three-peri-
odic nets were strongly isotropic, that is,
which permutation of vertices neigh-
bouring a vertex can be realized by an
operation that is a symmetry of the
pattern, so that all such permutations
extend to isometries of the net.[5] As the
number of permutations is n! for an n-
coordinated vertex, the restriction of
crystallographic symmetry in a three-
periodic structure (in particular no sym-
metry elements of order 5) limits the
possible coordination in a strongly iso-
tropic net to three or four, and only two
of the regular nets mentioned above are
strongly isotropic. The two nets (Fig-

ure 1) have the symbols srs (three-coor-
dinated) and dia (four-coordinated).[3]

The latter is the familiar net of the
diamond structure and the former is the
main topic of our essay. As Sunada
noticed, the quotient graph (the graph
with the translations factored out) of
this structure is the complete graph with
four vertices, K4, so he named it the K4
crystal.

Sunada!s paper caused a considera-
ble stir that was started by a press
release from the American Mathemat-
ical Society about its “stunning beauty”
under the heading “A Crystal that Na-
ture May Have Missed”, stating that “it
is tempting to wonder whether it might
occur in nature or could be synthe-
sized”.[6] It was described in Science,
Nature Materials, and many other pla-
ces in similar terms. The fact that a
structure, well-known to crystallogra-
phers and crystal chemists for almost a
hundred years and to materials scientists
and solid state physicists for over fifty
years, could be described in this way
dramatically illustrates the gap that
exists between much of the physical
sciences and mathematics.

In its most symmetrical embedding,
the srs net is cubic and the vertices are at
fixed sites of 32 (D3) symmetry where
threefold and twofold axes intersect.
This fixes the coordinates, and the
structure is known to crystallographers
as an invariant lattice complex. All such
structures are documented in the Inter-
national Tables for Crystallography
(which should be required reading for
mathematicians interested in periodic
structures) where srs has the symbol
Y*.[7] It appears in a celebrated 1933
paper by Heesch and Laves, which is
concerned with rare sphere packings,[8]

and is also known as the Laves net. It
also appears as “Net 1” [later as (10,3)-
a] in the first of a series of pioneering
papers on the geometrical basis of
crystal chemistry by A. F. Wells who
noted some occurrences in crystal
chemistry.[9] The most conspicuous of
these occurrences is the family of com-
pounds with structures related to SrSi2,
where the net describes the topology of
the Si substructure, hence the symbol
srs. A recent spectacular occurrence is
the high-pressure, three-coordinated
form of elemental nitrogen.[10] With the
resurgence of interest in coordination

polymers and metal-organic frame-
works in the 1990s examples having the
srs topology were soon found,[11,12] and it
is now common in this area. As Sunada
remarked, it has also been considered as
a possible allotrope of carbon (and
predicted to be metallic).[13] To addi-
tionally appreciate the beauty and other
properties of the net, illustrated in
Figure 2, one should consider the sym-
metry. In its most symmetrical embed-
ding the symmetry is I4132, isomorphic
with the combinatorial symmetry (auto-
morphism group) of the graph. This
symmetry is the most complex of the
space groups with only proper symmetry
operations (rotations and translations).
It is relevant that there are noninter-
secting fourfold axes, which are either 41
or 43 screws. There are also noninter-
secting threefold axes which are either
threefold rotations or 31 or 32 screws. As
all the symmetry operations are proper,
the structure is chiral—it comes in left-
and right-handed forms. We remark that
the srs net is the only three-coordinated,
three-periodic net with threefold sym-
metry at the vertices, and accordingly,
the only such net with equivalent edges
(edge-transitive).

There is an interesting way in which
the srs net had arisen 50 years earlier in
mathematics. The regular polyhedra
{n,3} with n= 3, 4, or 5 have 3 n-gons
meeting at each vertex (tetrahedron,
cube, and dodecahedron respectively).
{6,3} is the tiling of the plane with
regular hexagons and {n,3} with n> 6
are tilings of the hyperbolic plane. But if,
as suggested by H. S. M. Coxeter,[14] and
taken up later by B. Gr"nbaum,[15] we
allow faces to have infinitely many
edges and to be skew polygons, then
{1,3} corresponds to a generalized
polyhedron defined now as a family of
polygons, such that any two polygons
have in common either one vertex or
one edge (two adjacent vertices) or have
no vertices in common, and each edge is
common to exactly two polygons.

There are in fact two such polyhedra
in which the faces are helices that have
trivalent vertices: {1,3}a and {1,3}b
with faces that are threefold or fourfold
helices, respectively (Figure 3) and their
nets (the set of edges and vertices) are
the srs nets in both cases. This character-
istic was recognized and clearly illus-
trated by Gr"nbaum,[15] who in fact also

Figure 1. Fragments of the regular nets with
their symbols and vertex figures. The natural
tiles for the nets are shown shrunken for
clarity; in reality they fill space.
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cites Wells![9] paper. In his earlier work
Coxeter referred to the net as “Laves!
graph”.[14]

In the natural tiling of the net there
is just one kind of tile with three 10-
sided faces (Figure 1).[3] These 10 rings

are the only rings in the structure (a ring
in this context is a cycle that is not the
sum of smaller cycles) and 15 of these
decagons meet at each vertex.

4. Interthreaded srs

For every tiling one can define a dual
tiling moti obtained by putting new
vertices in the middle of the old tiles
and joining them by new edges through
the old faces to new vertices in adjacent
tiles. It should be clear that the net of the
dual tiling will have a coordination
number equal to the number of faces
of the original tiling. In fact in the case
of the srs net, the dual tiling is just srs
again but now of the opposite hand.
Accordingly, the two enantiomorphs can
elegantly intergrow (Figure 2), as was
already known to Wells,[16] and indeed
subsequently observed for coordination
polymers.[17] It is this intergrowth and
the periodic surface dividing them that
leads to the most interesting part of our
story.

Wells! geometric patterns (nets)
used to describe arrangements in crys-
tals, soon appeared in a very different

context: soft, atomically disordered liq-
uid crystals. The gulf between atomic
and molecular (liquid) crystallography
and pure geometry was narrowing
thanks to the efforts of Vittorio Luzzati
and colleagues in France, who spent
many years in the 1960s investigating
the self-assembly of organic amphi-
philes, including metallic soaps and
lipids. These materials form ordered
supramolecular structures, whose atom-
ic ordering is often no different to a
structureless melt, yet collectively form
structures that, like atomic crystals, give
rise to diffraction. Luzzati!s group un-
covered a rich array of phases, depend-
ing on temperature and water content,
heralding a new class of condensed
materials which are now collectively
termed soft matter.

One of the structures, first reported
by Spegt and Skoulios in 1964 for dry
soaps, was later described by Luzzati
and Spegt as a pair of interpenetrating
nets, whose edges are composed of Sr
rods, embedded in an nonpolar (hydro-
carbon) continuum.[18] This pattern is
the left- and right-handed pair of srs nets
shown in Figure 2. By the late 1960!s,
Luzzati et al. had found this structure in
a variety of soaps and lipid/water sys-
tems.[19] Remarkably, the structure was
deduced on the basis of powder diffrac-
tion patterns alone (the scientists delib-
erately destroying large single liquid
crystals), without any knowledge of
prior work on those nets.

5. The Gyroid

Similar investigations into liquid
crystals were also being carried out at
the same time by Swedish and Finnish
physical chemists, pioneered by Per Ek-
wall and furthered by Krister Fontell,
K#re Larsson, and colleagues in Swe-
den. Their own work suggested that the
molecules forming these liquid crystals
tend to aggregate into sheet-like struc-
tures, such as the molecular bilayers that
sheath cells.[20] How then can those
molecules aggregate to form the pair of
chiral srs networks of threaded edges
(re)discovered by Luzzati? The connec-
tion was not definitively made until
1984, when Larsson and co-workers
recognized the link between the pair of
srs nets and a sponge-like surface,

Figure 2. Aspects of the srs net. a) View
almost along a fourfold axis. Note the 43
helices. b) View almost along a threefold axis.
Note the 31 helices. c) Two srs nets of oppo-
site handedness intergrown.

Figure 3. Fragments of the (1,3) polyhedra.
The faces shown are 32 and 41 helices with
axes shown as cylinders. The net, srs, is the
same in both cases.
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known as the gyroid (or G surface).[21]

This surface, discovered in the 1960!s by
NASA scientist Alan Schoen[22,23] (Fig-
ure 4), bisects space into a pair of
interthreaded channels, whose axes co-
incide precisely with edges of the srs
nets (Figure 5). So the net description by
Luzzati was reconciled with the mem-
brane description: the net described the
sponge-like channels of the intricately
folded membrane.

In 1992 there were two reports from
a group at the Mobil Research and
Development Corporation showing that
ordered liquid crystal structures could
serve as templates for silica-based mes-
oporous materials in which the glass-like
inorganic material was confined to the
interface and after calcination ordered
empty channel systems remained.[24,25]

In the cubic material, subsequently
named MCM-48, the interface is the
gyroid surface, and the channels are a
pair of interpenetrating srs nets.[26]

The impact of those two papers can
be gauged from the fact that they have
been cited over 10000 times in the
15 years since publication. Very many
inorganic materials based on the MCM-
48 structure have since been reported,
including a recent hierarchical mesopo-
rous inorganic material with crystalline
ordering on the atomic scale; the order-
ing is observed simultaneously on the
atomic and meso scales, thus closing the
gap between atomic and liquid crys-
tals.[27]

The gyroid is closely related to other
important triply periodic minimal surfa-
ces (surfaces with zero mean curvature
everywhere). The natural tilings of the
regular nets, dia and pcu, are also self-
dual (the remaining pair nbo and bcu
have mutually dual tilings), and for
these structures pairs of nets can like-
wise interpenetrate. The periodic mini-
mal surfaces separating the pairs are
known as the D and P surfaces respec-
tively. TheD surface was parameterized
by Bernhard Riemann around 1860 and
published posthumously;[28] it was redis-
covered shortly thereafter by Schwarz
(splendid engravings of it can be found
in his papers), who also introduced the P
surface.[29] Both surfaces share identical
intrinsic two-dimensional geometry and
it is only their three-dimensional em-
bedding in space that makes them
different. Just as a sheet of paper can
be morphed into a cylinder by simple
bending, patches of theD and P surfaces
are interchangeable by theBonnet trans-
formation.[30] Schoen built beautiful
plastic models of the P and D surfaces
that were able to bend " la Bonnet.[31]

His mathematical and physical manipu-
lations revealed a third triply-periodic
minimal surface hidden among the
aperiodic intermediates to the D and
P : the gyroid. Yet the gyroid remained
unknown to mathematics until Schoen!s
discovery—announced only in a NASA
patent and accompanying report.[22,23]

This discovery was a bona fide example
of an important structure that had been
overlooked by mathematicians for over
a century! Indeed, each labyrinth of the
gyroid is centered by the net that
intrigued Sunada.

One wonders if this discovery might
have been recognized earlier if the
regular nets and their tilings had been
recognized (although not all pairs of

nets of dual tilings necessarily have
corresponding minimal surfaces). As it
is, perhaps we should rephrase Sunada!s
characterisation of srs (K4) as the struc-
ture that “nature might miss creating” to
“the structure that mathematicians
missed—from Riemann on”?

The identification of the srs net with
the gyroid, one of the most uniform
foldings of a saddle-like sheet into three-
dimensional euclidean space, paved the
way for a host of other links between the
net and materials. The gyroid structure
is now known to underlie many other
supramolecular “soft” materials, from
lipids in cells to synthetic polymeric
molecular melts.[32] It also affords an
elegant description of the director field
of molecules within the lowest temper-
ature (blue phase), a class of tunable
electro-optic materials of some interest
in both academic and practical cir-
cles.[33,34]

The gyroid is a supreme example of
a regular partition of space, and it is that
regularity that explains why it is found in
so many different materials.[35] One
measure of its universality can be
gauged from the range of crystal sizes
in gyroid structures. Bicontinuous phas-
es in amphiphiles have a lattice repeat
spacing of the order of 100 $. In larger
polymeric systems, that spacing can be
ten times larger, giving (liquid) crystals a
period roughly one hundred times great-
er than the spacings in hard atomic
crystals. It is remarkable that a soft,
quasi-molten molecular assembly such
as polymeric melts, can sustain such
long-range structural ordering, typically
containing 103–104 molecules within a
single unit cell of the membrane.

Perhaps the most spectacular exam-
ple of the srs structure in nature can be
found in the summer fields of Europe,
rather than in the labs of materials
scientists. The Green Hairstreak (Cal-
lophrys rubi) is a splendid butterfly,
readily identified by its metallic green
wings. Those painted wings contain a
myriad of overlapping scales, easily seen
in an optical microscope. Electron mi-
croscopy reveals an extraordinary three-
dimensional matrix of the hard skeletal
material within many scales[36] whose
morphology of which is related to the
gyroid.[37] Recent structural studies have
revealed that the matrix structure is
accurately described by the srs net,

Figure 4. Alan Schoen, on the roof of the
Courant Institute in Manhattan, with his mod-
el of the gyroid. (Picture courtesy of Stefan
Hildebrandt. Reproduced by permission of
Springer-Verlag.)

Figure 5. The gyroid, a three-periodic minimal
surface discovered by Alan Schoen. The sur-
face is illustrated together with its labyrinth
graphs (red and green), which describe the
channel structure. Each graph is the srs
structure as in Figure 2c. (Picture courtesy of
Gerd Schr"der-Turk).
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where edges of the net are thickened, so
that the material resembles a smooth
sponge formed by filling one labyrinth
of the gyroid surface (Figure 6).[38,39]

The length of this giant srs material
is around 3000$—on the same order as
the wavelength of visible light. Indeed,
the lovely coloring of the flapping wing
in the sunshine is very likely because of
the scattering of visible light within the
srsmatrix. Optical physicists are keen to
exploit these materials as they may be
natural three-dimensional photonic
crystals that have been long sought after
to advance optical computing. This ma-
terial forms within the butterfly chrys-
alis and is a living example of supra-
molecular self-assembly of soft matter,
composed of membrane and protein
materials that form a soft matrix that
templates the later formation of the
hard skeleton in the emergent butterfly.
The matrix forms by condensation of
lipid bilayers in the smooth endoplasmic
reticulum, induced by proteins, giving a
foliated multilayered sponge. The ho-
mogeneity of the gyroid partition allows
uniform bending and packing of the
lipid membranes and the intervening
proteins. Here too, the extreme regular-
ity of the srs/gyroid structures explains
their genesis in this complex set of
chemical crucibles.

We end this progress report (for it is
not the end of the story) with a plea for
more awareness of the work by mathe-
maticians and materials scientists. The
beautiful and complex periodic struc-
tures found in nature would surely be

fertile ground for more in-depth mathe-
matical studies. At the same time we beg
mathematicians to make their work
more accessible to physical scientists
(e.g. by including pictures such as the
beautiful one presented by Sunada[5]).
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