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We provide a review of selected computational methodologies that are based on the deterministic 	nite-di
erence time-domain
algorithm and are suitable for the investigation of electromagnetic problems involving uncertainties. As it will become apparent,
several alternatives capable of performing uncertainty quanti	cation in a variety of cases exist, each one exhibiting di
erent qualities
and ranges of applicability, which we intend to point out here. Given the numerous available approaches, the purpose of this paper
is to clarify the main strengths and weaknesses of the described methodologies and help the potential readers to safely select the
most suitable approach for their problem under consideration.

1. Introduction

Uncertainty quanti	cation commonly emerges as a signif-
icant and multiaspect issue in numerous engineering and
other scienti	c disciplines. In the context of electromagnetic
(EM) problems, randomness may appear in several forms,
a
ecting, for example, geometric features, electric parame-
ters, and input sources. Even though it is a rather common
approach to treat EM problems as completely deterministic
(and several reliable time- and frequency-domain compu-
tational algorithms have been developed for their solution),
there exist several instances where one or more parame-
ters/features/aspects of an EM problem cannot be strictly
determined. �is lack of knowledge apparently induces a
degree of randomness in the output quantities, which inmany
cases can be extremely important. Scientists and engineers
have realized the signi	cance of being able to reliably describe
a system’s or problem’s variability and have proposed a num-
ber of di
erent treatments for such cases. �e scope of this
review paper is to examine some of the available solutions,
in the context of computational electromagnetics, providing
information for both standard andmoremodern approaches.
Evidently, the pertinent research area is quite vast, and a
complete review of all available techniques in the context of
a single work is quite di�cult, if not impossible. Considering

that, in the area of time-dependent EMproblems, perhaps the
most popular simulationmethod is the 	nite-di
erence time-
domain (FDTD) algorithm [1], we decided to turn our atten-
tion to stochastic methods that rely on, or are combined with,
the FDTD approach. Most of the cited works in this paper
are quite contemporary, and we believe that the following
analysis will clarify the strengths and weaknesses of the
considered approaches, as well as the level of suitability for
speci	c types of applications.

2. Monte Carlo Methods

Monte Carlo (MC) methodologies [2] are commonly used
for the study of stochastic EM problems, as they provide a
standard line of work that, in most cases, can lead to reliable
results.�emain advantage of MC approaches is the fact that
they can be implemented easily, without usually requiring
exceptional skills or advanced mathematical knowledge. In
fact, the algorithmic development of MC-based solutions is
rather straightforward and, certainly, less complicated than
other existing approaches. On the other hand, solutions via
MC techniques normally entail augmented computational
cost (e.g., due to repeated implementation of full-wave
numerical methods) and converge rather slowly. Neverthe-
less, thanks to their reliability, MC solutions are o�en used as
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a means to assess the validity of other approaches and can be
easily applied to diverse scienti	c disciplines, without requir-
ing signi	cant modi	cations. In the following paragraphs, we
present a small fraction of examples utilizingMCmethods for
the investigation of time-dependent EM problems via FDTD
schemes.

Back to 1991, the FDTDmethodwas applied in the context
of MC simulations for the study of EM scattering from ran-
dom rough surfaces [3]. Speci	cally, considering a Gaussian
surface with speci	c root-mean-square height and correla-
tion length, the average scattered intensity at di
erent scatter-
ing angleswas obtained, a�er performing 50 FDTDruns.�is
low number of samples should be probably attributed to
the limited computing resources available at the time. �e
results were compared against data from frequency-domain
approaches, and good agreement was observed. �e well-
known advantage of using a time-domainmethod to simulta-
neously obtain results at di
erent frequencies was also noted.
In a similar context, the work in [4] examined the wave
scattering from surfaces with either Gaussian or multiscale
Pierson-Moskowitz roughness spectra, using standard as well
as contour-path FDTD methods, to deal with the unwanted
staircase phenomenon. �e performance of these two meth-
ods was evaluated by computing the radar cross section for
di
erent scattering angles, and the detrimental e
ect of stair-
casing was found to be more prominent at higher values of
incident angles.

In [5], the 3D FDTD method was combined with MC
analysis for the investigation of scattering from perfectly
conducting objects, when the latter are embedded in random
inhomogeneous soils with spatially varying permittivity. �e
MC analysis was speci	cally used to obtain the bistatic radar
cross section for normal plane-wave incidence, considering
a total of 100 runs. Coherent and incoherent averagings were
performed to extract the scattering of the object alone and the
contributions of the medium �uctuations, respectively. �e
scattering from inhomogeneous media was also discussed in
[6], where the two-dimensional FDTD method and the MC
approach were combined. Scattering patterns were deduced,
a�er extracting the coherent and incoherent (di
used) parts
of the scattered energy. A homogenization procedurewas also
proposed, and comparison between lossy and lossless cases
was performed.

�e combined MC-FDTD method was applied in [7]
for the extraction of the frequency-dependent complex con-
ductivity of doped silicon, and much more accurate results
compared to existing Drude models were derived. A com-
pletely di
erent problemwas solved in [8], where the electric-
	eld intensity was estimated close to human body models in
realistic environments. Various exposure scenarios and dif-
ferent frequencies were considered, and a total of 50,000 sim-
ulations were conducted for each case. In [9], the distribution
of light induced by an electron beam in a �uorescent thin 	lm
was estimated via theMC-FDTD scheme. In this case, uncer-
tainty pertains to the determination of the step length that
an electron travels between successive scatterings in order
to compute the electron trajectory. Finally, a complete study
of uncertainties characterizing lightning-generated EM 	elds
was performed in [10]. �e three-dimensional curvilinear

FDTD method [1] was used to investigate the e
ects of
ground inhomogeneities, terrain roughness, geometric irreg-
ularity of the lightning channel, and channel’s inclination.
Due to the high computational burden involved, 60–100 sim-
ulations were conducted in each case, and computations were
accelerated by up to 100x via code parallelization on graphics
processing units [11].

3. Stochastic Finite-Difference
Time-Domain Algorithms

�e methods of this section are variants of the standard
FDTD algorithm [1], with similar structure and computa-
tional complexity. It is reminded that the implementation of
the FDTD method requires a Cartesian grid, where electric-
and magnetic-	eld components comply with a staggered
spatial arrangement. A similar staggering approach is applied
in time as well. �is spatiotemporal arrangement enables
the e�cient implementation of second-order 	nite-di
erence
approximations for the 	rst-order Maxwell’s system, which
produce an explicitly solved set of di
erence equations. For
instance, the update of the �� component in a lossless
medium with �, � constitutive parameters is performed via

�������+1�+1/2,�,�
= ��������+1/2,�,�
+ Δ�
�Δ� (
�����

�+1/2
�+1/2,�+1/2,� − 
������+1/2�+1/2,�−1/2,�)

− Δ�
�Δ� (
�

������+1/2�+1/2,�,�+1/2 − 
�������+1/2�+1/2,�,�−1/2)

− Δ�� ������
�+1
�+1/2,�,� ,

(1)

where�|��,�,� stands for�(�Δ�, �Δ�, �Δ�, �Δ�),Δ� denotes the
selected discretization step with respect to the � variable (� ∈{�, �, �, �}), �,
 correspond to electric- and magnetic-	eld
components, and � describes source current-density com-
ponents. Five more equations similar to the aforementioned
one complete the system of FDTD update equations in three-
dimensional EM problems.

3.1. �e Stochastic FDTD Method. A variant of the standard
FDTD algorithm which is capable of predicting statistical
moments, such as the mean value E{⋅} and the standard devi-
ation �{⋅} of the EM 	elds due to uncertainty in the electric
properties of thematerial involved in a speci	c setup, is devel-
oped in [12]. �e so-called Stochastic FDTD algorithm pre-
serves much of the structure and features (e.g., Cartesian grid
and explicitness) of the conventional deterministic approach
and directly provides update equations for the aforemen-
tionedmoments of the involved components. In essence, con-
sidering a function � that depends on a number of random
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variables �1, �2, . . . , ��, a second-order approximation of the
mean value of � is obtained simply by

E {� (�1, �2, . . . , ��)} ≃ � ( 1,  2, . . . ,  �) , (2)

where  1,  2, . . . ,  � are the mean values of �1, �2, . . . , ��.
�is result implies that the update equations of the determin-
istic algorithm can be used for the calculation of the expected
values of the 	eld components, without other modi	cations,
provided that the mean electric properties of the background
materials (that are the sources of uncertainty) are used in the
update equations.

�e extraction of the update equations for the standard
deviation is trickier, as it involves applying �2{⋅} on both
sides of the deterministic 	nite-di
erence equations. Now,
standard formulae such as

�2 {� ± !} = �2 {�} + �2 {!} ± 2"	
� {�} � {!} (3)

must be used, where "	
 is the correlation coe�cient of �, !.
At a 	rst step, this coe�cient pertains to successive (in time)
values of the same 	eld components; hence it can be safely set
to 1. However, in the case of products of random quantities,
a di
erent line of work must be followed. Speci	cally, the
following formula must be eventually applied:

�2 {�}
= �∑
�=1

�∑
�=1

$�
$��
$�
$��
�����������1 ,...,��

E {(�� −  �) (�� −  �)} . (4)

Unavoidably, now the correlation coe�cient between 	eld
values and variables describing thematerial uncertainty at the
same position appears. Its exact value is unknown, and we
usually select (as a simple solution) again " = 1, although
this choice has the tendency to overestimate the computa-
tional outcome, as it practically corresponds to a (proba-
bly unrealistic) worst-case scenario. �e 	nal form of the
update equations for the standard deviation is derived a�er
applying the square root to both sides and taking a second-
order Taylor approximation. For reference, the update of the
standard deviation of �� in the case of one-dimensional
problems becomes

� {�������+1� } = -�� {��������}
+ - (� {
��������+1/2} − � {
��������−1/2})
+ 3�E {��������}
+ 3 (E {
��������+1/2} − E {
��������−1/2}) ,

(5)

where -�, -, 3�, and 3 are constants depending, among
others, on the statistical properties of the involved medium.
Evidently, one needs to update the expected values of the EM
components 	rst and then proceed to the calculation of the
standard deviations at each point of the grid. �is technique
has been applied in [12] to a scattering problem concerning a
three-layer biological tissue. Although the outcome was not

exact, when compared to reference data fromMC, the authors
showed that they could provide reliable bounds for the solu-
tion by performing two Stochastic FDTD simulations with
di
erent choices of the correlation coe�cients.

3.2. Stochastic FDTD Method for Magnetized Plasma. As the
original Stochastic FDTDmethod was 	rst presented in one-
dimensional formulation, a three-dimensional extension is
developed in [13]. Speci	cally, this version of the stochastic
algorithm is suitable for problems involving wave propaga-
tion in anisotropic magnetized plasma, which can be found
in cases of signal propagation within the Earth’s ionosphere.
Unlike [12], themethod of [13] deals withMaxwell’s equations
coupled to current equations derived from the Lorentz equa-
tion of motion. �e source of uncertainty in this case is the
electron density, which exhibits a highly complex behavior
in ionosphere. �e same principles and approximations as
the ones already described for the original Stochastic FDTD
algorithm are applied. Again, it is directly found that the orig-
inal di
erence equations can be used for the average of the
variables. In fact, an overall of 18 equations is deduced. �e
	rst subset of 6 equations involves themagnetic-	eld compo-
nents and their deviations, while the second subset comprises
the components of the electric-	eld intensity and the current
density. �e last group of equations involves the deviations
of E and J. �e tests that were conducted considered the
case of collisionless plasma, and the comparisons against
MC references veri	ed that the mean value of 	elds can be
calculated with good accuracy, while the reliability of the
standard deviation strongly depends on the selected value of
the (unknown) correlation coe�cient. As in the case of the
original stochastic method, selecting " = 1 overestimated the
results, while a much smaller value (0.05 for the considered
problem) improved the accuracy signi	cantly.

3.3. Curvilinear Stochastic FDTD Method. Another three-
dimensional extension of the Stochastic FDTD algorithm is
developed in [14], where a generalized curvilinear formula-
tion is presented. �e starting point now is the curvilinear
FDTD method [1], which involves the update equations for
the covariant and contravariant components, as well as the
necessarymetrics-weighted interpolation processes.�e	nal
update equations are derived by applying the methodology
already described. For instance, an update equation for the
deviation of the 	rst covariant electric-	eld component
becomes

� {61�����+1�+1/2,�,�}
= -�� {61�����+1�+1/2,�,�}
+ - (�{ℎ3������+1/2�+1/2,�+1/2,�} − � {ℎ3������+1/2�+1/2,�−1/2,�})
+ -� (�{ℎ2������+1/2�+1/2,�,�+1/2} − � {ℎ2������+1/2�+1/2,�,�−1/2})
+ 3�E {61�����+1�+1/2,�,�}
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+ 3 (E {ℎ3������+1/2�+1/2,�+1/2,�} − E {ℎ3������+1/2�+1/2,�−1/2,�})
+ 3� (E {ℎ2������+1/2�+1/2,�,�+1/2} − E {ℎ2������+1/2�+1/2,�,�−1/2}) ,

(6)

where covariant components are identi	ed by subscripts and
contravariant components by superscripts and-�,-,-�,3�,3, and 3� are constants depending on material parameters
and may involve metric coe�cients. �e method is also
adapted to model geometric uncertainties by properly taking
into account the statistics of metric coe�cients. Finally,
computations are accelerated with the aid of parallel pro-
gramming on graphics processing units [11]. �e curvilinear
Stochastic FDTD technique is applied therein to problems
with uncertainty in thematerial electric properties, geometric
length, or geometric curvature. �e accuracy of the results is
in agreement with the conclusions of the already mentioned
works. �e same approach has been already used for the
solution of diverse problems including the investigation of
lightning-generated EM	elds over nondeterministic terrains
[15] and nanomaterials and graphene-based con	gurations
[16]. Especially in the last case, a combination of di
erent
spatial stencils leads to an optimum 	nite-di
erence approx-
imation for spatial derivatives, while the incorporation of a
domain-decomposition approach results in improved versa-
tility.

3.4. Unconditionally Stable Stochastic FDTD Methods. As
(almost) all explicit FDTD schemes, the aforementioned
methodologies are conditionally stable; that is, the allowable
time-step size is bounded. �is restriction can result in
excessive computational times when simulating problems
involving wave propagation over long distances or highly
dense grids, which are necessary for modeling structures
with 	ne geometric features. Unconditionally stable methods
based on special temporal updating, such as the locally-one-
dimensional (LOD) approach, are not restricted by stability
requirements and allow the utilization of any time-step size
(of course, the larger the time step, the higher the numerical
errors). A LOD-based Stochastic FDTDmethod is presented
in [17], which is suitable for the solution of the telegraph
equations for transmission-line problems. Similar to the
deterministic algorithm, the updates for the mean values and
standard deviations of the involved variables (voltages and
currents) are implicit and require the solution of tridiagonal
systems at each time step. However, the additional compu-
tational burden is compensated for by the reduced number
of iterations, thanks to the larger values of time steps. �e
numerical results in [17] verify that the statistics of wave phe-
nomena along transmission lines that display uncertainty in
their per-unit parameters can be successfully assessed even
with large time step, provided that a su�cient spatial resolu-
tion is ensured.

3.5. A Possible Improvement. It has become apparent that
a nontrivial limitation of the Stochastic FDTD algorithm
emanates from the lack of knowledge of certain correlation

coe�cients. Until today, no e�cient means of their calcula-
tion has been proposed, rendering the selection of random
values (commonly equal to 1) the most usual choice. A
solution that partially sacri	ces the simplicity and rather
low complexity of the original Stochastic FDTD approach is
developed in [18], where a hybrid scheme that incorporates a
fraction ofMC simulations attempts to remedy the aforemen-
tioned situation. Considering that correlation coe�cients are
calculated from

" {�1, �2} = Cov {�1, �2}� {�1} � {�2} , (7)

where Cov stands for the covariance operator, [18] proposes
their approximate estimation a�er performing a small num-
ber of runs, which should be enough to guarantee a relatively
reliable output. �e authors therein realize that the correla-
tion coe�cients also exhibit temporal not just spatial varia-
tion, which apparently poses additional di�culties. However,
for time-harmonic problems, they claim that it su�ces to use
constant-valued coe�cients, especially those calculated at the
last iteration of the algorithm, when 	elds have 	nally con-
verged. For the 1D simulations performed in [18], it appears
that the suggested line of work is successful, even when the
correlation coe�cients are extracted from only 100 MC sim-
ulations (which correspond to only 1% of the runs required
to obtain reference data).�ese concepts are also extended to
two-dimensional problems in [19], where the variance of the
speci	c absorption rate in the human head due to plane-wave
illumination is computed. Again, considerable reduction of
the error of the Stochastic FDTDmethod is veri	ed (although
it should be mentioned that the actual problem setup is not
two-dimensional in reality). A�er testing di
erent choices of
the required MC runs, it was found that satisfactory conver-
gence of the correlation coe�cient is accomplished with only
25 simulations, as no signi	cant changes were noted when
performing additional tests.

3.6. An Alternative Stochastic, Single Realization, FDTD
Scheme. A stochastic realization of the FDTD algorithm,
which is suitable for problems involving weak scattering
phenomena, is described in [20].�e authors therein realized
that the (unknown) correlation coe�cients appearing in the
updates of the Stochastic FDTD method are due to the
utilization of Taylor approximations for multiplicative-noise
terms (i.e., random variables related through multiplication).
Instead, an iterative procedure is proposed, which turns
the multiplicative noise into additive noise that is easier to
handle. Furthermore, the proposed approach can be imple-
mented as a single-realization algorithm, unlike MC solu-
tions. �is method was shown to perform well in weak scat-
tering problems, where the impacts of the selected correlation
lengths and the spectral content of the incident waves on the
accuracy of the predicted mean 	eld values were investigated
as well.

4. Methods Based on Polynomial Chaos

Polynomial Chaos (PC) enables the representation of random
processes with the aid of convergent polynomial series [21].
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If, for example, � depends on the : independent random
variables �1, �2, . . . , ��, then its PC expansion takes the form

� (�) = ∞∑
ℓ=0
;ℓΨℓ (�) , (8)

where ;ℓ are constant coe�cients, � = [�1 �2 ⋅ ⋅ ⋅ ��]T is
the vector of the random variables, and Ψℓ are proper basis
functions. In practice, the aforementioned series is truncated
to include @ + 1 terms, and an approximation of the exact
quantity is obtained. If A is the polynomial order of the
expansion, then the number of terms is determined by@+1 =(A+:)!/(A!:!).�e basis functions are constructed as follows:

Ψℓ (�) =
�∏
�=1
E�ℓ� (��) , (9)

that is, as products of univariate polynomials ( ℓ� is themulti-
index that corresponds to the expansion order [22], ℓ =0, . . . , @). �e basis functions should be selected in accor-
dance with the type of variable that they describe: Gaussian
variables require Hermite polynomials, Jacobi polynomials
are suitable for beta distributions, uniform variables require
Legendre polynomials, and so forth. Note that the basis
functions are orthogonal:

⟨Ψ� (�) , Ψ� (�)⟩ = {{{
0, � ̸= �
MMMMΨ� (�)MMMM2 , � = �, (10)

where the inner product is de	ned as

⟨O (�) , P (�)⟩ = ∫
Γ�
O (�) P (�) S (�) :�. (11)

S(�) is the joint probability-density function, and Γ� is the :-
dimensional random space. A�er the PC approximation of a
random quantity has been obtained, the correspondingmean
value and variance are directly computed from the available
expansion coe�cients:

E {�} = ;0,
�2 {�} = �∑

ℓ=1
;2ℓ MMMMΨℓ (�)MMMM2 .

(12)

�ere exist two major categories of uncertainty quanti	-
cation algorithms that are based on PC expansions: intrusive
and nonintrusive. In the 	rst category, an existing (deter-
ministic) algorithm is modi	ed, so that it directly computes
the necessary expansion coe�cients. Nonintrusive schemes
exploit deterministic methods to achieve their goal and
require multiple executions of these methods, according to
speci	c samplings of the random space. Although nonintru-
sive solutions are simpler to implement, as no changes to
existing algorithms are required, intrusive approaches have
the advantage of providing the expansion coe�cients in the
context of a single run.

4.1. Intrusive PC-FDTD Methods. �e PC-FDTD method
[23] is a FDTD algorithm whose update equations directly
calculate the expansion coe�cients of the PC series rather
than the actual 	elds.�e pertinent equations can be derived
easily from the di
erence equations of the original scheme
a�er substituting each 	eld component by the corresponding
PC expansion and then applying Galerkin projection on
every basis function. Taking into account the orthogonality
property of the basis functions, a di
erent update equation
is obtained for each expansion coe�cient. For instance, if we
assume that

U (�)|��,�,� =
�∑
ℓ=0
�������,�,�Ψℓ (�) , (13)

implying that the uppercase letters denote the random 	eld
components, while lowercase letters are used for the expan-
sion coe�cients, then (1) is transformed to

6�,������+1�+1/2,�,� = 6�,�������+1/2,�,�
+ �∑
ℓ=0
(ℎ�,ℓ�����+1/2�+1/2,�+1/2,� − ℎ�,ℓ�����+1/2�+1/2,�−1/2,�)

⋅ ⟨Ψℓ, (Δ�/�Δ�)Ψ�⟩MMMMΨ�MMMM2

− �∑
ℓ=0
(ℎ�,ℓ������+1/2�+1/2,�,�+1/2 − ℎ�,ℓ������+1/2�+1/2,�,�−1/2)

⋅ ⟨Ψℓ, (Δ�/�Δ�)Ψ�⟩MMMMΨ�MMMM2 − �∑
ℓ=0
��,ℓ�����+1�+1/2,�,�

⋅ ⟨Ψℓ, (Δ�/�) Ψ�⟩MMMMΨ�MMMM2 ,

(14)

which determines the  -th expansion coe�cient, when �
exhibits uncertainty. If, on the other hand, the corresponding
node does not involve a material with variability, then the
update equations of the expansion coe�cients are less com-
plex and similar to the original ones. Evidently, the computa-
tional cost of the PC-FDTDmethod is higher than that of the
deterministic algorithm, as it involves @ + 1 updates for each
	eld component. Due to the well-known issue of “curse of
dimensionality,” the number of coe�cients increases signi	-
cantly when the number of random variables is considerable.
On the other hand, especially for low or moderate number of
random variables, the PC-FDTDmethod is far more e�cient
than MC approaches, which normally require thousands of
simulations to provide convergent results.

In the original work of [23], the PC-FDTD method is
applied to an EM compatibility problem and to plane-wave
scattering from a dielectric sphere. Some later contributions
described more advanced applications of the considered
approach. For example, the purpose of [24] is to assess the
uncertainty in wireless indoor channel models due to the
randomness in the electric parameters of the wall materials
of an o�ce building or the geometric dimensions of the walls
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themselves. �e necessary integrals for the calculation of the
inner products were computed using sparse Smolyak grids
[25] and Gauss-Legendre integration rules to improve e�-
ciency. Several interesting results were extracted, including
probability-density functions of the path loss along selected
sectors, relative contribution of each material property to the
overall loss at di
erent spatial locations, and spatial density
plots of 95% con	dence intervals.

Another application of the PC-FDTD method is
described in [26], where the impact of geometric uncertain-
ties of microwave circuits on their performance is investi-
gated. Now, the spatial steps of the 	nite-di
erence discret-
ization are treated as randomvariables; however, the resulting
PC-FDTD equations are very similar to, for example, (14).
Many cases are treated by simply distorting the cell size of
the rectilinear Yee grid; however, more general uncertainties,
pertinent to statistically independent variables, call for local
mesh distortions. To deal with the latter case, a curvilinear
PC-FDTD method is developed, which requires that the
inner products are di
erent for each (distorted) cell. On the
other hand, outside the distorted curvilinear part of themesh,
the @ + 1 update equations are decoupled, as in the standard
PC-FDTD technique. �e proposed method was applied
to various con	gurations, including a low-pass microstrip
	lter, a cascaded stub line 	lter, and a directional coupler,
and statistics as well as sensitivities were extracted for time-
and frequency-domain quantities.

�e PC-FDTDmethod has been also applied to problems
involving complex wave propagation in the ionosphere [27],
similar to the Stochastic FDTD algorithm of [13]. Given that
only one random variable was considered in that problem
(the electron density), up to fourth-order PC expansions
were tested, without increasing the computational cost pro-
hibitively. It was deduced that second-order expansions
are su�cient for mean-value calculations, whereas standard
deviations require at least fourth-order expansions to capture
all the necessary details. Finally, the e
ect of ground mate-
rial uncertainties on lightning-induced EM pulses was the
subject of [28], where the necessary polynomial orders for
su�ciently reliable outcomes were investigated, and results
regarding the computation of probability-density functions
and Sobol indices were presented. Due to the symmetry
of the considered problem, a rotationally symmetric two-
dimensional FDTD algorithm was used as the starting point
for the development of the stochastic approach.

4.2. Nonintrusive PC Methods. As already mentioned, the
main disadvantage of the methods of the previous subsection
pertains to the modi	cations that a deterministic algorithm
has to undergo in order to be adapted to stochastic problems.
Alternatively, one can exploit the deterministic solver in a
di
erent manner [29] for the computation of the expansion
coe�cients involved in (8). For instance, spectral projection
enables the direct calculation of the unknowns from

;ℓ = ⟨� (�) , Ψℓ (�)⟩MMMMΨℓ (�)MMMM2 , (15)

which stems from the orthogonality of the basis functions.
Evidently, the :-dimensional integral

⟨� (�) , Ψℓ (�)⟩ = ∫
Γ�
� (�) Ψℓ (�) S (�) :� (16)

needs to be computed numerically, following some rule, for
example,

⟨� (�) , Ψℓ (�)⟩ ≃
�∑
�=1
O(�)� (�(�))Ψℓ (�(�))S (�(�)) , (17)

where �(�) are selected integration points and O(�) are
the corresponding weights. �ere exist various possibilities
regarding the aforementioned numerical integrations, which
include full tensor-product grids (easily obtained from one-
dimensional rules), sparse grids (e.g., Smolyak [25]), andMC
formulae [30]. It is noted that full grids are characterized by
an exponentially growing total number of nodes, while the
sparse solutions involve a not as fast increasing computational
cost.

Another approach for the determination of the expansion
coe�cients makes use of the least-squares method. Again,

given � nodes of a grid in the random space Γ�, we request
that the PC expansion remain valid at all these nodes. �is
leads to a system of equations in the following form:

[[[[[[[
[

Ψ0 (�(1)) Ψ1 (�(1)) . . . Ψ� (�(1))
Ψ0 (�(2)) Ψ1 (�(2)) . . . Ψ� (�(2))

... ... d
...

Ψ0 (�(�)) Ψ1 (�(�)) . . . Ψ� (�(�))

]]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

[A]

[[[[[[
[

;0
;1
...
;�

]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟
[c]

=
[[[[[[
[

�1
�2
...
��

]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟
[y]

,
(18)

where �1, �2, . . . , �� are the corresponding deterministic out-
puts. It is of crucial importance that the number of equations
is not smaller than the number of unknowns; hence the
number of grid nodes should satisfy � ≥ @ + 1. �e overde-
termined system can be solved approximately via the least-
squares method; that is,

[c] ≃ ([A]T [A])−1 [A]T [y] . (19)

Evidently, the aforementioned line of work is the same
regardless of the selected deterministic solver. Hence, in the
rest of this section, wemention a few representative EMappli-
cations, where the FDTDmethod is selected as the determin-
istic solver. For example, the variability of the speci	c absorp-
tion rate in human body models is examined in [31], when
factors such as the plane-wave incidence angle or the position
of a mobile wireless device exhibit uncertainty. A completely
di
erent subject is discussed in [32], which focuses on the
characterization of wireless channels in burning buildings. In
this case, �ames are modeled as cold plasma; hence a dis-
persive FDTD algorithm is required. �e Kronrod-Patterson
quadrature is used for the calculation of the necessary inner
products, and the uncertainty characterizing the recorded
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power at di
erent positions is assessed, when there is ran-
domness in the plasma parameters. In [33], the in�uence of
the ground’s material parameters on the EM pulses produced
by lightning �ashes is explored with stochastic collocation
methods, utilizing either full or sparse grids. �e modeling
of complex stochastic problems appearing in the 	eld or
electromagnetic compatibility is discussed in [34], and prob-
lems involving the shielding e
ectiveness of cabinets and a
dielectric resonator antenna are solved.

5. Discussion

Although the present review is short and cannot be con-
sidered by any means exhaustive, we believe that we have
included some very representative works that represent dis-
tinct numerical approaches pertinent to uncertainty quanti	-
cation in computational electromagnetics. In this concluding
section, we revise the most basic features of each presented
category of methods.

�e major strength of MC-based approaches is their
straightforward implementation, which involves direct use
of existing deterministic solvers. On the other hand, their
convergence is rather slow (but independent of the number
of random variables) and requires a considerable amount of
samples in order to provide reliable results. �is becomes a
nontrivial problem when full-wave solvers are used for the
calculation of the deterministic solutions. Furthermore, it
becomes clear that the Stochastic FDTD methods discussed
in Section 3 are quite easy to implement, and the involved
computational cost is just twice the cost of the corresponding
deterministic algorithm.�e lack of knowledge of the neces-
sary correlation coe�cients is a nontrivial de	ciency, which
can be partly remedied by performing a small fraction of MC
simulations. Of course, such a solution increases the com-
plexity of implementation. In addition, the Stochastic FDTD
schemes calculate only themean value and the standard devi-
ation of random quantities. In other words, signi	cant mea-
sures such as the probability-density functions or sensitivity
indices cannot be computed, which is probably the price we
have to pay for such a low-complexity approach. PC-based
methodologies are more powerful in the sense that they
provide a more consistent description of random processes.
Intrusive PC-FDTD schemes have the advantage of calculat-
ing the PC representations in the context of a single simu-
lation. Unfortunately, they require signi	cant modi	cations
of the deterministic algorithms, and the involved complexity
is certainly higher. Nonintrusivemethods, on the other hand,
are simpler to implement, as they directly apply the determin-
istic scheme. However, they do need special samplings of the
random space, in order to calculate the expansion coe�cients
reliably, in the context of either numerical quadrature or a
least-squares approach. Finally, PC-based approaches su
er
from the “curse of dimensionality”: unlikeMCmethods, their
e�ciency deteriorates as the number of random variables
increases. �is means that if the dimensionality of the ran-
dom space is large, PC methods do not provide any practical
advantage overMC approaches in terms of the required num-
ber of simulations. In any case, each methodology exhibits
certain features and advantages that should be taken into

consideration, when their suitability for a certain application
needs to be determined. Uncertainty quanti	cation is a vast
research 	eld with applications in several diverse scienti	c
disciplines, and various other approaches that are not nec-
essarily related to the FDTD method exist, which have not
been included in the present review. Some indicative exam-
ples include Stroud-based stochastic collocation methods
[35] that may also outperform tensor-based solutions, the
Small-Perturbation Automatic-Di
erentiation approach [36]
that requires only small changes to existing deterministic
codes, and uncertainty evaluation approaches based on the
unscented transform [37] which are proven to be more
e�cient thanMC techniques.�e variety of existing solutions
extends the range of stochastic problems that can be dealt
with in an e�cient framework and provides di
erent lines of
work that can be potentially combined with the e�ciency of
the FDTD computational scheme.
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