A SHORT PROOF OF VAN DER WAERDEN'S THEOREM ON ARITHMETIC PROGRESSIONS

R. L. GRAHAM AND B. L. ROTHSCHILD

Abstract

A short proof is given for the classical theorem of van der Waerden which asserts that for any partition of the integers into a finite number of classes, some class contains arbitrarily long arithmetic progressions.

Let $[a, b]$ denote the set of integers x with $a \leqq x \leqq b$. We call $\left(x_{1}, \cdots, x_{m}\right)$, $\left(x_{1}^{\prime}, \cdots, x_{m}^{\prime}\right) \in[0, l]^{m} l$-equivalent if they agree up through their last occurrences of l. For any $l, m \geqq 1$, consider the statement

For any r, there exists $N(l, m, r)$ so that for any function $C:[1, N(l, m, r)] \rightarrow[1, r]$, there exist positive a, d_{1}, \cdots, d_{m} such that $C\left(a+\sum_{i=1}^{m} x_{i} d_{i}\right)$ is constant on each l-equivalence class of $[0, l]^{m}$.

FACT 1. $\quad S(l, m)$ for some $m \geqq 1 \Rightarrow S(l, m+1)$.
Proof. For a fixed r, let $M=N(l, m, r), M^{\prime}=N\left(l, 1, r^{M}\right)$ and suppose $C:\left[1, M M^{\prime}\right] \rightarrow[1, r]$ is given. Define $C^{\prime}:\left[1, M^{\prime}\right] \rightarrow\left[1, r^{M}\right]$ so that $C^{\prime}(k)=$ $C^{\prime}\left(k^{\prime}\right)$ iff $C(k M-j)=C\left(k^{\prime} M-j\right)$ for all $0 \leqq j<M$. By the inductive hypothesis, there exist a^{\prime} and d^{\prime} such that $C^{\prime}\left(a^{\prime}+x d^{\prime}\right)$ is constant for $x \in$ $[0, l-1]$. Since $S(l, m)$ can apply to the interval $\left[a^{\prime} M+1,\left(a^{\prime}+1\right) M\right]$, then by the choice of M, there exist a, d_{1}, \cdots, d_{m} with all sums $a+$ $\sum_{i=1}^{m} x_{i} d_{i}, x_{i} \in[0, l]$, in $\left[a^{\prime} M+1,\left(a^{\prime}+1\right) M\right]$ and with $C\left(a+\sum_{i=1}^{m} x_{i} d_{i}\right)$ constant on l-equivalence classes. Set $d_{i}^{\prime}=d_{i}$ for $i \in[1, m]$ and $d_{m+1}^{\prime}=d^{\prime} M$; then $S(l, m+1)$ holds.

FACT 2. $\quad S(l, m)$ for all $m \geqq 1 \Rightarrow S(l+1,1)$.
Proof. For a fixed r, let $C:[1,2 N(l, r, r)] \rightarrow[1, r]$ be given. Then there exist a, d_{1}, \cdots, d_{r} such that for $x_{i} \in[0, l], a+\sum_{i=1}^{r} x_{i} d_{i} \leqq N(l, r, r)$ and $C\left(a+\sum_{i=1}^{r} x_{i} d_{i}\right)$ is constant on l-equivalence classes. By the box principle there exist $u<v$ in $[0, r]$ such that

$$
C\left(a+\sum_{i=1}^{u} l d_{i}\right)=C\left(a+\sum_{i=1}^{v} l d_{i}\right) .
$$

Received by the editors February 1, 1973.
AMS (MOS) subject classifications (1970). Primary 05A99; Secondary 10L99.
Key words and phrases. van der Waerden's theorem, long arithmetic progressions.

Therefore $C\left(\left(a+\sum_{i=1}^{u} l d_{i}\right)+x\left(\sum_{i=u+1}^{v} d_{i}\right)\right)$ is constant for $x \in[0, l]$. This proves $S(l+1,1)$.

Since $S(1,1)$ holds trivially, then by induction $S(l, m)$ is valid for all $l, m \geqq 1$. Van der Waerden's theorem is $S(l, 1)$.

The authors point out that while previous proofs follow essentially the argument above, the one given is hopefully clearer.

References

1. R. L. Graham and B. L. Rothschild, Ramsey's theorem for n-parameter sets, Trans. Amer. Math. Soc. 159 (1971), 257-292. MR 44 \#1580.
2. A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229. MR 26 \#1265.
3. A. Ja. Hinčin, Three pearls of number theory, Graylock Press, Rochester, N.Y., 1952. MR 13, 724.
4. R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), 424-480.
5. B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927), 212-216.

Bell Laboratories, Murray Hill, New Jersey 07974
Department of Mathematics, University of California, Los Angeles, California 90024

