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A SHORT PROOF OF UNIQUE ERGODICITY OF

HOROSPHERICAL FOLIATIONS ON INFINITE VOLUME

HYPERBOLIC MANIFOLDS

BARBARA SCHAPIRA

Abstract. We provide a new proof of the fact that the horospherical group N < G =
SOo(d, 1) acting on the frame bundle Γ\G of a hyperbolic manifold admits a unique invariant

ergodic measure (up to multiplicative constants) supported on the set of frames whose orbit
under the geodesic flow comes back infinitely often in a compact set. This result is known,

but our proof is more direct and much shorter.

1. Introduction

The (unstable) horocycle flow on the unit tangent bundle of compact hyperbolic
surfaces is uniquely ergodic. Furstenberg [6] proved that the Liouville measure
is the unique invariant measure under this flow. This result has been extended to
many noncompact situations. On finite volume hyperbolic surfaces, Dani [4] proved
that the Liouville measure is the unique finite invariant ergodic measure, except
for the measures supported on periodic orbits. On convex-cocompact hyperbolic
surfaces, Burger [2] proved that there is a unique locally finite ergodic invariant
measure. It also follows from a result of Bowen-Marcus establishing the unique
ergodicity of strong (un)stable foliations. Babillot-Ledrappier [1] and Sarig [10]
described completely the set of invariant ergodic measures of the horocyclic flow on
abelian covers of compact hyperbolic surfaces.

Roblin [9] proved in a much more general context that the unstable horocyclic
flow admits a unique invariant ergodic Radon measure whose support is the set of
vectors whose negative geodesic orbit comes back infinitely often to a compact set,
as soon as the geodesic flow admits a finite measure of maximal entropy.

The goal of this note is to provide a new simpler proof of his result, inspired
by the arguments of [3] in the case of surfaces of finite volume, with additional
ingredients to deal with the fact that when the manifold has infinite volume, there
is in general no ergodic invariant measure which is invariant and ergodic under both
the geodesic flow and its strong (un)stable foliation.

Let us state the result more precisely.
Let M = Γ\Hd be a hyperbolic manifold of dimension n with infinite volume. Let

G = SOo(d, 1) the group of isometries preserving orientation of Hd, and G = NAK
its Iwasawa decomposition. The homogeneous space Γ\G is the frame bundle over
M = Γ\G/K. The action of A = {at, t ∈ R} by right multiplication on Γ\G is the
natural lift of the action of the geodesic flow on the unit tangent bundle T 1M : at

moves the first vector v1 of a frame x = (v1, . . . , vd) as the geodesic flow gt at time t
on T 1M does, and the other vectors of the frame follow by parallel transport along

Math. classification: 22E40, 22D40, 28D15, 37A17, 37A25.
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the geodesic of v1. The N -orbits on Γ\G are the strong unstable manifolds of this
A-action, and project to T 1M onto the strong unstable leaves of the geodesic flow.

Our result is the following.

Theorem 1.1. — Let M = Γ\Hd be a hyperbolic manifold. Assume that Γ
is Zariski dense and that the geodesic flow on T 1M admits a probability measure
maximizing entropy. Then there is a unique (up to multiplicative constants) N -
invariant conservative measure giving full measure to the set

EF
rad = {x ∈ Γ\G : xa−t returns infinitely often to a compact set }.

This result has been proved by Winter [12] on the frame bundle Γ\G as a (non-
trivial) corollary of Roblin’s work on T 1M = Γ\G/L. Here, we provide a direct
proof on Γ\G, much simpler than Roblin’s proof.

Let us emphasize the differences between our result and Roblin’s work. Rob-
lin [9] deals with the geodesic flow on the unit tangent bundle of quotients of
CAT (−1)-spaces, that is metric spaces whose geometry is similar to the geome-
try of a negatively curved manifold. This setting is much more general than the
geodesic flow on the unit tangent bundle of a hyperbolic manifold.

His result as our result is true under the assumption that the geodesic flow ad-
mits a probability measure maximizing entropy. He proves that the strong unstable
foliation of the geodesic flow admits a unique (up to multiplicative constants) trans-
verse invariant measure which gives full measure to the set Erad of vectors v whose
geodesic orbit (g−tv)t>0 returns infinitely often in a compact set.

Our result is valid under a much more restrictive geometric assumption (hy-
perbolic manifolds). However, first, it is valid for the strong unstable foliation
(parametrized by the orbits of the group N) of the geodesic flow (parametrized
by the diagonal group A) on the frame bundle, and not only on the unit tangent
bundle. As the frame bundle Γ\G is a fiber bundle over the unit tangent bundle
T 1(Γ\Hd), with fiber isomorphic to L = SO(d− 1), any transverse invariant mea-
sure to the strong unstable foliation of the geodesic flow on the unit tangent bundle
can be lifted (by taking the product locally with the Haar measure of SO(d − 1))
to a transverse invariant measure to the strong unstable foliation of the A-orbits on
Γ\G. Taking the product locally with the Haar measure of N gives a N -invariant
measure. Therefore, additional work (done by Winter in [12]) is needed to get a
unique ergodicity result on the frame bundle Γ\G. Thus, in the setting of hyper-
bolic manifolds, our result (the same as Winter’s result) is stronger than Roblin’s
theorem.

But the main interest of our result is the proof, which is short, shorter than
Roblin’s proof and gives directly Winter’s result. The main ingredient is the same in
both cases, the mixing property of the measure of maximal entropy of the geodesic
flow. However, we follow an idea of Coudène [3], which allows to get a much
simpler argument, and could maybe allow in the future to remove the assumption
of existence of a finite measure of maximal entropy. The key additional ingredients
are a trick already used in preceding works of the author, allowing to compare
the measure of maximal entropy of the geodesic flow with a natural N -invariant
measure supported in EF

rad, with an ergodic tool provided in [7]. These arguments
allow to generalize Coudene’s argument to manifolds of infinite volume.
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Note also that Hochman’s result can be used only in constant negative curvature,
when the horospherical group N is isomorphic to R

n−1. In variable negative curva-
ture, this proof could probably work in dimension n = 2, when N is parametrized
by a horocyclic flow, so that classical Hopf’s ergodic theorem can be used instead
of Hochman’s result. In this case, the frame bundle coincides with the unit tangent
bundle, and we would recover exactly Roblin’s result.

We will comment further the difference between the two proofs at the end of the
paper.

2. Infinite volume manifolds, actions of A and N

Let G = SOo(d, 1) be the group of direct isometries of the hyperbolic n-space
H

d. Let M = Γ\Hd be a hyperbolic manifold, where Γ is a discrete group without
torsion.

The limit set ΛΓ := Γ.x \ Γ.x is the set of accumulation points of any orbit of Γ
in the boundary ∂Hd. We assume Γ to be non elementary, i.e. it is not virtually
abelian, or equivalently, the set ΛΓ of its limit points in the boundary is infinite.

Let K = SO(n) be the stabilizer in G of the point o = (0, . . . , 0, 1) ∈ H
d, and

L = SO(d − 1) the stabilizer of the unit vector (0, . . . , 0, 1) based at o. Then
the unit tangent bundle T 1M is identified with Γ\G/L whereas the homogeneous
space Γ\G is identified with the frame bundle over T 1M , whose fiber at any point
is isomorphic to L. Denote by π : T 1M → M the natural projection.

The Busemann function is defined on ∂Hd × H
d × H

d by

βξ(x, y) = lim
z→ξ

d(x, z) − d(y, z).

The following map is a homeomorphism from T 1
H

d to ∂Hd ×∂Hd \{diagonal}×R :

v 7→ (v−, v+, βv−(π(v), o)).

In these coordinates, the geodesic flow acts by translation on the R-coordinate, and
an isometry γ of Hd acts as follows: γ.(v−, v+, s) = (γ.v−, γ.v+, s+ βv−(o, γ−1o)).
This homeomorphism induces on the quotient a homeomorphism from T 1M to
Γ\

(

∂Hd × ∂Hd \ {diagonal} × R
)

.
The strong unstable manifold

W su(v) = {w ∈ T 1M,d(g−tv, g−tw) → 0 when t → +∞}

of a vector v = (v−, v+, s) ∈ T 1
H

d under the geodesic flow is exactly the set of
vectors w = (v−, w+, s), for w+ ∈ ∂Hd.

As said in the introduction, the action of the geodesic flow on T 1M lifts into the
A-action by right multiplication on Γ\G. Denote by at ∈ A, for t ∈ R, the element
whose action moves the first vector of a frame as the geodesic flow gt does on T 1M .
The strong unstable manifold of a frame x ∈ G under the action of A is exactly its
N -orbit xN .

The nonwandering set of the geodesic flow Ω ∈ T 1M is exactly the set of vectors
v ∈ T 1M such that v± ∈ ΛΓ. The nonwandering set ΩF of the action of A in
Γ\G is simply the set of frames whose first vector is in Ω. The point is that ΩF is
not N -invariant. Let EF = ΩF .N and E its projection on T 1M , that is the set of
vectors v ∈ T 1M such that v− ∈ ΛΓ.
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The difficulty in general is to deal with ΩF and EF , to get informations on the
dynamics of N on EF thanks to the knowledge of the A-action on ΩF and vice
versa.

3. Ergodic theory

3.1. Measures on the boundary. The Patterson-Sullivan δΓ-conformal density is
a family (νx)x∈Hd of equivalent measures on the boundary giving full measure to ΛΓ,
and satisfying the two crucial properties, for all γ ∈ Γ and νx-almost all ξ ∈ ΛΓ :

γ∗νx = νγx and
dνy

dνx

(ξ) = exp(δΓβξ(x, y)).

Given any x ∈ H
d, there is a canonical homeomorphism between the unit sphere

T 1
xH

d and the boundary at infinity, associating to a vector v the endpoint of the
geodesic that it defines. The family (λx) of Lebesgue measures on the unit spheres
T 1

xH
d, seen as measures on the boundary, satisfy a similar property as the Patterson-

Sullivan family of measures: for all g ∈ G and λx-almost all ξ ∈ ΛΓ :

g∗λx = λgx and
dλy

dλx

(ξ) = exp((d− 1)βξ(x, y)).

3.2. Invariant measures under the geodesic flow on T 1M and the A-action

on Γ\G. We define a Γ-invariant measure m̃BM on T 1
H

d = G/L, in terms of the
Hopf coordinates, by

dm̃BM (v) = e(δΓβv+ (o,π(v))+δΓβ
v− (o,π(v)))dνo(v−) dνo(v+)dt.

This measure is also invariant under the geodesic flow. We denote by mBM the
induced measure on T 1M , known as the Bowen-Margulis measure.

This measure lifts in a natural way to the frame bundle Γ\G. Indeed, as said
in the introduction, the frame bundle is a fiber bundle over T 1(Γ\G), with fiber
isomorphic to L = SO(d − 1). Thus, we take locally the product of the Bowen-
Margulis measure with the Haar measure on L. We denote the resulting measure,
still called the Bowen-Margulis measure, by mF

BM .
It is well known that when this measure mF

BM is finite (or equivalently mBM

on T 1M is finite), it gives full measure to the set ΩF
rad (1) of frames whose A-orbit

return infinitely often in the future and in the past to a compact set.

3.3. Invariant measures under the action of N on Γ\G. The measure mF
BM

on Γ\G is not invariant under the N -action. However, its product structure allows
to build such a measure. The Burger-Roblin measure is defined on T 1

H
d by

dm̃BR(v) = e((d−1)βv+ (o,π(v))+δΓβ
v− (o,π(v)))dνo(v−) dλo(v+)dt.

It is Γ-invariant, quasi-invariant under the geodesic flow, and we denote by mBR

the induced measure on the quotient, called Burger-Roblin measure.
Its lift mF

BR to the frame bundle (by doing the local product with the Haar
measure of L, as above) is N -invariant. Indeed, it can be written locally as follows.

1The notation ΩF

rad
comes from the fact that the frames of ΩF

rad
are exactly the frames whose

positive and negative endpoints in the boundary belong to the so-called radial limit set.
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Let v ∈ T 1(Γ\G) be a vector. Its fiber in Γ\G is isomorphic to L = SO(d − 1).
The lift of the measure mBR to Γ\G can be written locally as

dmF
BR = eδΓβ

v− (o,π(v)) dνo(v−) e(d−1)βv+ (o,π(v)) dλo(v+) dt dl

and an elementary computation shows that the measure e(d−1)βv+ (o,π(v)) dλo(v+)
on the strong unstable manifold of a frame coincides exactly with the Haar measure
dn of N .

It is well known that, when the Bowen-Margulis measure is finite, the Burger-
Roblin measure gives full measure to the set EF

rad of frames whose negative A-orbit
returns infinitely often in the past to a compact set.

3.4. Comparison of the Bowen-Margulis and the Burger-Roblin measure.

In any local chart B of the strong unstable foliation of A, whose leaves are here
the N -orbits, these measures have a very similar form, the product of the same
transverse measure νT , by a measure on the leaves. The transverse measure (νT )
is a collection of measures on all transversals to the foliation by N -orbits, which is
invariant by holonomy.

A natural family of transversals to the strong unstable foliation of the geodesic
flow on T 1(Γ\Hd) is the family of weak stable manifolds of the geodesic flow. On
the frame bundle Γ\G, the weak stable manifolds of the A-action are the preimage
(by the natural projection Γ\G → T 1(Γ\Hd) ) of the precedings.

As said above, the Burger-Roblin and the Bowen-Margulis measures can both
be written locally as the (noncommutative) "product" of a family of measures on
the N -orbits by a transverse measure νT , defined on any weak stable manifold of a
frame x whose first vector is v = (v−, v+, t) by dνT (x) = eδΓβ

v− (o,π(v)) dνo(v−) dt dl.
In the chart B of the foliation, denote by T a transversal, and for z ∈ T , let NB(z)

be the local leaf of the foliation intersected with B. For all continuous functions
ϕ : Γ\G → R supported in B, we have

∫

ϕdmF
BR =

∫

T

∫

NB(z)

ϕ(x)dλzN (x)dνT (z),

whereas
∫

ϕdmF
BM =

∫

T

∫

NB(z)

ϕ(x)dµBM
zN (x)dνT (z),

where dλzN = dn and dµBM
zN are respectively the conditional measures of mF

BR and
mF

BM on the N -orbits.

3.5. Mixing of the geodesic flow. When it is finite, the measure mBM on T 1M
is mixing. Filling a gap in [5] Flaminio-Spatzier, Winter [12] proved that its lift
mF

BM to Γ\G is also mixing, as soon as the group Γ is Zariski dense.
As a corollary, he gets the following equidistribution result of averages pushed

by the flow. Let x ∈ ΩF be a frame, and ϕ : Γ\G → R be a continuous map with
compact support. Define the following averages

M t
1(ϕ)(x) =

1

µBM
xN (xN1)

∫

xN1

ϕ(y.at) dµ
BM
xN (y),

where N1 = {n ∈ N, |n| 6 1}.
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Theorem 3.1 (Winter [12]). — Let Γ < SOo(d, 1) be a Zariski dense discrete
subgroup, such that the Bowen-Margulis measure mF

BM is finite. Then it is mixing.
As a consequence, for all x ∈ ΩF and ϕ continuous with compact support, the
averages M t

1(ϕ)(x) converge towards
∫

Γ\G
ϕdmF

BM when t → +∞.

3.6. Higher dimensional version of Hopf’s ratio ergodic theorem. As the
group N is isomorphic to R

d−1, with d > 2 arbitrarily large, we will need a higher
dimensional version of the ergodic theorem, for the N -action on Γ\G. As the
natural N -invariant measure mF

BR is infinite, we need a version of Hopf ratio ergodic
theorem for actions of Rd. The desired result is the following.

Theorem 3.2 (Hochman [7]). — Consider a free, ergodic, measure-preserving
action (φt)t∈Rd of R

d on a standard σ-finite measure space (X,B, ν). Let ‖.‖ be
any norm on R

d and Br = {t ∈ R
d, ‖t‖ 6 r}. Then for every f, g ∈ L1(X, ν), with

∫

g dν 6= 0 we have
∫

Br
f(φtx)dt

∫

Br
g(φtx)dt

→

∫

X
fdν

∫

X
gdν

almost surely.

4. Proof of the unique ergodicity

Assume that ν is a N -invariant ergodic and conservative measure on EF
rad = {x ∈

EF ⊂ Γ\G : xa−t comes back i.o. in a compact set}.
We will show that the Burger-Roblin measure mF

BR is absolutely continuous w.r.t
ν, and conservative for the N -action. It will show that mBR is ergodic (consider
for ν the restriction of mBR to any invariant set of positive measure), and imply
the theorem.

More precisely, we will show that for any relatively compact chart B of the
foliation in N -orbits of EF

rad, there exists a constant CB > 0 such that for any
continuous map ϕ with support in B,

∫

ϕdmF
BR 6 CB

∫

ϕdν.
Choose a generic frame x ∈ EF

rad w.r.t ν, i.e. a frame whose N -orbit becomes
equidistributed towards ν. Without loss of generality, translating x along its N -
orbit, we can assume that

x ∈ Ω ∩ EF
rad = {x ∈ ΩF ⊂ Γ\G,xa−t comes back i.o. in a compact set}.

Therefore, we know that there exists a sequence tk → +∞, such that xa−tk

converges to some frame x∞ ∈ ΩF .
Without loss of generality, we can assume that the boundaries of the following

unit balls on N -orbits have measure zero:

µx∞N (∂(x∞N1)) = 0 , and for all k ∈ N µxa−tk
N (∂(xa−tk

N1)) = 0.

Indeed, if it were not the case, as µx∞N and µxa−tk
N for all k are Radon mea-

sure, there are at most countably many radii r s.t. µx∞N (∂(x∞Nr)) > 0 or
µxa−tk

N (∂(xa−tk
Nr)) > 0. Choose ρ close to 1 such that all these measures of

boundaries of balls of radius ρ are zero, and change tk into tk + log ρ, x∞ into
x∞a− log ρ. As the measures µx∞.a− log ρN and (a− log ρ)∗µx∞N are proportional, we
get µx∞a− log ρN (∂(x∞a− log ρN1)) = 0, and µxa− log ρa−tk

N (∂(xa− log ρa−tk
N1)) = 0.
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Choose any nonnegative continuous map ϕ with compact support in B s.t.
∫

ϕdν > 0. We will prove that for some positive finite constant CB, the follow-
ing inequality holds.

∫

ϕdmF
BR

mF
BR(B)

6 CB

∫

ϕdν
∫

1B dν
.

This will imply the theorem.
The first important ingredient is an equicontinuity argument.
Let xN1 be the N -ball around x inside xN . For any continuous map ϕ, x ∈ Γ\G

and t > 0, define

M t
1(ϕ)(x) =

1

µBM
xN (xN1)

∫

xN1

ϕ(yat)dµ
BM
xN (y).

Proposition 4.1 (Equicontinuity). — Let ϕ be any uniformly continuous func-
tion. For all x ∈ Γ\G such that µxN (∂(xN1)) = 0, the maps x 7→ M t

1(ϕ)(x) are
equicontinuous in t > 0.

Proof. — The result is relatively classical for surfaces at least. This is written in
details on T 1M in any dimension here [11]. The assumptions in this reference are
slightly stronger, but the compactness assumption of [11] was used only to ensure
uniform continuity of ϕ.

The extension to Γ\G does not change anything. Indeed, the fibers of the fiber
bundle Γ\G → T 1M are included in the (weak) stable leaves of the A action.
Therefore, the argument still applies. We refer to [11], but the idea is as follows. If
x and x′ are very close along a weak stable leaf, the sets xN1at and x′N1at remain
at distance roughly d(x,x′) when t > 0.

If they are close and belong to the same N -orbit, then the assumption on the
boundary of the balls allows to ensure that their averages stay close for all t > 0.

If x and x′ are close, in general, there exists a frame x′′ ∈ xN on the weak stable
leaf of x′, so that combining both arguments above allows to conclude equiconti-
nuity. �

The next ingredient is mixing. As said in section 3 above, when t → +∞, for
all y ∈ ΩF

rad, we have M t
1(ϕ)(y) →

∫

Γ\G
ϕdmF

BM and M t
1(ψ)(y) →

∫

Γ\G
ψ dmF

BM ,

uniformly on compact sets.
From the above equicontinuity argument, we deduce relative compactness. In

particular, consider the compact set K = {x∞} ∪ {xa−tk
, k ∈ N}. Each frame

of K satisfies the assumption on the measure of the boundary of the N -ball of
radius 1. Therefore, there exists a subsequence of tk, still denoted by tk, such that
M tk

1 (ϕ)(x′) converges to
∫

ϕdmBM uniformly in x’ ∈ K.
Let us now observe that

M0
et(φ)(x) = M t

1(φ)(xa−t) and M0
et(ψ)(x) = M t

1(φ)(xa−t).

Therefore, as xa−tk converges to x∞, and by the above uniform convergence on the
compact K = {x∞} ∪ {xa−tk

, k ∈ N}, we have for all ϕ ∈ Cc(Γ\G)

1

µBM
xN (xNetk )

∫

xN
e

tk

ϕdµBM
xN →

∫

ϕdmF
BM (4.1)
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Of course, we deduce that for all ϕ,ψ continuous with compact support, and
∫

ψ dmF
BM > 0, the following convergence holds.

∫

xN
e

tk

ϕdµBM
xN

∫

xN
e

tk

ψ dµBM
xN

→

∫

ϕdmF
BM

∫

ψ dmF
BM

. (4.2)

By a standard approximation argument, the above convergence also holds for
ψ = 1B, with B any compact set satisfying mF

BM (B) > 0 and mF
BM (∂B) = 0.

Now, consider a small chart of the foliation B, with boundary of measure zero
for both measures mF

BM and mF
BR. It is possible as they are both Radon measures,

therefore finite on compact sets. Let ϕ and ψ be two continuous maps supported
in B. Then, the integral M tk

1 (ϕ)(xa−tk
) = M0

etk
(ϕ)(x) can be rewritten as

∫

T

∫

NB(z)

ϕdµBM
zN dνT,tk

+R(tk, ϕ),

where

νT,tk
=

1

µBM
xN (xNetk )

∑

z∈T ∩xN
e

tk

δz.

As we chose x∞ such that µBM
x∞N (∂(x∞N1)) = 0, we deduce, as in [8], that the error

term R(tk, ϕ), which is bounded from above by ‖ϕ‖∞.
µBM

xN ((xN
e

tk +r0
)\(xN

e
tk −r0

)

µBM
xN

(xN
e

tk
)

,

goes to 0 when tk → +∞.
As M0

etk
converges to mF

BM it implies that for all transversals T to the foliation
of Γ\G in N orbits, νT,tk

converges weakly to νT .
Coming back to our assumptions, thanks to theorem 3.2 we know that for all

continuous maps ϕ,ψ ∈ Cc(Γ\G) with
∫

ψ dν > 0, we have
∫

xNr
ϕ(xn)dn

∫

xNr
ψ(xn)dn

→

∫

Γ\G
ϕdν

∫

Γ\G
ψ dν

.

By a standard approximation argument, this convergence also holds for ψ = 1B

where B is a relatively compact chart of the foliation with ν(∂B) = 0.
Consider now such a box B, with ν(∂B) = mF

BR(∂B) = 0 and a transversal
T to the foliation into N -orbits inside B, and a map ϕ with support in B. Let
r0 = r0(B) > 0 be the maximal diameter of the connected components of N -orbits
inside B. By compactness, r0 is finite.

Observe that the following inequality holds for all nonnegative continuous maps
ϕ ∈ Cc(B).

∑

z∈T ∩xN
e

tk

∫

NB(z)
ϕdn

µBM
xN (xNetk )

×
µBM

xN (xNrk
)

∫

xNrk+r0

1B dn
6

∫

xNrk+r0

ϕdn
∫

xNrk+r0

1B dn
(4.3)

This inequality comes from the fact that for z ∈ T∩xNrk
, the connected component

of xN ∩ B containing z is certainly included in a ball (in zN) of radius r0 around
z.

Now, by the above work and the convergence of the transverse measure νT,tk

towards νT , the first ratio on the left converges to 1
mF

BR
(B)

∫

ϕdmF
BR. By assumption
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on ν, the ratio on the right converges to 1
ν(B)

∫

ϕdν. Therefore, necessarily, the
ratio

µBM
xN (xNrk

)
∫

xNrk+r0

1B dn

converges to some positive finite limit, depending on B.
Let us now conclude the proof. We just proved that for any relatively compact

chart of the foliation satisfying ν(B) > 0, mF
BR(B) > 0, ν(∂B) = mF

BR(∂B) =
mF

BM (∂B) = 0, there exists 0 < CB < ∞ such that for all continuous nonnegative
maps with support in B,

∫

ϕdmF
BR 6 CB

∫

ϕdν.
It implies that mF

BR is absolutely continuous w.r.t ν which is ergodic. If we
knew that mF

BR is conservative, for any N -invariant set Y of positive mF
BR, we

could apply the above to ν = (mF
BR)|Y , and get that mF

BR is absolutely continuous

w.r.t (mF
BR)|Y , and therefore equal. Therefore, if mF

BR is conservative, it is ergodic,
and has full support in Erad, and therefore is the unique N -invariant ergodic and
conservative measure supported on Erad.

The conclusion of the proof follows from the following lemma.

Lemma 4.2. — Under the assumptions of the theorem, the measure mF
BR is

conservative.

Proof. — Indeed, choose a compact chart B of the foliation in N -orbits such that
mF

BM (B) > 0 and mF
BM (∂B) = 0. The convergence in (4.1) together with the fact

that µBM
xN (xNr) → +∞ when r → +∞ implies that

∫

xN
1B(xn)dµBM

xN (xn) → +∞.
Recall that NB(z) is the connected component of zN ∩ B containing z. As B is

compact, we have

0 < inf
z∈B

µBM
zN (NB(z))
∫

NB(z)
1dn

6 sup
z∈B

µBM
zN (NB(z))
∫

NB(z)
1dn

< +∞.

This easily implies that
∫

xN
1B(xn)dn → +∞ for all x ∈ EF

rad, so that any invariant

measure supported on x ∈ EF
rad is conservative. �

Let us now make a brief comparison with Roblin’s argument. Once again, he
works on the unit tangent bundle, on more general CAT (−1)-spaces. He also uses
the convergence of subsequences Metk (ϕ)(x) to mF

BM . And he proves that mF
BR

is absolutely continuous w.r.t ν. But to prove that, he first integrates Metk (ϕ)(x)
w.r.t ν. As the good subsequences rk = etk depend strongly on the point x, he
needs to work very hard to find some r which is good enough for sufficiently many
x. This part of the proof is long and technical, and the approach of Yves Coudène,
that we extend here in the infinite volume and higher dimension case, is much
simpler.
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