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A short proof of an interesting Helly�type

theorem

Nina Amenta �

The Geometry Center

���� South Second Street

Minneapolis� MN �����

Abstract

We give a short proof of the theorem that any family of subsets
of Rd� with the property that the intersection of any non�empty �nite
subfamily can be represented as the disjoint union of at most k closed
convex sets� has Helly number at most k�d� ���

� Introduction

We say that a family of sets F has Helly number h when h is the smallest
integer �if one exists� such that any �nite subfamily H � F has nonempty
intersection if and only if every subfamily B � H with jBj � h also has
nonempty intersection� Theorems of the form �F has Helly number h� are
called Helly�type theorems � they follow the model of Helly�s theorem� which
states that the family of convex sets in Rd has Helly number d	
� There are
many Helly�type theorems� for excellent surveys see DGK��� and the recent
E����

This paper is concerned with a generalization of Helly�s theorem�
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Theorem ��� Let F be a family of sets in Rd� such that the common in�

tersection of any non�empty �nite subfamily of F can be expressed as the

disjoint union of at most k closed convex sets� Then F has Helly number at

most k�d 	 
��

Note that when the common intersection of any at most k members of F can
be expressed as the disjoint union of at most k closed convex sets� so can the
intersection of any �nite subfamily �GM�
�� Theorem ���

Theorem 
�
 was �rst conjectured by by Gr�unbaum and Motzkin in 
��

GM�
�� They proved the case k � �� using a more general axiomatic struc�
ture in place of convexity� Rather than convex sets� their theorem applies to
any set family C with Helly number d 	 
 for which the intersection of any
pair of sets in C is again a member of C� and for which the disjoint union of
any pair of sets in C is not a member of C� Larman proved the case k � �
L���� for convex sets� Morris treated the question in his thesis Mo���� again
using a combinatorial generalization of convexity� The proof he o�ered� how�
ever� is very long and involved� and its correctness is questionable �see E����
page ����� Some related results appear in HT����

We give a short and intuitive proof� using a di�erent axiomatic system�
borrowed from computational geometry� Our approach is to introduce an
ordering � on the points of Rd� and study the problem of minimizing �
over any subfamily of F � We show that this problem is an example of an LP�
type �or Generalized Linear Programming� or GLP� problem� The theorem
follows from the observation that there is a Helly�type theorem about the
constraint set of every LP�type problem�

Informally� the LP�type problems are the class of problems which can be
solved by combinatorial linear programming algorithms such as S���� C����
MSW���� So the minimization problem we construct is computationally
similar to linear programming� although geometrically the intersection of
the constraints fails not only to be convex� but even to be connected� This
suggests the possibility of applying linear programming algorithms to other
problems in which the the topological complexity of the intersection of the
constraints� although non�trivial� remains bounded by a constant�



� Framework

LP�type problems are de�ned by an abstract combinatorial framework due
to Sharir and Welzl SW���� We will use a slightly less abstract de�nition for
a subclass of LP�type problems� which we call concrete LP�type problems�

Consider a triple �W�H� � �� where the universe W is a set �whose ele�
ments we call points�� H is a �nite family of subsets of W �called the con�

straints�� and � is an order on W � with the symbol 	� de�ned to be �
any point of W � For any subfamily of constraints G � H� we denote the
intersection

T
G � fx � W j x � G� �G � Gg�

�W�H� � � is a concrete LP�type problem if� for every G � H with
T
G

nonempty�
T
G has a unique minimum point� we call this point w�G� and we

say that G is feasible� When
T
G is empty we say that G is infeasible and we

de�ne w�G� � 	��
The relevant example� for our purposes� of a concrete LP�type problem is

Lexicographic Convex Programming� in whichW is Rd� H is any �nite family
of compact convex sets� and � is the lexicographic order on Rd� Another
example is Normal Convex Programming� in which W again is Rd� H again
is any �nite family of compact convex sets� and � orders points by their
distance from the origin� Notice that in Normal Convex Programming� �
is not a total order on Rd� although every subfamily of constraints does have
a unique minimum point�

The interested reader can easily verify that for every concrete LP�type
problem �W�H� � �� the pair �H� w� is an LP�type problem as de�ned in
SW��� or MSW����

A basis is a subfamily G � H such that w�G �G� � w�G�� for all G � G�
The combinatorial dimension of a concrete LP�type problem is the maximum
cardinality of any feasible basis� The combinatorial dimension� for example�
of Lexicographic Convex Programming in Rd is d� It is not di�cult to see
that every subfamily G must contain a basis B � G with w�B� � w�G�� and
that for three subfamilies B � F � G with w�B� � w�G�� it must also be the
case that w�F� � w�B�� �See SW��� or MSW��� for other simple properties
of LP�type problems��

Lemma ��� Let �W�H� � � be a concrete LP�type problem of combinatorial

dimension c� H has Helly number at most c	 
�



Proof� H has Helly number at most h if and only if every subfamily G
with

T
G empty contains a subfamily B � G with

T
B empty and jBj � h�

The Helly number� then� is the maximum cardinality of any infeasible basis�
while the combinatorial dimension is the maximumcardinality of any feasible
basis�

So let B be any infeasible basis� and let G � B be any constraint with
w�B�G� 	 max � fw�B�G�� j G� � Bg� under � � The subfamily B�G is
feasible and contains a basis B� with jB�j � c and the point w�B�� � w�B�G��
We show that every constraint G� � B �G must in fact belong to B��

Assume the contrary� that is� B� 
 B � G � G� for some such G�� Then
w�B�� � w�B�G�G��� If w�B�G�� � w�B�G�� then w�B�G�G�� � w�B�
G�� � w�B�G� � w�B��� a contradiction� Otherwise� w�B�G�� 	 w�B�G��
that is� the points are equivalent under � although they are not necessarily
identical� The point w�B�G� � G�� whereas the infeasibility of B implies that
w�B�G�� �� G�� Since the minimum of w�B�G�G�� must be achieved at a
unique point� we have w�B�G�G�� � w�B�G�� 	 w�B�G� � w�B��� again
a contradiction� We conclude that B �G � B� and so jBj � jB�j	
 � c	 
�

�

� Main Theorem

Theorem ��� Let �W� C� � � be a concrete LP�type problem of combinato�

rial dimension d with the additional property that � is a total order on the

points of W � Let H be a family of subsets of W such that for every G � H
with

T
G �� ��

T
G can be written as the disjoint union of at most k elements

of C� Then �W�H� � � is an LP�type problem of combinatorial dimension at

most k�d 	 
�� 
�

We will need some notation for working with disjoint unions� Our assumption
is that

T
G can be written as the union of disjoint sets c�� c�� � � � � C� which

we shall call the components of
T
G� Consider some point p � W � For each

individual G � G� p is contained in at most one component c�G� p� of G� Let
C�G� p� � fc�G� p� j G � Gg� that is� the collection of the components from
the individual constraints containing the point p� If p �

T
G� the component



c�
T
G� p� of

T
G containing p is exactly

T
C�G� p��

Proof of Theorem ���� Because � is a total order� the minimum of
� over any intersection

T
G� G � H� is achieved at a unique point� and

�W�H� � � is a concrete LP�type problem� It remains to show that the
maximum size of any feasible basis B is at most k�d 	 
�� 
�

We will count the constraints in a feasible basis B by carefully removing
selected constraints� one at each step� while building up a subfamily S of
�sacred� constraints which may not be removed in later steps� After step t

we call the current sets St and Bt� and we call the minimumpoint wt � w�Bt��
We will maintain two invariants� The �rst is that w�Bt �G� � wt for all

G � Bt � St� The second is that all the points w�� w�� � � � wt lie in di�erent
components of

T
Bt�

We set t � 
 and B� � B� Notice that since B is a basis� the �rst invariant
will hold for any initial choice of S�� We will choose S� so as to guarantee
that w� lies in a di�erent component from all other wi during all future steps�
We start with S� � �� and use the following general procedure� applicable at
any step t� for adding constraints to St�� to get St�

Since
T
Bt is non�empty� there is a unique minimum point wt � w�Bt�

in
T
Bt� Let Ct � C�Bt� wt�� that is� the collection of components from the

individual constraints containing wt� Notice that �W�Ct� � � is a feasible
instance of the given concrete LP�type problem of combinatorial dimension d�
with w�Ct� � wt� So Ct must contain a basis B�t with jB

�
tj � d and w�B�t� � wt�

For each c � B�t� select a constraint G � Bt having c as a component� and let
At be the family of these constraints� We set St � St��

S
At�

This procedure guarantees that the second invariant is preserved� Con�
sider the situation at some step t� The current collection of components
containing the point wi� for any t � i  
� is C�Bt� wi�� Since Ai � St � Bt�
C�Bt� wi� still contains the basis B�i� which means that wi still must be the
minimum point in

T
C�Bt� wi�� Since wj � wi for t  j � i� each point

wj must lie in some component other than
T
C�Bt� wi�� This forces all the

components c�
T
Bt� wi� to be distinct�

Now we turn our attention to selecting a constraint to remove from Bt

to create Bt��� First notice that the points w�Bt � G� are distinct� for all
G � Bt � St� Indeed� let G�G� � Bt � St be distinct constraints� Then
w�Bt �G�� � G� while w�Bt �G� �� G since w�Bt �G� � w�Bt�� The points
of W are totally ordered under � � so there is some Gt � Bt � St such that



w�Bt �G� � w�Bt �Gt� for all other G � Bt � St�
It is Gt that we remove from Bt to form Bt��� Since w�Bt�G� � w�Bt�

Gt�� for all other G � Bt � St� certainly w�Bt � Gt � G� � w�Bt � Gt�� So
the �rst invariant is maintained for Bt��� To ensure the preservation of the
second invariant� we again follow the procedure above to �nd a set At�� to
add to St to get St���

We iterate this process of removing a constraint from Bt and updating St

until we can no longer continue because Bt � St�
The common intersection of any subfamily of constraints can be described

as the disjoint union of at most k components� so at the end of the process
there are at most k points wi and the number of steps is t � k� We re�
moved one constraint Gi at every step except for the �rst� and at every
step� we added at most d constraints to Si� So the size of jBj is at most
�k � 
� 	 kd � k�d 	 
�� 
�
�

Theorem 
�
 is an easy application of Theorem ��
�

Proof of Theorem ���� We take Lexicographic Convex Programming as
the concrete LP�type problem �W� C� � � in Theorem ��
�

Since the constraints of a lexicographic convex program have to be com�
pact� we construct for any non�empty �nite subfamily H � F a compact
version H� by taking the intersection of every member of H with an axis�
aligned box B� B is chosen large enough so that any feasible subfamily
G � H corresponds to a feasible subfamily G� � H�� Since the feasibility or
infeasibility of subfamilies is preserved� the Helly number of H� is the same
as the Helly number of H�

Theorem ��
 implies that �Rd�H�� � � is a concrete LP�type problem for
any H�� so by Lemma ��
� the Helly number of any H�� and hence any H� is
at most k�d	
�� Since all of its �nite subfamiliesH � F have Helly number
k�d	 
�� so does F �
�

Note that the condition that the intersection of any subfamily can be
expressed as the disjoint union of a �xed number of convex sets is a strong
one� It is not true in general for families of disjoint unions of at most k convex
sets� for instance� An example of a family that does meet the condition is



one in which every set G is a set of at most k closed balls with a common
radius �G� such that the distance between any two balls is no less than �G�
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