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Abstract. We give a short and direct proof of the λg-Conjecture. The approach is through
the Ekedahl-Lando-Shapiro-Vainshtein theorem, which establishes the “polynomiality” of Hurwitz
numbers, from which we pick off the lowest degree terms. The proof is independent of Gromov-
Witten theory.

We briefly describe the philosophy behind our general approach to intersection numbers and how
it may be extended to other intersection number conjectures.

1. Introduction

1.1. Background. The λg-Conjecture, now a theorem, states that

Theorem 1.1 (The λg-Conjecture). For n, g ≥ 1,
∫

Mg,n

ψb1
1 · · ·ψbn

n λg =

(

2g − 3 + n

b1, . . . , bn

)

cg,

where
∑n

i=1 bi = 2g − 3 + n, b1, . . ., bn ≥ 0 and cg is a constant that depends only on g.

As usual, Mg,n is the (compact) moduli space of stable n-pointed genus g curves, ψ1, . . . , ψn

are (complex) codimension 1 classes corresponding to the n marked points, and λk is the (complex
codimension k) kth Chern class of the Hodge bundle. The constant cg can be obtained from the

n = 1 case, giving cg =
∫

Mg,1
ψ2g−2

1 λg = 〈τ2g−2λg〉g, and throughout the paper cg is used to denote

this particular value. For a summary of necessary facts about the moduli space of curves, the reader
is referred to [V]. We shall assume background about Mg,n in the Introduction, but the proof of
the λg-Conjecture that is presented does not require any knowledge of these notions.

The λg-Conjecture can be interpreted as a description of the top intersections in the tautological
cohomology ring of the moduli space Mc

g,n of curves of compact type (curves whose Jacobian is
compact, or equivalently, whose dual graph is a tree). As such, it is part of a family of four problems.
Pandharipande has outlined a philosophy that we should expect the “tautological cohomology rings”
of various moduli spaces to satisfy a “Gorenstein” property, i.e. that the top degree term of the
ring is one-dimensional, and that the multiplication map into it should be a perfect pairing, see [P,
§1]. Three spaces mentioned there are the moduli space of stable curves Mg,n, Mc

g,n, and the
moduli space of smooth curves Mg (or, better, the moduli space of pointed curves with “rational
tails” Mrt

g,n). In each case, the one-dimensionality is known (see [GV1, FabP2, GV3], for example).

The top intersections in this ring are determined in each case by top intersections of ψ-classes by
work of Faber (based on earlier work of Mumford). Then, parallel to Pandharipande’s Gorenstein
predictions, there are “intersection-number” predictions determining the full ring structure. These
are the following: i) the case of Mg,n is Witten’s Conjecture (Kontsevich’s theorem), which now has
a number of very different and very enlightening proofs; ii) the case of Mc

g,n is the λg-Conjecture;
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iii) the case of Mg (or Mrt
g,n) is Faber’s intersection number conjecture. To these we add a fourth

case that seems to be of the same flavor: iv) the case of a conjectural compactified universal Picard
variety over Mg,n (related to double Hurwitz numbers, described in [GJV2]) yields a generating
series with similar behavior (see [GJV2, SZ]), which we shall discuss more in Section 5.2.

Our proof of the λg-Conjecture is through the Ekedahl-Lando-Shapiro-Vainshtein formula [ELSV2],
that establishes the “polynomiality” of the Hurwitz numbers, and by identifying the Hodge inte-
gral in the λg-Conjecture as a coefficient in the lowest degree terms in this polynomial. The proof
is short, direct and requires no Gromov-Witten theory. There are already several proofs of the
λg-Conjecture, and these will be discussed in Section 1.3.

Our method of proof can be extended to give a proof of Faber’s intersection number conjecture
(for up to 3 points, [GJV3]). Comments on the philosophy behind this are made in Section 5.

1.2. Preliminaries.

1.2.1. The Join-cut Equation. The Hurwitz numbers Hg
α count connected, branched covers of P

1

by a non-singular genus g curve, with branching over ∞ ∈ P
1 corresponding to a partition α ` d

(these branch points are ordered), and with simple branching (1d−2 2) above r = d + n + 2g − 2
other points, where n = l(α), the number of parts in α. Hurwitz [H] observed that d!Hg

α counts the
number of factorizations of an arbitrary permutation in the conjugacy class Cα of Sd with cycles
of lengths α1, . . ., αn, into an ordered, transitive product of r transpositions in Sd (such a product
is transitive if the group generated by the factors acts transitively on {1, . . ., d}).

Ordered factorizations are amenable, in principle, to combinatorial techniques. The action of a
transposition on the disjoint cycles of a permutation can be analyzed by observing that either the
transposition joins an i-cycles and a j-cycle to make an (i+ j)-cycle, or it cuts an (i+ j)-cycle into
an i-cycle and a j-cycle. In this join-cut process, an i-cycle is annihilated by the operator i∂/∂pi

and is created by the operator pi (regarded as pre-multiplication by pi) acting on the genus series

H =
∑

g≥0,n≥1

Hg
nx

g,

where Hg
n is the Hurwitz series, given by

Hg
n(z,p) =

∑

d≥1

∑

α`d,

l(α)=n

|Cα|
Hg

α

r!
pαz

d,

with α = (α1, . . ., αn) and pα = pα1 · · · pαn . It follows immediately from this construction that the
genus series satisfies the Join-cut Equation (see [GJVai]):

(

z
∂

∂z
+ 2x

∂

∂x
− 2 +

∑

i≥1

pi
∂

∂pi

)

H(1)

= 1
2

∑

i,j≥1

(

ijxpi+j
∂2H

∂pi∂pj

+ ijpi+j
∂H

∂pi

∂H

∂pj

+ (i+ j)pipj
∂H

∂pi+j

)

,

where the first two operators on the right hand side give the cycle-type after a join and the third
operator gives the cycle-type after a cut. Because of transitivity, there are two cases of joins.
The first operator is a join of two cycles within a single transitive factorization, while the second
operator is a join of two cycles, one from each of two disjoint transitive ordered factorizations.
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1.2.2. The Genus Expansion Ansatz. The background to our proof is an observation about Hurwitz
numbers Hg

α. For fixed n = l(α) and g, with n, g ≥ 1 or n ≥ 3, g = 0, it was conjectured that

(2) Hg
α = r!

n
∏

i=1

(

ααi

i

αi!

)

Pg,n(α1, . . . , αn),

for some symmetric polynomial Pg,n in the αi, with terms of total degrees between 2g − 3 + n
and 3g− 3+n. This important property is essentially the Polynomiality Conjecture of [GJ2, Conj.
1.2] (the connection is made in [GJV1]). The Polynomiality Conjecture was settled by Ekedahl,
Lando, M. Shapiro, and Vainshtein, who proved the remarkable ELSV-formula [ELSV1, ELSV2].
(For a proof in the context of Gromov-Witten theory, see [GV2], and also [GV3].) In the present
notation, the ELSV-formula states that

(3) Pg,n =

∫

Mg,n

1 − λ1 + · · · + (−1)gλg

(1 − α1ψ1) · · · (1 − αnψn)
.

Equation (3) should be interpreted as follows: formally invert the denominator as a geometric
series; select the terms of codimension dimMg,n = 3g − 3 + n; and “intersect” these terms on

Mg,n. The formula therefore yields

(4) Pg,n =
∑

b1+···+bn+k=3g−3+n,

bi≥0, 0≤k≤g

(−1)k〈τb1 · · · τbn
λk〉gα

b1
1 · · ·αbn

n ,

where we have used the Witten symbol (from Gromov-Witten theory)

〈τb1 · · · τbn
λk〉g :=

∫

Mg,n

ψb1
1 · · ·ψbn

n λk,

and note that

(5) 〈τb1 · · · τbn
λk〉g = 0

unless b1 + · · · + bn = 3g − 3 + n− k.

Then substituting (4) into (2), we obtain the Genus Expansion Ansatz for the Hurwitz series
(see Thm. 2.5 of [GJV1] for details), namely

(6) Hg
n =

1

n!

∑

b1,...,bn≥0,

0≤k≤g

(−1)k〈τb1 · · · τbn
λk〉g

n
∏

i=1

φbi
(z,p)

for g, n ≥ 1 and for g = 0, n ≥ 3, where

φi(z,p) =
∑

m≥1

mm+i

m!
pmz

m, i ≥ 0.

This should be interpreted as just a re-writing of the ELSV formula.

1.2.3. Our approach to the λg-Conjecture. The second observation about Pg,n(α) (recall that the
first is that it is a polynomial) is that its lowest total degree (this is 2g − 3 + n) part appears to
have the form

(α1 + · · · + αn)2g−3+ncg,

where cg is a constant depending only upon g. This assertion is equivalent to the λg-Conjecture by
(4) and is the form of the result that we prove.

We require only two properties of the Hurwitz series, namely that it satisfies the Join-cut Equa-
tion (1) and that it has the Genus Expansion Ansatz (6). To obtain a characterization of the left
hand side of Theorem 1.1 in terms of an operator acting on the Hurwitz series Hg

n we transform
the latter in a series of three steps:
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(i) symmetrization of the Hurwitz series and the Join-cut Equation;
(ii) change of variables to obtain a polynomial; and
(iii) determination of the full (to be defined later) terms of minimum degree in this polynomial.

In Section 2, we apply this transformation to the Genus Expansion Ansatz for the Hurwitz series.
In our main result of this section, Theorem 2.1, we prove that each Witten symbol whose evaluation
is the subject of the λg-Conjecture is the coefficient of a unique monomial in the transformed
Hurwitz series. In Section 3, we apply this transformation to the Join-cut Equation (1) for the
Hurwitz series. In our main result of this section, Theorem 3.2, we prove that a genus generating
series for the transformed Hurwitz series satisfies a simple partial differential equation. We then
solve this partial differential equation in Theorem 3.3. Finally, in Section 4, we prove the λg-
Conjecture by comparing the results obtained in Sections 2 and 3.

We note in passing that the transformations we apply in this paper are also used in [GJV3] in
which we are able to prove (up to 3 parts) the Faber intersection number conjecture (see [Fab]). In
the latter Faber case, we apply the steps (i) and (ii) of the transformations applied in the present
paper, but for step (iii), in the Faber case, we consider terms of maximum degree rather than the
minimum degree (on a different polynomial). This philosophy will be discussed in Section 5.

In the Appendix, we indicate how our approach can be used to obtain the generating series of
intersection numbers that are close to “minimum” in the sense that has been described above, and
we exhibit the explicit series in a few cases.

1.3. Previous proofs of the λg-Conjecture. The λg-Conjecture was first proved in Faber and
Pandharipande’s landmark paper [FabP1]. Their approach was to use localization on the space
of stable maps to P

1 to obtain relations among these intersection numbers. They then showed
that the λg-Conjecture’s prediction satisfied these relations. Finally, they proved that the relations
uniquely determined the predictions of the λg-Conjecture by establishing the invertibility of a
large matrix whose entries are counts of various partitions; this requires seven pages of explicit
calculation.

A second proof is as follows. Getzler and Pandharipande showed that the λg-Conjecture is a
formal consequence of the Virasoro Conjecture for P

1 [GeP, Thm. 3], by showing that it satisfies a
recursion arising from the Virasoro Conjecture, and then showing that the recursion has a unique
solution. The Virasoro Conjecture for P

1 was then shown in two ways. It was proved for all curves
by Okounkov and Pandharipande [OP]. Also, Givental has announced a proof of the Virasoro
Conjecture for Fano toric varieties [Giv]. The details have not yet appeared, but Y.-P. Lee and
Pandharipande are writing a book [LP] supplying them. These proofs of the Virasoro Conjecture in
important cases are among the most significant results in Gromov-Witten theory, and this method
of proof of the λg-Conjecture seems somewhat circuitous. (Much of this paragraph also applies to
Faber’s intersection number conjecture.)

Liu, Liu, and Zhou gave a new proof in [LLZ2] as a consequence of the Mariño-Vafa for-
mula [MVaf], which was proposed by the physicists Mariño and Vafa and proved by Liu, Liu,
and Zhou in [LLZ1]. This Gromov-Witten-theoretic proof is quite compact.

2. Transformation of the Genus Expansion Ansatz

In this section, we transform the Hurwitz series Hg
n through the Genus Expansion Ansatz (6) by

constructing the operator to extract the intersection number of Theorem 1.1.
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2.1. Step 1 – Symmetrization. For the first step of our transformation, we symmetrize the
Hurwitz series using the linear symmetrization operator Ξn , given by

Ξn pαz
|α| =

∑

σ∈Sn

xα1

σ(1) · · · x
αn

σ(n), n ≥ 1,

if l(α) = n (with α = (α1, . . ., αn)), and 0 otherwise. Thus, applying Ξn to (6) we obtain, for
n, g ≥ 1 and n ≥ 3, g ≥ 0,

(7) Ξn H
g
n =

1

n!

∑

b1,...,bn≥0,

0≤k≤g

(−1)k〈τb1 · · · τbn
λk〉g

∑

σ∈Sn

n
∏

i=1

φbi
(xσ(i)),

where

φi(x) = φi(x,1) =
∑

m≥1

mm+i

m!
xm.

We note that

(8) φi(x) =

(

x
d

dx

)i+1

w(x),

where

w(x) =
∑

m≥1

mm−1x
m

m!

is the (exponential) generating series for the number mm−1 of trees with m vertices, labelled from 1
to m, and having a single vertex which is further distinguished (for example, by painting it red).
Such trees are termed vertex-labelled rooted trees, and we shall refer to w(x) as the rooted tree

series. It is the unique formal power series solution of the (transcendental) functional equation (see
e.g. [GJ] §3.3.10)

(9) w = xew

(which we shall refer to as the rooted tree equation).

2.2. Step 2 – change of variables. We next consider a change of variables for the symmetrized
Hurwitz series. Consider y(x) = (1 −w(x))−1. Then

(10) y(x) = 1 +
∑

m≥1

mm

m!
xm = 1 + φ0(x),

which can be seen most easily perhaps from (11) below. Let wj = w(xj) and yj = y(xj), j = 1, . . ., n,
and let C be an operator, applied to a formal power series in x1, . . ., xn, that changes variables,
from the indeterminates x1, . . ., xn to y1, . . ., yn. Thus, from (10), to carry out C we substitute
xj = g(yj − 1), where g is the compositional inverse of φ0. In general, this will not yield a formal
power series in y1, . . ., yn, but when we apply C to Ξn H

g
n, we do obtain a formal power series (in

fact, for each fixed n, g it is a polynomial) as we prove below.

First we prove some properties of C. Differentiating the rooted tree equation (9), we obtain the
operator identity

(11) xj
d

dxj
=

wj

1 − wj

d

dwj
.

But dyj = y2
jdwj , so we have the operator identities

(12) C
xj∂

∂xj

= (y3
j − y2

j )
∂

∂yj

C, Cwj
∂

∂wj

= (y2
j − yj)

∂

∂yj

C,
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where when we apply C to expressions involving wj , we interpret wj as w(xj). From (8), (11)
and (12), we also obtain

(13) Cφi(xj)

(

(y3
j − y2

j )
∂

∂yj

)i

(yj − 1), for i ≥ 0.

Now (5), (7) and (13) together enable us to obtain a polynomial expression for C Ξn H
g
n. The

fact that this is unique, and hence that the application of C to Ξn H
g
n is well-defined for formal

power series, follows immediately from the fact that the non-negative powers of the rooted tree
series w(x) are linearly independent, as formal power series in x.

2.3. Step 3 – full terms of minimum total degree. The final step in the transformation of
the Hurwitz series is to identify a particular subset of terms. We say that a monomial yi1

1 · · · yin
n is

full if i1, . . ., in ≥ 1. Let Fk f be the subseries of a series f in y1, . . ., yn consisting of the full terms
of total degree k. Thus, for example, from (13), we immediately obtain

(14) Fi+1 Cφi(xj) = (−1)ii!yi+1
j ,

by induction on i ≥ 0, and

(15) Fk Cφi(xj) = 0, i ≥ 0, k < i+ 1.

In addition, when applied to C Ξn H
g
n, let M denote F2g−3+2n .

Let mβ denote the monomial symmetric function, where we allow 0 parts in β, and write β `0 d
to indicate that β, with parts equal to 0 allowed, is a partition of d. As usual, l(β) is the number
of parts of β (including the parts equal to 0).

Theorem 2.1. Let y = (y1, . . . , yn). For n, g ≥ 1 and n ≥ 3, g = 0,

MC Ξn H
g
n = y1 · · · yn(−1)3g−3+n

∑

β`02g−3+n,

l(β)=n

〈τβ1 · · · τβn
λg〉gβ1! · · · βn!mβ(y),

where β = (β1, . . ., βn), and

(16) Fk C Ξn H
g
n = 0, for k < 2g − 3 + 2n.

Proof. We apply M C to the symmetrized Genus Expansion Ansatz (7), so from (5), (14) and (15),
we obtain

M C Ξn H
g
n =

1

n!

∑

b1,...,bn≥0,

b1+···+bn=2g−3+n

(−1)g〈τb1 · · · τbn
λg〉g

∑

σ∈Sn

n
∏

i=1

(−1)bibi!y
bi+1
σ(i) .

But we have
∑

σ∈Sn

n
∏

i=1

ybi

σ(i) = |Autβ|mβ(y),

where β is the partition (with 0 allowed as parts) whose parts are b1, . . ., bn, reordered and Autβ
is the subgroup of Sn preserving (b1, . . . , bn) (through its permutation action on the coordinates).
The first part follows by changing the range of summation from b1, . . ., bn to β. The second part
follows immediately from (7) and (15). �

Note that (16) implies that there are no full terms in the series C Ξn H
g
n whose total degree is

less than 2g − 3 + 2n. Thus we say that M C Ξn H
g
n consists of the full terms of minimum total

degree in C Ξn H
g
n (though we understand that this is informal, since it assumes that the full terms

of total degree 2g − 3 + 2n are not identically zero).

An aside. Theorem 5.1 of [GJVai], which is not used in this paper, concerns the terms of maximum

total degree when we apply C since it gives an upper limit for the total degree. This should be

6



corrected. The total degree of the terms is in fact less than or equal to 3m−6+3g, not 2m−5+6g,
as was incorrectly given there.

3. Transformation of the Join-cut Equation

We now apply the operator MC Ξn to the Join-cut Equation (1) to derive a partial differential
equation for the generating series for MC Ξn H

g
n. The following notation is needed for applying the

symmetrization operator Ξn and stating the equation.

For i, j ≥ 0, i+ j ≤ n, let
x

sym
i,j

be the mapping, applied to a series in x1, . . ., xn, given by

x
sym
i,j

f(x1, . . ., xn) =
∑

R,S,T

f(xR,xS ,xT ),

where the sum is over all ordered partitions (R,S,T ) of {1, . . ., n}, where R = {xr1 , . . ., xri
}, S =

{xs1 , . . ., xsj
}, T = {xt1 , . . ., xtn−i−j

} and (xR,xS ,xT ) = (xr1 , . . ., xri
, xs1 , . . ., xsj

, xt1 , . . ., xtn−i−j
),

and where r1 < . . . < ri, s1 < . . . < sj , and t1 < . . . < tn−i−j. If i or j is equal to 0, then we may

suppress them by writing
x

sym
2

for
x

sym
2,0

, for example.

The following result gives an expression for the result of applying the symmetrization operator Ξn

to the Join-cut Equation for the Hurwitz series.

Theorem 3.1 (see [GJVai] Thm. 4.4). The series Ξn H
g
n satisfy the partial differential equation

(

n
∑

i=1

wi
∂

∂wi

+ n+ 2g − 2

)

Ξn H
g
n(x1, . . ., xn) = T1 + T2 + T3 + T4,

where

T1 = 1
2

n
∑

i=1

(

xi∂

∂xi

xn+1∂

∂xn+1
Ξn H

g−1
n+1(x1, . . ., xn+1)

)∣

∣

∣

∣

xn+1=xi

,

T2 =
x

sym
1,1

w2

1 −w1

1

w1 − w2

x1∂

∂x1
Ξn H

g
n−1(x1, x3, . . ., xn),

T3 =

n
∑

k=3

x
sym
1,k−1

(

x1∂

∂x1
Ξn H

0
k(x1, . . ., xk)

)(

x1∂

∂x1
Ξn H

g
n−k+1(x1, xk+1, . . ., xn)

)

,

T4 = 1
2

∑

1≤k≤n,

1≤a≤g−1

x
sym
1,k−1

(

x1∂

∂x1
Ξn H

a
k (x1, . . ., xk)

)(

x1∂

∂x1
Ξn H

g−a
n−k+1(x1, xk+1, . . ., xn)

)

,

for n, g ≥ 1, with initial condition Ξn H
g
0 = 0 for g ≥ 1.

Here we shall only consider Theorem 3.1 for n ≥ 1, g ≥ 2 and n ≥ 2, g = 1, and note that for
this range of values, Ξn H

0
i only arises in this equation for i ≥ 3. In the statement of the result, a

meaning is attached to (wi − wj)
−1 for 1 ≤ i < j ≤ n by imposing the total order w1 ≺ . . . ≺ wn,

and then defining (wi −wj)
−1 = −w−1

j (1−wi/wj)
−1. This then defines a formal power series ring

in w1 with coefficients that are formal Laurent series in w2, . . ., wn (see Xin [X]).

We now consider the partial differential equation for a genus generating series Ωn(y1, . . ., yn; t),
which arises by applying M C to the symmetrized Join-cut Equation given in Theorem 3.1. For this
purpose, let O f and E f denote, respectively, the odd and even subseries of the formal power series
f in the indeterminate t.
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Theorem 3.2. Let

Ωn(y; t) =
∑

g≥1

(−1)3g−3+n

cg
M C Ξn H

g
n

t2g−3+n

(2g − 3 + n)!
, n ≥ 1.

Then, for n ≥ 2, we have the partial differential equation

(n− 1)
∂

∂t
Ωn(y; t) =

y
sym
1,1

y3
1y2

y1 − y2

∂

∂y1
Ωn−1(y1, y3, . . ., yn; t),

with initial condition Ω1(y1; t) = E
y1

1−y1t
.

Proof. We begin by applying C to Theorem 3.1, and note that

C
w2

1 − w1

1

w1 − w2
= y2

1

y2 − 1

y1 − y2
.

Let ∆y
j = (y3

j −y
2
j )

∂
∂yj

. Then this result, together with (12), transforms the equation in Theorem 3.1

into a partial differential equation for C Ξn H
g
n given by

(17)

(

n
∑

i=1

yi(yi − 1)
∂

∂yi
+ n+ 2g − 2

)

C Ξn H
g
n(y1, . . ., yn) = T ′

1 + T ′
2 + T ′

3 + T ′
4,

where n ≥ 2, g = 1 or n ≥ 1, g ≥ 2, and

T ′
1 = 1

2

n
∑

i=1

(

∆y
i ∆y

n+1 C Ξn H
g−1
n+1(y1, . . ., yn+1)

)∣

∣

∣

yn+1=yi

,

T ′
2 =

y
sym
1,1

y2
1

y2 − 1

y1 − y2
∆y

1 C Ξn H
g
n−1(y1, y3, . . ., yn),

T ′
3 =

n
∑

k=3

y
sym
1,k−1

(

∆y
1 C Ξn H

0
k(y1, . . ., yk)

) (

∆y
1 C Ξn H

g
n−k+1(y1, yk+1, . . ., yn)

)

,

T ′
4 = 1

2

∑

1≤k≤n,
1≤a≤g−1

y
sym
1,k−1

(∆y
1 C Ξn H

a
k (y1, . . ., yk))

(

∆y
1 C Ξn H

g−a
n−k+1(y1, yk+1, . . ., yn)

)

.

Now apply M to (17), and use (16). With the notation Ωg
n = M C Ξn H

g
n, the only non-zero

contributions on the left hand side arise from
(

−

n
∑

i=1

yi
∂

∂yi
+ n+ 2g − 2

)

Ωg
n = (−(2g − 3 + 2n) + n+ 2g − 2) Ωg

n = (1 − n)Ωg
n,

since all terms in Ωg
n have total degree 2g − 3 + 2n. On the right hand side, all contributions from

terms T ′
1, T

′
3 and T ′

4 are zero. For T ′
2, the only non-zero contributions arise from

y
sym
1,1

y4
1

y1 − y2

∂

∂y1
Ωg

n−1(y1, y3, . . ., yn),

from degree considerations alone. However, note that y4
1/(y1 − y2) = y3

1 + y3
1y2/(y1 − y2), and we

conclude that, for full terms, the non-zero contributions from T ′
2 are given by

y
sym
1,1

y3
1y2

y1 − y2

∂

∂y1
Ωg

n−1(y1, y3, . . ., yn).

Thus, we obtain the partial differential equation

(18) (1 − n)Ωg
n(y) =

y
sym
1,1

y3
1y2

y1 − y2

∂

∂y1
Ωg

n−1(y1, y3, . . ., yn),

for n ≥ 2, g ≥ 1.
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Now multiply this equation for Ωg
n by (−1)3g−4+nt2g−4+n/cg(2g − 4 + n)!, and sum over g ≥ 1,

to obtain the partial differential equation for Ωn, n ≥ 2. For n = 1, we have

Ωg
1 = (−1)3g−2〈τ2g−2λg〉g(2g − 2)!y2g−1

1 ,

from Theorem 2.1, which gives Ω1(y1; t) =
∑

g≥1 y
2g−1
1 t2g−2, and the result follows. �

The partial differential equation in Theorem 3.2 is simple enough that it can be solved explicitly.

Theorem 3.3. For n ≥ 1,

Ωn(y; t) =























E

n
∏

i=1

yi

1 − yit
, for n odd,

O

n
∏

i=1

yi

1 − yit
, for n even.

Proof. Let Fn(y; t) =
∏n

i=1
yi

1−yit
. Then we have

y
sym
1,1

y3
1y2

y1 − y2

∂

∂y1
Fn−1(y1, y3, . . ., yn; t) = Fn(y; t)

y
sym
1,1

y2
1(1 − y2t)

(y1 − y2)(1 − y1t)
.

But the symmetrized term on the right hand side of this equation becomes

y
sym

2

y2
1(1 − y2t)

2 − y2
2(1 − y1t)

2

(y1 − y2)(1 − y1t)(1 − y2t)
=

y
sym

2

(

y1

1 − y1t
+

y2

1 − y2t

)

= (n − 1)
n
∑

i=1

y1

1 − y1t
,

and we thus have

y
sym
1,1

y3
1y2

y1 − y2

∂

∂y1
Fn−1(y1, y3, . . ., yn; t) = (n − 1)

∂

∂t
Fn(y; t).

This proves that Fn(y; t) is a solution to the partial differential equation given in Theorem 3.2,
and the result follows from the initial conditions and the parity restrictions on the generating series
Ωn(y; t). �

4. Proof of the λg-Conjecture

Now we can prove the λg-Conjecture stated as Theorem 1.1.

Proof. We have
∏n

i=1(1−yit)
−1 =

∑

k≥0 hk(y)tk, where hk(y) is the kth complete (or homogeneous)
symmetric function, given by

hk(y) =
∑

α`0k,

l(α)=n

mα(y).

Then, immediately from Theorem 3.3, we obtain

Ωg
n(y) = cg(−1)3g−3+n(2g − 3 + n)! y1 · · · yn

∑

α`02g−3+n,

l(α)=n

mα(y).

and the result follows by comparing this result with Theorem 2.1. �

5. The philosophy of the general approach

The approach stands in a more general geometric-combinatorial setting, and although we do not
need much of this setting here, we do require it for our proof [GJV3] of Faber’s intersection number
conjecture (for a small number of points). This more general setting provides a useful perspective
for the proof that we have given of the λg-Conjecture.
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5.1. A bridge between geometry and combinatorics. The general approach is based on the
observation that localization theory (developed in Gromov-Witten theory by [GP]), when applied
to the cases that have been described above, expresses a series in the intersection numbers in terms
of a sum over combinatorial structures (such as trees or graphs) that are weighted by Hurwitz
numbers Hg

α (or double Hurwitz numbers in the case of Faber’s Conjecture). An account of this is
given in [V]. In this sense, localization theory provides a bridge from the geometry of intersection
numbers for the moduli spaces of curves on the one hand, to branched covers on the other. As we
have seen, the latter may be regarded as combinatorial structures.

Associated with the generating series for transitive ordered factorizations into transpositions is
a functional equation that leads to an implicitly defined set of series. These, together with the
combinatorial structure (trees, graphs) that are a consequence of the use of localization theory,
determine an implicit change of variables. Although the functional equation is transcendental, the
derivatives of its solution are, in effect, rational in the solution. It is precisely this rationality that
leads to the polynomiality property and thence to a linear system of equations for the intersection
numbers.

The usefulness of this general point of view is reinforced by the following observations. First,
it enables us to obtain other Hodge integrals. Secondly, our proof of Faber’s intersection number
conjecture (for a small number of points) uses localization theory to create a sum over a particular
class of trees weighted by genus 0 double Hurwitz numbers, which we subject to a similar but more
complex (combinatorial) analysis.

5.2. Integrable systems, recent developments and closing comments. The λg-Conjecture,
a statement about the moduli space of curves, or the factorization of transpositions, should not need
to follow from Gromov-Witten theory. This work was motivated by the fact that the other three
intersection-number conjectures either follow or might be expected to follow from understanding
the algebraic structure of Hurwitz-type numbers. In each case, there is a natural change of variables
(motivated by the string and dilaton equations); and in each case, there is a connection to integrable
hierarchies. We point out the following recent developments: i) Kazarian and Lando’s [KaL]
and Kim and Liu’s [KiL] short proofs of Witten’s conjecture (the Mg,n case); ii) Shadrin and
Zvonkine’s description and proof of a Witten-type theorem on the conjectural compactified Picard
variety (related to one-part double Hurwitz numbers), relating the intersection theory to integrable
hierarchies [SZ]; and iii) our proof of Faber’s intersection number conjecture for up to three points,
using “Faber-Hurwitz numbers,” [GJV3].

Finally, the Join-cut Equation seems intertwined in some way with integrable hierarchies, but
the precise connection is not yet clear. For example, it is a non-trivial task to go from the Join-cut
Equation to Witten’s Conjecture.

Acknowledgments. We thank R. Cavalieri, S. Lando, S. Shadrin and D. Zvonkine for com-
ments which have improved the manuscript, and the third author thanks T. Graber for helpful
conversations.

Appendix A. Intersection numbers k higher than minimum

In principle, the formalism that we have described can be used also to obtain 〈τα1 · · · ταnλg−k〉g for
k > 0. This is a useful property of our formalism and one that is not presently shared by approaches
to this question through algebraic geometry. In demonstrating this property, we confine ourselves
to stating the necessary results and to giving explicit generating series for the case k = 1 (next to
minimum) and for a few values of (g, n).

A.1. The general case. By extending Theorem 2.1 to obtain full terms of total degree one higher
than the “minimum,” we obtain the following result that identifies 〈τα1 · · · ταnλg−1〉g as a coefficient
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in the generating series Λg
n,1, where we use the notation Λg

n,k = F2g−3+2n+k C Ξn H
g
n for the terms

that are k higher than minimum total degree, k ≥ 0.

Theorem A.1. For n, g ≥ 1 and n ≥ 3, g = 0,

Λg
n,1(y) = y1 · · · yn(−1)3g−3+n

∑

β`02g−2+n,

l(β)=n

〈τβ1 · · · τβn
λg−1〉gβ1! · · · βn!mβ(y)

+(−1)3g−2+ncg(2g − 3 + n)! y1 · · · yn

2g−2+n
∑

k=2





k−1
∑

j=1

1

j



 pk(y)h2g−2+n−k(y).

where β = (β1, . . ., βn).

By extending Theorem 3.2, we obtain a partial differential equation that is satisfied by the
generating series Λg

n,1. This is stated in the following theorem. (Recall that Ωg
n = Λg

n,0, where Ωg
n

is used in the proof of Theorem 3.2.)

Theorem A.2. For g, n ≥ 1,

Λg
n,1(y) +

1

n

y
sym
1,1

y3
1y2

y1 − y2

∂

∂y1
Λg

n−1,1(y1, y3, . . . , yn) =
1

n

(

T
′′

1 + · · · + T
′′

4

)

where

T
′′

1 =

(

n
∑

i=1

y2
i ∂

∂yi

)

Ωg
n−1(y),

T
′′

2 = 2
y

sym
1,1

y4
1y2

y1 − y2

∂

∂y1
Ωg

n−1(y1, y3, . . ., yn),

T
′′

3 = −
n
∑

k=3

y
sym
1,k−1

(

y2
1∂

∂y1
Ω0

k(y1, . . ., yk)

)(

y2
1∂

∂y1
Ωg

n−k+1(y1, yk+1, . . ., yn)

)

,

T
′′

4 = −1
2

∑

1≤k≤n,

1≤a≤g−1

y
sym
1,k−1

(

y2
1∂

∂y1
Ωa

k(y1, . . ., yk)

)(

y2
1∂

∂y1
Ωg−a

n−k+1(y1, yk+1, . . ., yn)

)

where Λg
0,1 = Ωg

0 = 0 for all g.

Note that the right hand side of the partial differential equation for Λg
n,1 in Theorem A.2 involves

only the previously determined series Ωg
n = Λg

n,0. A similar partial differential equation can be

derived for the generating series Λg
n,k, given in general form in the following result.

Theorem A.3. For k ≥ 0,

Λg
n,k(y) +

1

n+ k − 1

y
sym
1,1

y3
1y2

y1 − y2

∂

∂y1
Λg

n−1,k(y1, y3, . . ., yn)

depends only upon Λl
j,i for 0 ≤ i < k, 0 ≤ l ≤ g, 1 ≤ j ≤ n.

We observe that Theorem A.2 agrees with the case k = 1, and that equation (18) agrees with
the case k = 0, in which the right hand side is identically zero. We do not know how to exploit the
fact that the partial differential operator applied to Λg

n−1,k in Theorem A.3 is independent of k.

A.2. Explicit results for k = 1.
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A.2.1. The genus g = 1 case. For the genus g = 1 case we have the following corollary of The-
orem A.2 that, together with Theorem A.1, gives an explicit expression for the generating series
Λg

n,1 for the intersection numbers 〈τβ1 · · · τβn
λg−1〉g.

Corollary A.4.

Λ1
n,1(y) =

(−1)n+1

24
(n− 1)!y1 · · · yn

n
∑

k=2





k−1
∑

j=1

1

j



 pk(y)hn−k(y) +
(−1)n

24
n!y1 · · · ynhn(y)

+
(−1)n−1

24
y1 · · · yn

n
∑

i=2

n
∑

m=i

n−m
∑

k=0

(i− 2)!(n − i)!(−1)m−i

(

m

i

)

em(y)hk(y)hn−k−m(y).

The resolutions of the generating series 24Λ1
n,1, in which g = 1, with respect to the monomial

symmetric functions mθ, where θ is a partition, are listed below for 1 ≤ n ≤ 6. They are obtained
directly from Corollary A.4. (Note that 24 = c−1

1 .)

g n 24Λ1
n,1

1 1 −m2

1 2 m3 1 +m22

1 3 −m4 12 − 2m3 2 1 − 2m22

1 4 −2m5 13 + 3m4 2 12 + 4m32 12 + 6m3 22 1 + 6m24

1 5 34m6 14 + 8m5 2 13 − 12m4 22 12 − 16m32 2 12 − 24m3 23 1 − 24m25

1 6 −324m7 15 − 170m6 2 14 − 112m5 3 14 − 40m5 22 13 − 96m42 14

+60m4 23 12 + 24m33 13 + 80m32 22 12 + 120m3 24 1 + 120m26 .

The intersection numbers 〈τα1 · · · ταnλg−1〉g for g = 1 are then given by Theorem A.1.

A.2.2. The arbitrary genus case. The next table gives generating series c−1
g Λg

n,1 for g = 2, . . . , 5
and for a few values of n. The series are obtained from Theorem A.2.

g n c−1
g Λg

n,1

2 1 37m4

2 2 −106m5 1 − 111m4 2 − 116m32

2 3 362m6 12 + 424m5 2 1 + 444m4 3 2 + 444m4 22 + 464m32 2

3 1 −3426m6

3 2 16836m7 1 + 17130m6 2 + 17424m5 3 + 17424m42

4 1 61164m8

4 2 −4249232m9 1 − 4278148m8 2 − 4307064m7 3 − 4311180m6 4 − 4315296m52

5 1 −180519696m10

5 2 1619765280m11 1 + 1624677264m10 2 + 1629589248m9 3

+1630276704m8 4 + 1630964160m7 5 + 1630964160m62 .
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