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Abstract

Plausible values can be used to either estimate population-level statistics or compute
point estimates of latent variables. While it is well known that five plausible values are
usually sufficient for accurate estimation of population-level statistics in large-scale sur-
veys, the minimum number of plausible values needed to obtain accurate latent vari-
able point estimates is unclear. This is especially relevant when an item response
theory (IRT) model is estimated with MCMC (Markov chain Monte Carlo) methods
in Mplus and point estimates of the IRTability parameter are of interest, as Mplus only
estimates the posterior distribution of each ability parameter. In order to obtain point
estimates of the ability parameter, a number of plausible values can be drawn from the
posterior distribution of each individual ability parameter and their mean (the poster-
ior mean ability estimate) can be used as an individual ability point estimate. In this
note, we conducted a simulation study to investigate how many plausible values were
needed to obtain accurate posterior mean ability estimates. The results indicate that
20 is the minimum number of plausible values required to obtain point estimates of
the IRT ability parameter that are comparable to marginal maximum likelihood
estimation(MMLE)/expected a posteriori (EAP) estimates. A real dataset was used to
demonstrate the comparison between MMLE/EAP point estimates and posterior
mean ability estimates based on different number of plausible values.
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The mathematical equivalency between the categorical confirmatory factor analysis

(CCFA; Wirth & Edwards, 2007) and item response theory (IRT; Lord, 1980) is well

documented in the psychometric literature (e.g., Kamata & Bauer, 2008; Muthén,

1984; Muthén & Christoffersson, 1981; Takane & de Leeuw, 1987). In CCFA, factor

loadings and item thresholds correspond to item discrimination and item difficulty,

respectively, and the factor score is often referred to as ability (or trait) in IRT (e.g.,

Hambleton & Swaminathan, 1985). As CCFA can be viewed as a special case of

structural equation modeling (SEM; Bollen, 1989) without the structural model, it

has been recommended for users of SEM and IRT to utilize the advantages of both

SEM and IRT for the modeling of categorical data (e.g., Finney & DiStefano, 2013;

Glockner-Rist & Hoijtink, 2003).

Traditionally, CCFA with categorical data are estimated with limited-information

methods such as maximum likelihood estimation with robust standard errors (MLR)

or weighted least squares methods (WLSM) that only require information in the two-

way contingency table. In IRT, categorical data are usually estimated with full-

information methods such as marginal maximum likelihood estimation (MMLE;

Bock & Aitkin, 1981) or Markov chain Monte Carlo (MCMC) that utilize informa-

tion in the whole response pattern (the full multi-way contingency table). Numerous

studies (e.g., Bolt, 2005; Forero & Maydeu-Olivares, 2009; Knol & Berger, 1991;

Luo, 2018a, 2018b; Paek, Cui, Öztürk Gübesx, & Yang, 2018) have investigated the

feasibility of using limited information methods for IRT model estimation and found

that they provide comparable estimation results to MMLE and MCMC. Likewise,

SEM software programs have incorporated some full-information estimation meth-

ods as an option for the estimation of CCFA. For example, the latent variable model-

ing software Mplus (Muthén & Muthén, 1998-2012) added the MLR estimator,

which implements MMLE estimation for categorical data (in version 3), and the

Bayes estimator, which implements MCMC estimation (in version 6).

The addition of full information estimation methods in Mplus, along with limited

information estimation methods such as the weighted least squares adjusted by mean

and variance (WLSMV; B. Muthén, du Toit, & Spisic, 1997), makes Mplus increas-

ingly popular as a viable software for estimation of various IRT models (e.g., Finch,

2010; Huggins-Manley & Algina, 2015). Under the one-factor CCFA model, Mplus

produces estimates of factor loadings and item thresholds and provides their IRT

parameterization based on CCFA-IRT relationships, using the estimators of interest

here (MLR or WLSMV) with an appropriate (logit or probit) link function

(Asparouhov & Muthén, 2015; see also the Note in Appendix A). For multidimen-

sional IRT models (MIRT; Reckase, 2009), Mplus estimates of factor loadings and

thresholds can be converted into their IRT counterparts using formulae provided in

the literature (e.g., Finch, 2010; Luo, 2018a; McDonald, 1999).
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For estimates of IRT ability parameters, Mplus produces factor scores that are

equivalent to IRT ability estimates and can be directly used as such without further

conversion under some restrictions on the mean and variance of the latent variable

(factor, ability) (see the Note in Appendix A). In frequentist IRT, ability is often esti-

mated as a single value used to represent the individual latent variable distribution.

In Bayesian IRT via MCMC, the ability is often estimated as an empirical posterior

latent variable distribution, which can also be summarized as a single value. The

computation of such single values, called IRT ability point estimates, within the two

(frequentist and Bayesian) IRT frameworks is discussed next.

In the frequentist paradigm, MMLE only estimates item parameters, whereas IRT

ability estimates can be obtained via three approaches, namely, maximum likelihood

estimation (MLE), expected a posteriori (EAP), and maximum a posteriori (MAP).

As all three approaches use a single point to summarize the individual latent variable

distribution, the resulting IRT ability estimates are all point estimates. It should be

noted that MLE has the inherent flaw of being unable to provide estimates for exami-

nees with zero or perfect scores, whereas EAP and MAP (hereafter referred to as

MMLE/EAP and MMLE/MAP) introduce ancillary information about the latent dis-

tribution via a prior distribution and can provide ability estimates of such examinees.

Also, MMLE/EAP computes the mean of the posterior distribution via quadrature

points and uses this posterior mean as a point estimate, whereas MMLE/MAP com-

putes the mode of the posterior distribution via an iterative method and uses this pos-

terior mode as a point estimate.

In the Bayesian framework, the use of MCMC usually provides a large number of

drawn values that form the empirical posterior distribution of individual ability. Also,

the computation of the mean of the posterior distribution (referred to as MCMC/EAP

hereafter) is straightforward by simply taking the average of the drawn values. This is

not the case with the computation of MMLE/EAP and MMLE/MAP, which requires

either an iterative method or quadrature points. Conceptually, the MCMC/EAP com-

putation is not different from drawing a sample from the population and using the

sample mean to infer the population mean. Consequently, the number of drawn val-

ues (sample size) affects the inferential power of the sample mean. Popular Bayesian

software programs such as WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2003)

and Stan (Carpenter et al., 2017) automatically provide such MCMC/EAP point esti-

mates based on the drawn values. Also, as the draws used for MCMC estimation are

also utilized to compute point estimates of the latent variables, the sample size is usu-

ally not a concern due to the large number of draws (the number of iterations minus

the burn-in iterations, multiplied by the number of parallel chains) used for computa-

tion of MCMC/EAP point estimates. For WinBUGS or other Bayesian software pro-

grams that implement the Metropolis-Hastings algorithm or the Gibbs sampler,

thousands of iterations are usually required for MCMC estimation. As a result of this,

MCMC/EAP estimates are also based on thousands of drawn values. For Stan, an

emerging Bayesian software program that implements the efficient Hamiltonian

Monte Carlo (HMC; Neal, 2011) algorithm, hundreds of iterations may suffice for
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common IRT models. Also, the MCMC/EAP point estimates are based on hundreds

of drawn values, a sample size large enough to ensure accuracy of MCMC/EAP esti-

mates. For an illustration of the sampling efficiency of Stan for IRT models, the

reader may refer to Luo and Jiao (2018). However, this is not the case with Mplus,

where the sample size issue becomes relevant considering that the draws for MCMC

estimation are not used for the computation of latent variable point estimates and the

users are at liberty to specify the number of draws from the posterior distribution used

for the computation of latent variable point estimates.

Compared to estimators like MLR and WLSMV, the Bayes estimator in Mplus

offers some special advantages. For example, Mplus automatically implements the

posterior predictive model checking (PPMC; Rubin, 1984) procedure for model

check. In addition, the MCMC method implemented in the Bayes estimator has com-

putational advantages when dealing with high-dimensional models and/or a large

number of items, scenarios where estimators such as MLR and WLSMV may become

infeasible due to either issues with dimensionality or difficulty with inverting an

excessively large matrix. When the Bayes estimator is used, Mplus does not automat-

ically provide MCMC/EAP point estimates as WinBUGS and Stan do. Instead,

Mplus estimates the entire posterior distribution of each individual latent variable.

To obtain MCMC/EAP point estimates in Mplus, plausible values can be used.

The idea of plausible values was originally developed for the analysis of National

Assessment of Educational Progress data in 1983-1984 (Mislevy, 1991). Essentially,

multiple scores are provided for each student to assess the measurement error associ-

ated with each individual, and as stated by Wu (2005), ‘‘If measurement error is

small, then multiple scores for an individual will be close together. If measurement

error is large, then multiple scores for an individual will be far apart’’ (p. 115).

Formally, plausible values are random draws from the posterior distribution of indi-

vidual score given one’s response pattern and represent ‘‘the likely distribution of a

student’s proficiency’’ (von Davier, Gonzalez, & Mislelvy, 2009, p. 11).

Asparouhov and Muthén (2010) stated that the posterior mean factor score

(MCMC/EAP point estimate) can be computed by using multiple plausible values

drawn from the posterior distribution and demonstrated that MCMC/EAP estimates

based on 500 plausible values have desirable psychometric properties over MMLE/

EAP with small sample size and nonnormal latent distributions. Regarding the num-

ber of plausible values, they suggested that ‘‘it is necessary to use many imputed val-

ues. For example 100 or 500 such values can yield a precise posterior distribution for

a latent variable which can be used to compute the posterior mean factor score esti-

mate’’ (Asparouhov & Muthén, 2010, p. 2). Although it is intuitive that more plausi-

ble values can approximate the posterior distribution better, drawing plausible values

in Mplus takes time and requires postprocessing by the researcher to compute statis-

tics of interest such as MCMC/EAP point estimates. Also, researchers may face com-

puter hardware constraints and time limitation when drawing plausible values. For

example, when analyzing a dataset with half a million examinees, which is not

uncommon in large-scale testing organizations, drawing 500 plausible values for

Luo and Dimitrov 275



each examinee takes excessively long time and results in a matrix with half a million

rows and 500 columns that may be too large for the computer memory to handle.

Therefore, it is of practical interest to have guidelines on the minimum number of

plausible values required to compute accurate MCMC/EAP point estimates.

Although it is well known that five plausible values are usually sufficient for

accurate estimation of population-level statistics in large-scale surveys (e.g., von

Davier et al., 2009), one can expect that this guideline is not applicable to the case of

MCMC/EAP computation as plausible values are used differently in the following

two scenarios. First, for the estimation of population-level statistics, plausible values

are usually used via multiple imputation techniques (Rubin, 1987). Second, when

MCMC/EAP point estimates are of interest, plausible values are simply used to com-

pute their arithmetic mean.

Based on the above discussion, the purpose of this study is to investigate the num-

ber of plausible values needed to obtain MCMC/EAP point estimates under common

large-scale testing conditions (e.g., sufficiently large sample size and normally dis-

tributed latent variable) that are comparable to MMLE/EAP point estimates produced

when the MLR estimator is used in Mplus. We do not consider the WLSMV estima-

tor for CCFA in Mplus as it produces MAP estimates, which is conceptually less

aligned with MCMC/EAP estimates and has been shown to be inferior to EAP esti-

mates in many ways (Bock & Mislevy, 1982; Mislevy & Bock, 1997).

Method

Simulation Design

We used a small-scale simulation study to explore the number of plausible values

needed to obtain accurate MCMC/EAP point estimates in the sense that they are com-

parable with MMLE/EAP point estimates. Specifically, we investigated MCMC/EAP

estimates based on 5, 10, 20, 50, 100, 200, and 500 plausible values (abbreviated as

PV5, PV10, PV20, PV50, PV100, PV200, and PV500, respectively). The number of

five plausible values, which is recommended for estimations of population-level sta-

tistics, was chosen here as the minimum number of plausible values as we suspected

that five plausible values were not enough to produce accurate MCMC/EAP point

estimates. The number of 500 plausible values, used by Asparouhov and Muthén

(2010), was chosen to be the maximum number of plausible values as we suspected

that 500 plausible values might be an overkill when the goal is to obtain accurate

MCMC/EAP point estimates. Due to the conceptual equivalence between drawing

plausible values from a posterior distribution and drawing a sample from the popula-

tion, we expected that when the initial number of plausible values was small, increas-

ing it would result in considerably better MCMC/EAP point estimates. However,

when the number of plausible values reached certain thresholds, increasing it would

have only negligible returns in terms of improvement of estimation accuracy.

The IRT model of choice is the two-parameter logistic model (2PLM). This model

was chosen for the purpose of illustration. More complex IRT models, such as
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multidimensional or polytomous models, can also be used as long as model conver-

gence is achieved. Drawing plausible values from the estimated posterior distribution

is essentially the same regardless of the complexity of the IRT model. Under the

2PLM model, the probability of correct item response is

pij(uij = 1jui, aj, bj) =
1

1 + exp (� aj(ui � bj))
ð1Þ

where uij is the (1/0) score of examinee i on item j, aj and bj are the discrimination

and difficulty parameters, respectively, of item j, and ui is the latent ability of exami-

nee i.

We simulated a test of 40 dichotomously scored items taken by 1,000 examinees.

This particular test length was chosen to mimic a multiple-choice question test of a

medium length; the sample size of 1,000 was selected to ensure accurate estimation

of item parameters with the 2PLM (Stone, 1992). The ability parameters were gener-

ated from a standard normal distribution; that is, u ~ N(0, 1). For the item parameters

listed in Table 1, the discrimination parameters were generated from a normal distri-

bution N(1, 0.04), and the difficulty parameters from a standard normal distribution

N(0,1). We generated 100 datasets based on Equation 1. For each dataset, we fit the

2PLM with both the MLR and Bayes estimators in Mplus. With the Bayes estimator,

the default uninformative prior N(0, 5) in Mplus was used for the factor loading and

item threshold parameters. We specified Mplus to run four parallel chains with each

containing a minimum of 5,000 iterations. In addition, we requested Mplus to draw

from the estimated posterior distribution of each individual latent variable 500 plausi-

ble values, from which we used the first 5 values to compute MCMC/EAP point esti-

mates for PV5, first 10 for PV10, first 20 for PV20, first 50 for PV50, first 100 for

PV100, first 200 for PV200, and all 500 for PV500. The Mplus syntax codes for esti-

mating the 2PL IRT model with the MLR estimator and the Bayes estimator are pro-

vided in Appendixes A and B, respectively.

Outcome Variables

We evaluate the quality of point estimates for the ability parameter in terms of the

correlation between estimated and true values, Bias, standard error (SE), and root

mean square error (RMSE). The Bias, SE, and RMSE statistics were chosen as they

account for systematic error, random error, and total error of parameter recovery,

respectively. These statistics are defined as follows:

Bias û
� �

=

PR
1 ûr � u
� �

R
, ð2Þ

SE û
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
1 ûr � û
� �2

R

vuut
, ð3Þ
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Table 1. Item Parameter Values Used for Data Generation.

Item a b

1 1.333 20.556
2 1.186 20.783
3 1.053 1.357
4 0.833 0.231
5 1.258 0.172
6 0.973 1.200
7 0.853 20.389
8 1.064 20.268
9 0.883 21.385
10 1.252 2.172
11 1.263 20.524
12 0.927 0.601
13 0.943 20.131
14 0.557 20.666
15 0.672 0.860
16 0.783 20.562
17 0.626 0.086
18 1.350 1.165
19 0.947 20.032
20 1.400 0.852
21 0.748 0.305
22 1.318 1.310
23 1.284 2.369
24 0.842 0.735
25 1.494 1.668
26 0.926 20.418
27 1.336 0.508
28 1.297 21.560
29 1.164 1.398
30 1.075 0.189
31 1.017 0.226
32 0.890 0.951
33 1.076 1.805
34 1.278 20.660
35 1.091 0.462
36 0.685 0.838
37 1.059 0.991
38 0.809 21.283
39 1.051 20.591
40 0.984 0.054

278 Educational and Psychological Measurement 79(2)



and

RMSE û
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
1 ûr � u
� �2

R

s
, ð4Þ

where R is the number of replications (100 in the current study), u is the generating

ability parameter, ûr is the estimated ability parameter in the r th replication, û is the

mean estimated ability parameter averaged across the 100 replications. Cohen’s f

(hereafter abbreviated as f ) was used as an effect size index to gauge the practical

significance of the difference captured with the statistics in Equations 2, 3, and 4.

Results

The boxplot in Figure 1 provides a visual presentation of the correlation between the

eight sets of ability estimates and the generating true ability values. As can be seen,

the correlation between MCMC/EAP estimates based on plausible values and true

values increases with an increase of the number of plausible values. However, the

increase of the number of plausible values has diminishing returns regarding

the increase of their correlation with the true values. With only five plausible values,

the mean correlation between PV5 and the true values is 0.922, whereas the mean

Figure 1. Comparison of ability estimates based on their correlation with generating values.
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correlation between MMLE/EAP estimates and the true values is 0.937. When the

number of plausible values is greater than 50, the mean correlation with the true val-

ues remains approximately 0.936, which only differs from the correlation between

MMLE/EAP and the true values at the third decimal place. Such an observation is

consistent with our expectation that an increase of the number of plausible values

results in a noticeable improvement of the point estimation accuracy, but only to a

certain point.

The Bias, SE, and RMSE for the eight sets of ability estimates are provided with

Table 2. For all eight methods, the absolute value of the mean Bias for estimation of

the ability parameter is smaller than 0.005, a value small enough to be considered

close to zero. Also, the mean Bias randomly fluctuates around zero with a different

number of plausible values, suggesting that such MCMC/EAP estimates are essen-

tially unbiased and their discrepancies with the true values are caused by sampling

error. As shown in Table 2, the standard deviation of Bias, as well as the mean and

standard deviation of the RMSE, tend to decrease slightly with the increase of num-

ber of plausible values

To further compare the estimation quality between the eight methods, we con-

ducted analysis of variance (ANOVA) using Bias, SE, and RMSE as dependent vari-

ables, respectively. The ANOVA results with Bias as the dependent variable

indicated that there were no significant differences in estimation biases between the

eight methods, F(7, 7,992) = 0.899, p = .506. The ANOVA results with the RMSE

as the dependent variable indicated that there were significant differences, F(7,

7,992) = 13.111, p \ .001, f = 0.105. According to Cohen (1992), such an f value

Table 2. Bias, RMSE, and SE of Ability Estimates.

Statistic MMLE/EAP PV5 PV10 PV20 PV50 PV100 PV200 PV500

Bias
Mean 0.0001 0.0049 20.0013 20.0011 0.0005 20.0030 20.0045 20.0025
SD 0.1339 0.2177 0.1921 0.1727 0.1581 0.1513 0.1511 0.1500
Min 20.5466 20.7818 20.6176 20.6338 20.5781 20.6137 20.6196 20.5938
Max 0.9134 1.1354 1.0772 1.0710 1.0132 0.9674 0.9779 0.9517

RMSE
Mean 0.1228 0.1491 0.1374 0.1306 0.1265 0.1248 0.1243 0.1239
SD 0.0622 0.1037 0.0924 0.0857 0.0731 0.0717 0.0704 0.0690
Min 0.0633 0.0623 0.0633 0.0622 0.0616 0.0602 0.0603 0.0604
Max 0.9244 1.3922 1.2687 1.2456 1.1211 1.0317 1.0539 1.0044

SE
Mean 0.1049 0.1017 0.1006 0.1008 0.1015 0.1019 0.1015 0.1015
SD 0.0171 0.0182 0.0174 0.0171 0.0171 0.0172 0.0171 0.0170
Min 0.0629 0.0622 0.0598 0.0598 0.0602 0.0600 0.0600 0.0600
Max 0.1691 0.1781 0.1727 0.1662 0.1693 0.1810 0.1740 0.1758

Note. RMSE = root mean square error; SE = standard error; MMLE = marginal maximum likelihood

estimation; EAP = expected a posteriori; PV = plausible value.
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indicates a small effect size. Subsequent Tukey post hoc tests revealed that (a) there

were no significant differences between the RMSE of PV20, PV50, PV100, PV200,

PV500, and MMLE/EAP, and (b) the RMSE of PV10 and PV20 was significantly

lower than those of PV5. The ANOVA results with SE as the dependent variable

indicated that there were significant differences, F(7, 7,992) = 5.926, p \ .001, f =

0.071 (this effect size is practically negligible). The Tukey post hoc tests showed that

there were no significant differences between the SE of all seven sets of MCMC/

EAP estimates based on plausible values, whereas the SE of MMLE/EAP estimates

were significantly greater than those of their MCMC/EAP counterparts.

Based on the above analyses, it can be stated that PV20 provides IRT ability esti-

mates with Bias and RMSE comparable to those based on MMLE/EAP and signifi-

cantly smaller SE. Therefore, we concluded that 20 plausible values are required to

obtain point estimates as accurate as MMLE/EAP estimates.

An Illustration With Real Data

In this section, we illustrate with real data how MCMC/EAP point estimates of IRT

abilities based on different numbers of plausible values compare with MMLE/EAP

point estimates. The dataset used in the illustration was drawn from a test form of the

verbal section of the General Aptitude Test (GAT-V), a high-stakes test used for col-

lege admission purpose in Saudi Arabia and other Middle-Eastern countries. GAT-V

consists of 52 multiple-choice items distributed across four domains, namely, reading

comprehension, sentence completion, verbal analogy, and synonymy. We randomly

sampled 1,200 students from the examinees, and the subsequent analyses were based

on a matrix of zeros and ones with a dimension of 1,200 by 52.

We fit the 2PLM with both the MLR and Bayes estimators in Mplus. The config-

uration for the Bayes estimator is the same as in the simulation section; that is, four

parallel chains with a minimum of 5,000 iterations were specified and 500 plausible

values were imputed. The iteration history in the Mplus output showed that the poten-

tial scale reduction factor (PSRF; Gelman & Rubin, 1992) values for all model para-

meters were smaller than 1.05 with less than 2,000 iterations, whereas with 5,000

iterations, the highest PSRF value was 1.022. We concluded that model convergence

had been reached and proceeded to compare the IRT ability point estimates based on

the eight methods.

As an illustration, Table 3 lists the IRT ability point estimates for the first 20 stu-

dents with MMLE/EAP and MCMC/EAP based on different number of plausible val-

ues. As can be seen, except for PV5 and PV10, which have mean differences of 0.07

and 0.03 relative to MMLE/EAP, the other five sets of IRT ability point estimates

based on plausible values are very similar to MMLE/EAP, with the mean difference

being smaller than 0.01.

Figure 2 provides a visual presentation of how the correlation between the

MCMC/EAP point estimates based on plausible values and the MMLE/EAP point

estimates for all 1,200 students changes with the change of the number of plausible
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values. Even with only five plausible values, the correlation between PV5 and

MMLE/EAP is 0.9892 and it increases with more plausible values, but the increase

is negligibly small. The correlation between MMLE/EAP and PV20, the MCMC/

EAP estimates based on 20 plausible values, is as high as 0.9969.

Conclusion

The Bayes estimator in Mplus implements the Gibbs sampler and allows researchers

and practitioners to estimate latent variable models such as IRT models with MCMC

methods with relatively little programming efforts. When the Bayes estimator is

used, Mplus automatically performs model check via PPMC, a feature that is espe-

cially attractive to those who are not familiar enough with general Bayesian program-

ming software such as WinBUGS or Stan to program such procedures themselves. In

addition, MCMC methods may be the only computationally feasible estimation meth-

ods with either multidimensional models, which cause dimensionality problems for

MMLE estimation, or a large number of indicators that make limited information

methods such as WLSMV too slow.

It should be noted that for latent variables such as the individual ability in IRT

context, Mplus estimates the posterior distribution of each ability parameter but does

Table 3. Ability Estimates (on the IRT Logit Scale) for the Real Data.

Examinee MMLE/EAP PV5 PV10 PV20 PV50 PV100 PV200 PV500

1 20.606 20.512 20.622 20.671 20.619 20.622 20.610 20.615
2 0.873 0.756 0.807 0.794 0.836 0.779 0.806 0.839
3 0.750 1.028 0.713 0.688 0.714 0.705 0.727 0.723
4 20.829 20.583 20.729 20.797 20.785 20.821 20.814 20.835
5 0.040 20.014 0.008 0.056 0.116 0.088 0.044 0.037
6 20.206 20.145 20.111 20.239 20.233 20.177 20.201 20.225
7 20.875 20.645 20.741 20.793 20.849 20.830 20.861 20.868
8 0.447 0.527 0.495 0.445 0.462 0.471 0.463 0.457
9 21.508 21.361 21.344 21.413 21.480 21.465 21.474 21.462
10 20.424 20.368 20.394 20.557 20.501 20.453 20.415 20.417
11 20.784 20.806 20.892 20.813 20.809 20.814 20.795 20.805
12 0.041 0.054 0.087 0.126 0.059 0.049 0.068 0.061
13 0.496 0.568 0.509 0.560 0.496 0.498 0.477 0.457
14 0.249 0.333 0.322 0.277 0.230 0.280 0.294 0.276
15 0.408 0.538 0.614 0.532 0.482 0.444 0.456 0.441
16 20.345 20.446 20.414 20.364 20.374 20.363 20.364 20.343
17 20.847 20.681 20.807 20.831 20.792 20.817 20.788 20.807
18 0.112 0.242 0.052 0.153 0.146 0.129 0.138 0.115
19 1.114 1.112 1.175 1.105 1.158 1.086 1.095 1.089
20 20.606 20.512 20.622 20.671 20.619 20.622 20.610 20.615

Note. IRT = item response theory; MMLE = marginal maximum likelihood estimation; EAP = expected a

posteriori; PV = plausible value.
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not provide MCMC/EAP point estimates. Instead, such estimates can be obtained by

taking the average of a certain number of plausible values (specified by the user)

drawn from the posterior distribution. However, it was unclear how many plausible

values were needed to obtain accurate MCMC/EAP point estimates. In this note, we

investigated the minimum number of plausible values required to obtain MCMC/

EAP point estimates that are comparable to those based on MMLE/EAP, which is a

common method for the estimation of IRT ability.

We found that MCMC/EAP estimates based on more plausible values had higher

correlation coefficients with the generating values. This makes intuitive sense as

more plausible values result in a larger sample size, and thus, higher precision of the

sample mean as a population mean estimator. As is dictated by the central limit theo-

rem, increasing the sample size results in diminishing returns in the precision of the

Figure 2. Comparison of point estimates of ability based on real data.
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sample mean estimator (e.g., Pyrczak, 2003). Consequently, when the sample size

reaches a certain level, its increase only produces negligible returns in precision,

which is exactly what was observed in the simulation study. Specifically, increasing

the number of plausible values from 5 to 10 resulted in the biggest increase (greater

than 0.05) in the correlation between MCMC/EAP point estimates and the true val-

ues, which only changed at the third decimal place when the number of plausible val-

ues was greater than 50.

We also found that estimation biases based on different number of plausible val-

ues are not significantly different, which is hardly surprising. Indeed, as noted earlier,

drawing plausible values from the posterior distribution is analogous to drawing a

sample from the population. On the other side, it is known that the sample mean is an

unbiased estimator of the population mean regardless of the population distribution.

Therefore, the shape of the posterior distribution does not make a difference regard-

ing the generalizability of the current finding; nor does the test length, as different

test lengths only result in posterior distributions with varying standard deviations for

individual latent ability, and the sample mean remains an unbiased estimator of the

population mean. Although the mean of Bias does not exhibit a discernable pattern

with an increase of the number of plausible values, the standard deviation of Bias

was found to decrease with more plausible values. This observation also makes sense

as more plausible values (i.e., a larger sample size) always result in smaller sampling

errors, which in turn cause the mean and standard deviation of RMSE to drop.

Regarding the research question of how many plausible values can produce

MCMC/EAP estimates comparable to MMLE/EAP estimates, the simulation study

results indicated that MCMC/EAP point estimates based on five plausible values pro-

duce comparable estimation Bias, significantly smaller SE, and significantly greater

RMSE. At least 20 plausible values are needed to reduce the RMSE to a level compa-

rable to MMLE/EAP. As also shown in the simulation study, MCMC/EAP point esti-

mates based on at least 20 plausible values produce comparable estimation Bias and

RMSE and significantly smaller SE than their MMLE/EAP counterparts. Therefore,

if researchers or practitioners are interested in obtaining accurate MCMC/EAP point

estimates of IRT ability parameters with the Bayes estimator in Mplus, but do not

want to draw a large number of plausible values due to practical constraints, they can

use twenty plausible values.

Appendix A

Mplus Syntax for CCFA-Based Estimation of IRT Item Parameters Under the
2PL Model Using the MLR Estimator

TITLE: CCFA-based estimation of IRT item parameters under the 2PL model

DATA: FILE IS data.txt;

VARIABLE: NAMES ARE u1-u40;

CATEGORICAL ARE u1-u40;

ANALYSIS: ESTIMATOR = MLR;
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MODEL: f BY u1-u40*;

f@1; !factor variance set equal to 1

[f@0]; !factor mean set equal to 0

SAVEDATA: FILE IS score_mlr.csv;

SAVE = FSCORES;

Note. With the MLR estimator in the above syntax code, the logit link function is used in

Mplus by default. With this, the following relationships between the CCFA item parameters

(loading, li, and threshold, ti) and the IRT item parameters under the 2PL model (discrimina-

tion, ai, and difficulty, bi) are in place (e.g., Asparouhov & Muthén, 2015):

ai = li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR fð Þ

p
and bi =

ti � li
�f

li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR fð Þ

p ; ðA:1Þ

where �f and VAR( f ) are the mean (expected value) and the variance, respectively, of the latent fac-

tor f under the CCFA. However, in the Mplus syntax code, �f = 0, with using the command [f@0],

and VAR( f ) = 1, with using the command f@1, thus simplifying the equations in A.1 as follows:

ai = li and bi = ti=li: ðA:2Þ

The IRT estimates of item parameters provided in the Mplus output with the use of the above

syntax code are produced with the use of the equations in A.2.

Furthermore, with the MLR estimator and the logit link function in the Mplus syntax code,

the following relationship takes place (Asparouhov & Muthén, 2015):

f = �f + u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR fð Þ

p
,

where u is the IRT latent variable (ability), with u ~ N(0, 1). Thus, with the restrictions �f = 0

and VAR(f) = 1 imposed for model identification, the factor scores, which are saved with using

the last command in the above Mplus code, become identical to the IRT ability scores, u.

Appendix B

Mplus Syntax for Estimation of IRT Item Parameters Under the 2PL Model
With the Bayes Estimators

TITLE: Estimation of IRT item parameters under the 2PL model with Bayes Estimators

DATA: FILE IS data.txt;

VARIABLE: NAMES ARE u1-u40;

CATEGORICAL ARE u1-u40;

ANALYSIS: ESTIMATOR = BAYES;

PROCESSORS = 4;

BITERATIONS = (5000);

CHAINS = 4;

MODEL: BY u1-u40*;

f@1; !factor variance set equal to 1

SAVEDATA: FILE IS score_bayes.csv;

SAVE=FSCORES(500);

OUTPUT: STANDARDIZED TECH8;
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