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Abstract. Whereas materials with intrinsic magnetoelectric (ME) effects have not yet made inroads in
technology, the measurement of their tensor characteristics has become a precious tool for magnetic point
group determination. Therefore, it is worthwhile to consider different measurement techniques. In particular
techniques for determining the linear and bilinear ME effects will be discussed, essentially the quasi-static
and dynamic magnetic field-induced methods will be evaluated. The measurement and application of ME
“butterfly” loops for determining (weak) ferromagnetism and internal bias fields will be described. For the
bilinear ME effect (with invariant EHH) a particularly sensitive measurement method with amplification
effect will be highlighted, permitting, e.g., to detect subtle magnetic phase transitions. At least for the
linear ME effect, we will stress that in the future only a dimensionless quantity should be used which is
valid in all systems of units. Finally, the linear ME effect of TbPO4 crystals is reexamined because in
a former publication it was not clear which system of units was effectively used (“rationalized” or “not
rationalized” Gaussian system of units). Effectively, this crystal has the largest linear ME effect known.
At T = 1.50 K, in SI units: αxy or αyx = 730 ps/m, i.e., 0.220 in “not rationalized” Gaussian system of
units.

PACS. 75.80.+q Magnetomechanical and magnetoelectric effects, magnetostriction – 61.50.Ah Theory of
crystal structure, crystal symmetry; calculations and modeling – 75.30.K Magnetic phase boundaries –
75.50.Ee Antiferromagnetics – 06.20.F- Units and standards

1 Introduction

Multi-ferroic is a term coined by Schmid for crystals “in
which two or all three of the properties ferroelectricity,
ferromagnetism and ferroelasticity occur simultaneously
in the same phase” [84,85,87]. In some crystals, the mag-
netoelectric effect (ME) is characterized by the appear-
ance of an electric polarization P under the application
of a magnetic field B (MEB), for historical reasons also
denoted by MEH , with an applied field H, or by the ap-
pearance of a magnetization M under the application of
an electric field E (MEE). If we consider only the linear
ME effect, these vectors (P and B or M and E) are related
by a second rank tensor α. The applied fields can be either
quasi-static, dynamic or pulsed or even a combination of
the first two. The appearance of such a ME effect, either
linear or of higher order, is restricted by the magnetic
point group (Heesch-Shubnikov group) of the crystal.

In this short review, we discuss first the phenomenol-
ogy of the ME effect and the various systems of units we
encounter and how to pass from one system to another
one. Then we comment on the toroidal moment and the
density of free energy. The complete tensor forms of the
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linear ME effect will be given, in particular for the three
monoclinic settings and the three orthorhombic ones. Di-
rect measurement of the ME effect will be described, in
particular the MEB one, including a sensitive method to
detect one of the bilinear ME effects. Finally, the linear
ME effect of a TbPO4 crystal was reexamined as it was
not clear which system of units was used in former publi-
cations (Gaussian or “rationalized” Gaussian units). This
material is known to posses the largest linear ME effect of
all single crystals measured so far.

2 Phenomenology and system of units

2.1 The ME effect for bulk materials

2.1.1 Introductory remarks

Here, we will restrict ourselves to single crystals and, as
far as possible, to single-domain-state – dielectric-crystals
being in one or more of the following states: ferroelec-
tric, paramagnetic or ferromagnetic, antiferromagnetic,
ferrimagnetic or weakly ferromagnetic, ferroeleastic. Un-
til now, the ME effect of single crystals has not yet made
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inroads in technology. However, it is a very valuable com-
plementary tool to neutron diffraction and crystal optics
to study magnetic phase transitions. The ME effect may
be a help to obtain accurate Néel temperatures (TN ) and
to determine the magnetic point group via the form of
the ME tensor(s) of the linear and/or the bilinear ME
effect(s). Critical exponents may also tentatively be de-
duced [74]. The MEB effect can be studied using even
tiny crystals with an area of at least 0.5 mm2 and, say,
50 μm thickness or less, the thickness being not too crit-
ical. The MEE effect can even be measured with smaller
crystal size, using a SQUID system [15,51].

As an example, in a LiCoPO4 single crystal [74], below
and close to TN , a so-called “butterfly loop” [87] indicated
a probable lower symmetry than the one determined ear-
lier [76] (mmm′, a “pure” antiferromagnet)1. Thus, the ex-
istence of a spontaneous magnetization was first inferred
via the measurement of the ME effect. These butterfly
loops were confirmed using higher magnetic fields [52,101].
Measurements with a SQUID system [49,50] revealed a
very weak magnetization. A new magnetic structure de-
termination with neutron diffraction [99] showed a small
tilting (4.6◦) of the opposite spins out of the b axis, sug-
gesting monoclinic symmetry. This crystal is in fact a weak
ferrimagnet.

2.1.2 Linear ME effect

Although the ME effect has been conjectured in 1894 by
Pierre Curie [21] and later by Landau and Lifshitz [53],
it was Dzyaloshinskii who, in a short seminal paper [22],
showed that this effect should exist in Cr2O3 crystals. He
took into account neutron diffraction data of Cr2O3 crys-
tals and determined the magnetic point group 3̄′m′, which
permits an antiferromagnetic phase below TN = 308 K.
Dzyaloshinskii explicitly gave a phenomenological expres-
sion for the (density of a) thermodynamic potential ex-
panded in terms of EiEk, HiHk and the products EiHk.

Taking the partial derivative of this thermodynamic
potential with respect to Ei and retaining only the ME
effect terms, he obtained:

Dx = Dy = D⊥ = α⊥H⊥

and
Dz = D|| = α||H||, (1)

the z axis being parallel to the trigonal axis.
This paper by Dzyaloshinskii, published half a century

ago, triggered theoretical and experimental investigations
in ME effects, following some unsuccessful attempts made
before, see O’Dell [61] for a historical introduction.

Soon thereafter, Astrov [7] found this effect in Cr2O3,
using a MEE dynamic method. He measured αxx = αyy ≡
α⊥(T ) and αzz ≡ α||(T ) as well as their relative signs [8].
The dynamic linear MEE effect and the quasi-static con-
verse effect (MEH) were soon measured by Folen and col-
laborators [28,65,66] in Cr2O3 crystals.

1 The prime (′) denoting a time reversal operation added to
the crystallographic symmetry element.

For the linear ME effect, α is a second rank tensor
which changes sign under space inversion or time reversal
and, accordingly, is invariant under simultaneous space
and time inversion. In the most general case, for a tri-
clinic crystal, this tensor has 9 independent components.
It is asymmetric but can always be decomposed into a
sum of a tracefree symmetric tensor, an antisymmetric
tensor, and a pseudoscalar trace or, equivalently, into a
pseudoscalar, a vector and a symmetric traceless tensor,
see, e.g., [39,93]. The antisymmetric tensor part has only
off-diagonal components. For that decomposition, we need
to know at least the relative signs of all the components
of the tensor α. The absolute signs relative to the signs of
spontaneous polarization, magnetization and/or absolute
crystallographic (with X-ray) or magnetic (with neutrons)
space structures are more difficult to determine.

2.1.3 Linear and higher order ME effects

Hou and Blombergen [10,42] found in a piezoelectric para-
magnetic crystal (NiSO4·6H2O) a “paramagnetoelectric”
effect (EHH) and O’Dell [60] measured a so-called “in-
duced magnetoelectric effect” (HEE) in Y.I.G. (yttrium
iron garnet) which were recognized by Ascher [3] as higher
order ME effects.

We have, in the density of the free energy, to add these
two higher order terms provided they are allowed by sym-
metry. Contrary to a common thought, these are generally
by no means negligible at sufficient high magnetic fields
at, say, 1 T:

(1/2) βijkEiHjHk and/or (1/2) γijkHiEjEk, linear in
E and bilinear in H and/or linear in H and bilinear in E,
respectively. We continue to use here the field H, instead
of the more appropriate field B, for comparison purposes
with published papers [39,40,61]. We use for convenience
the symbol (βijk) of Rado [68] rather than the original one
(αijk) of Ascher [3]. We do not want to have the same α
symbol for the linear and one of these bilinear ME effects.
Once a convention has been chosen for these three tensors,
one has to be careful to respect the order of the indices
relatively to the ones of E and H. These third rank ten-
sors (βijk and γijk) are necessarily symmetric in their last
two indices, for example, βi12Ei H1 H2 cannot be distin-
guished from βi21EiH2H1. Actually, this can be deduced
from thermodynamic relations. Thus, in the more general
case for a triclinic crystal, from a total of 27 components
either for the tensors β or γ, we are left with only 18 in-
dependent components. Very often, the last two indices
jk = 11, 22, 33, 23, 31, 12 are replaced by one single in-
dex running from 1 to 6. For βiν , for example, we have
i = 1, . . . , 3, ν = 1, . . . , 6, see, e.g., [31,33,59]. One has
also to be careful to indicate whether or not a factor one
half or two is included in the equations.

Phenomenologically, we can develop the density of the
free energy into a series in E, H, and possibly the stress σ,
for the field B, see below. Using SI units (denoted below
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with a left upper index: SI), see, e.g., [75], we have:

−SIg(E,H; T ) = . . . + P s
i Ei + M s

i Hi

+ (1/2)ε0εikEiEk

+ (1/2)μ0μikHiHk +SIH αikEiHk

+ (1/2)SIHβijkEiHjHk

+ (1/2)SIHγijkHiEjEk

+ (1/6)SIHδijkEiEjEk

+ (1/6)SIHηijkHiHjHk + . . . (2)

where E is measured in V/m and H in A/m, T stands
for the temperature in K, εik and μik are dimensionless
symmetric second rank tensors. Practically, for single do-
main ME crystals, the order of magnitude of SIHαik is
ps/m and the one of SIHβijk is as/A, Ps is the spon-
taneous polarization, Ms the spontaneous magnetization,
ε0 and μ0 (≡4π × 10−7 Vs/(Am) ) are the vacuum di-
electric permeability and vacuum magnetic susceptibility,
respectively, with ε0 μ0 = 1/c2, where c ≈ 3 × 108 m/s
is the speed of light in vacuum. This series expansion is
valid because the external applied fields are small rela-
tive to the internal ones. Here, we added the last two
terms, with third rank tensors, δijk and ηijk, because if
we start with the 4-dimensional constitutive law of elec-
tromagnetism, these terms must appear in addition to
the ones with βijk and γijk [41], see also [47]. The fac-
tors 1/6 are inserted for convenience. These third rank
tensors are totally symmetric in all their indices, i.e.,
δijk = δikj = δjki = δjik = δkij = δkji, the same for
ηijk. Thus from a total of 27 components for each tensor,
we are left with only 10 independent components for a
crystal of triclinic symmetry.

For Gaussian units (with left upper script index: G),
which are not rationalized, a factor 4π appears in the de-
nominator of the series development of −g. The Gaussian
system of units is a mixture of the electrostatic cgs units
(cgs esu) and the electromagnetic cgs units (cgs emu), see,
e.g., [62,91], one has:

−Gg(E,H; T ) = . . . + (1/(4π))GαikEiHk

+ (1/(8π))GβijkEiHjHk

+ (1/(8π))GγijkHiEjEk

+ (1/(24π))GδijkEiEjEk

+ (1/(24π))GηijkHiHjHk + . . . (3)

here, with Gaussian units, E must be measured in statvolt
per centimeter and H in oersted.

Sometimes, numerical tables are given in “rational-
ized” Gaussian units (with left upper script index: rG),
which are, actually, pseudo-rationalized Gaussian, or “par-
tial” Heaviside-Lorentz system of units, without the 4π
factors in the above denominators.

The conversion of units from one system to another
is easily done by computing the density of the free en-
ergy [75], a mechanical unit, as

g = 1 J/m3 = 1 kg/(s2 m) = 10 g/(s2 cm) = 10 erg/cm3,

we obtain the following relations [14,75]:

c SIHα = Gα = 4π rGα (4)

with c the speed of light in vacuum, SIHα in s/m, but
Gα and rGα being dimensionless. For clarity, here, the
lower right indices has been removed in equation (4).
For the conversion of units in electromagnetism see,
e.g., [17,27,38,44,54,62,91,98].

The polarization Pk is obtained by taking the partial
derivative of −g with respect to Ek, as mentioned above,
and the magnetization Mk by taking the partial derivative
of −g with respect to Hk, see, e.g., [75],

Pk(E,H; T ) = − ∂g

∂Ek
= . . . + P s

k + ε0εkiEi +H αkiHi

+ (1/2)HβkijHiHj +H γijkHiEj + . . .,
(5)

Mk(E,H; T ) = − ∂g

∂Hk
= . . . + M s

k + μ0μikHi +H αikEi

+H βijkEiHj + (1/2)HγkijEiEj + . . .
(6)

Other terms, to cite only a few, linear in E and σ (stress)
or H and σ, with third rank tensors are responsible for the
piezoelectric effect [59,94] discovered by the Curie brothers
(1894) or the piezomagnetic effect. The first who postu-
lated the piezomagnetic effect was Voigt [100]. He wrote
down the tensor forms, however, since time reversal was
not yet known at that time, those forms are inappropri-
ate. Finally the piezomagnetic effect was first measured
by Borovik-Romanov [13,14]2. Note that the linear magne-
tostriction effect is the converse effect of the piezomagnetic
one. Terms with a fourth rank tensor giving rise to elec-
trostriction, linear in σ and bilinear in E, or magnetostric-
tion linear in σ and bilinear in H, or even piezomagneto-
electric effect, linear in E, H and σ, are not written down
here. This last effect has been searched for by Rado [67]
and by Rivera [73] without success. Grimmer [32] com-
puted the forms of this fourth rank tensor for the allowed
magnetic (Heesch-Shubnikov) point groups. A large ME
effect was found in a spin-glass system [90], by using a ME
SQUID susceptometer [15], additional HdijklEiEjHkHl

terms in the free energy density gave rise to a fourth rank
tensor (Hdijkl).

Other terms could be added to the series development
of −g, due to the velocity v of a moving dielectric under
an electric field and/or a magnetic one, yielding −g(E, B,
v; T ) [6], see also [37]. Note that the matrix of the linear
MEE effect (Mi = αkiEk) is the transpose of the matrix of
the linear MEH effect or more correctly MEB, see below,
(Pi = αikBk):

MEEα = (MEBα)t. (7)

2 Unfortunately, Nye still mentions in his textbook (1990 edi-
tion) [59], Table 23, Appendix C, p. 291, that the “existence
of piezomagnetism [is] not firmly established”!
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Care must be exercised when giving or reading numerical
coefficients in tables. The choice of units, SI, Gaussian (G)
or even “rationalized” Gaussian (rG) is another source of
errors due to a factor 4π (≈12.6) between these last two
system of units. This is slightly more than an order of
magnitude! Thus, the equation for the density of the free
energy and the equation for the induced polarization or
for the induced magnetization should always be explic-
itly given, otherwise one could have to repeat the exper-
iments as the MEH experiments on TbPO4 cited below.
This problem seems recurrent in magnetism as already
mentioned in Landolt-Börnstein Tables by Zinn [103].

As to the choice of H or B, O’Dell gave convincing ar-
guments in his book [61] why in the density of free energy
(−g) one must use B instead of H, see also Post [63]. In
the book by Sommerfeld [91] it is stressed that E (elec-
tric field strength) and B (magnetic field strength) are
intensive variables or “intensities”, D (electric excitation)
and H (magnetic excitation) are extensive variables or,
as some authors call them now, “extensities”. For a dis-
cussion of intensive and extensive variables in thermody-
namics see, e.g., [34,92,102]. It is not necessary to remind
ourselves that E and B appear in the Lorentz force equa-
tion, see, e.g., [64]. In most modern textbooks in physics B
is the magnetic field. See also arguments given by Panof-
sky and Philips [62] pp. 143–144, based on experiments,
why, in material sciences, B is “more fundamental” than
H. Ascher [6], in a paper concerning kineto-electric and
kineto-magnetic effects in crystals used B and no more H
as in his previous papers. So, we must write:

−g(E,B; T ) = . . . + P s
i Ei + ε0εikEiEk +B M s

i Bi

+B αijEiBj + (1/2)BβijkEiBjBk

+ (1/2)BγijkBiEjEk + . . ., (8)

Pk(E,B; T ) = − ∂g

∂Ek
= . . . + P s

k + ε0εikEi

+B αkiBi + (1/2)BβkijBiBj

+B γijkBiEj + . . ., (9)

also for
M = M(E,B; T ). (10)

In order to avoid the conversion of units, we can use a four-
dimensional susceptibility tensor ξ. This tensor emerges
in the linear relation between the four-dimensional po-
larization Mστ and the field strength Fμν (O’Dell [61],
Eqs. (2.45) and (2.51))

μ0cMστ = (1/2)ξμν
στ Fμν , (11)

with μ, ν, σ, and τ = 1, . . ., 4 (space and time coordinate
indices), from which one gets: P = (i/c) ξ H, with i2 =
−1. In these equations, ξ is dimensionless. O’Dell’s use of
an imaginary time coordinate is outdated and should not
be used. Already at MEIPIC1, Ascher [6] wrote down a
dimensionless magnetoelectric tensor (λij)

−g(E,B; T ) = . . . + ε0λikEicBk + . . ., (12)

with a −g function of E and B. After computing the par-
tial derivative of −g with respect to Ei, he already ob-
tained

Pi = . . . + (λik)(1/R0)Bk, (13)

with R0 as vacuum impedance. Accordingly, this equation
is valid in any system of units.

Starting also with the four-dimensional electromag-
netic field tensor Hehl and Obukhov obtained quantity
equations valid in an arbitrary system of units. For the
case of a Cr2O3 single crystal, below TN , in relation to
the so called Post constraint problem [63], equation (31)
of [39] reads

Dz =
(

εzz − α2
zz

μzz

)
ε0 Ez +

αzz

μzz

√
ε0

μ0
Bz (14)

and similar equations hold for the x and y axes but in
these cases, εx = εy = ε⊥ and αx = αy = α⊥. In all Dk

equations (k = ⊥, z), μk = 1 + χk ≈ 1.00, as, e.g., χ⊥
(TN) ≈ 1.63 × 10−3 � 1 [39,61]. These αzz and α⊥ are
dimensionless (as are εzz, μzz, . . . ) and normalized by the
vacuum impedance R0 =

√
(μ0/ε0), see also [40]. In SI

units, SIR0, ≈ 377 V/A (=ohm).
If we had from the very beginning of the ME

experiments introduced these dimensionless ME linear co-
efficients, we would have escaped all these problems of
conversion of units, as for ε relative and μ relative (di-
mensionless) which are valid in any system of units. It is
a pity that Ascher could not draw the attention to exper-
imentalists to this problem already in the 1960s. These
α (dimensionless), valid in any system of units, have, by
chance, the same numerical value as Gα (dimensionless)
in the Gaussian (not rationalized) system of units but not
the same numerical values as rGα in the “rationalized”
Gaussian system of units, where they are also dimension-
less!

If we write

−g(E,B; T ) = . . . +a αijEiBj + . . ., (15)

the aαij components, not normalized by the vac-
uum admittance, have the dimension of an admit-
tance [6,39,40] (hence the notation a), in SI units:
A/V = siemens = 1/ohm.

Now, to resume the situation, it is easy to show that
we have

α = R0
aα = SIR0

SIBα = c SIHα = Gα = 4π rGα

(dimensionless), (16)

where the lower right indices are removed for clarity. Nev-
ertheless, giving the components of the linear ME effect in
SI units, aα (siemens) = SIBα (siemens), with field B, but
no more SIHα (s/m), with field H [75], allows one to check
more easily the experimental values of the components of
the tensor of the linear ME effect.

Another drawback of single crystals is that usually the
ME effect takes place only at low temperature. Thus, we
need liquid nitrogen or even liquid helium to cool down
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the crystal, which is not particularly favorable for applica-
tions. The Cr2O3 crystal is one of the few exceptions, be-
ing magnetoelectric up to TN = 308 K = 35 ◦C. Another
drawback is, unfortunately, that in bulk single crystals,
the ME effect is very weak. Brown et al. [16], see also [4],
showed that the elements of the linear magnetoelectric
tensor are thermodynamically limited by

αik < 4π
√

(eχii
mχkk). (17)

This relation has been generalized for other material co-
efficients [5].

2.2 The ME effect for composite materials

With the aim of engineering applications with much larger
effect at room temperature, composite materials are syn-
thesized, e.g., stacking of magnetic and ferroelectric thin
layers (nanoscale heterostructures), mimicking a large
ME effect via piezoelectricity and/or electrostriction and
piezomagnetism and/or magnetostriction3. First results in
this field, as far as we know, were reported in [95]. The
pseudo-ME effect in these materials is in part responsi-
ble for the revival of interest in the ME effect and the
huge increase of related publications. But these two-phase
multiferroics without doubt will play an important role in
future magnetoelectric devices. A small one-turn coil, for
example, with a diameter as small as 50 μm (presently
maybe even less) can be manufactured on an electronic
printed circuit. It creates pulsed (30 ns) magnetic fields of
up to 40 T [97]! Magnetostriction is quadratic in H , but to
quote [35]: “. . . , the magnetostriction at a particular bias
field H0, can give rise to pseudo-piezomagnetism over a
small range where the slope of the magnetostriction curve
dS/dH can be assumed to be constant. . . . Thus pseudo-
piezomagnetism at a bias field H0 can be expressed as:
S = qH , . . . ”.

In composite materials, an incoherent system of units
is frequently used in the measurement of the pseudo-linear
ME effect α, mixing E in mV/cm and H in Oe to obtain a
pseudo-linear ME voltage coefficient Eα, under “open cir-
cuit” condition measurements, i.e., with D = 0. It follows
from D = ε0εE + αH = 0 that E/H = −(α/(εε0)) ≡ Eα,
we will denote it by HEα in order to remind ourselves that
we use the field H. They obtain

HEαij = Ei/Hj in mV/(cmOe) (18)

see, e.g., [12]! This is of course neither a SI nor a Gaussian
system of units, we could call it a “technical” or a “bas-
tard” system of units. Other authors use more consistently
SI units (V/m)/(A/m) = ohm, e.g., [35]. Thus, in “com-
posite circles”, their ME pseudo-linear coefficients HEα
have the dimension of an impedance (ohm), the inverse of
the one in MEH linear effect in single crystal, aα, which

3 In a personal communication, Harshé [36] wrote me: “. . . ,
all of the known magnetostrictive materials do not exhibit any
linear piezomagnetic effect”.

have the dimensions of an admittance (siemens = 1/ohm),
measured at E = 0, instead of D = 0.

For the conversion to SIHα (s/m), we have the equa-
tion [36]:

SIHα = εε0
HEα. (19)

The best would be to use B instead of H, giving SIBEα
in (V/m)/(Vs/m2) = m/s, the dimensions of a velocity!

To take into account composite materials, we finally
have, at least for the linear ME effect, and with μ ≈ 1.00:

Aα = AR0
Aaα = SIR0

SIBα = c SIHα = Gα

= 4π rGα = ε EHα/R0 (dimensionless). (20)

For the bilinear ME term, Dk = . . . +B βkijBiBj + . . .,
the SI units of the components of Bβ are A m2/(V2 s) =
m2/(Ω2 As) or alternatively C/(m2T2) = Cm2/Wb2. In
former publications, with Dk = . . .+ BβkijHiHj + . . ., the
SI units of Hβ are, as already mentioned, s/A.

In order to remove any uncertainty in tables and/or in
publications, maybe it would be best to give also α and β
in SI units, i.e., in C/(m2 T) and C/(m2 T2), respectively,
with the magnetic field B in T and D in C/m2.

For a review of ME effects emphasizing composite ma-
terials see, e.g., [26].

3 Some remarks on the toroidal moment
and the density of free energy

Only rather recently, the notion of toroidal moment den-
sity T has been recognized [23,30,93]. At least two non-
collinear magnetic moments, or spins in the elementary
cell with opposite direction, can give rise to a toroidal mo-
ment perpendicular to their plane. A current i flowing in a
solenoid bent into a torus also gives rise to a toroidal mo-
ment parallel to the torus axis, perpendicular to the plane
of the torus. A ferrotoroidic order parameter gives rise to
antisymmetric contributions to the magnetoelectric effect,
but not necessarily the contrary. Sannikov showed that in
the magnetic phases of orthorhombic boracites the anti-
symmetric part of the linear magnetoelectric tensor is pro-
portional to the toroidal moment [77–80]. He explained the
narrow peak observed in the temperature dependence of
α32(T ) below and close to the magnetic phase transition of
Co-Br [18], Co-I [20] and Ni-Cl [72] orthorhombic (m′m2′)
boracites. Only one value of this peak was measured in the
first experiment of the MEH effect on Ni-I boracite [2] at
a temperature just below TN and with an opposite value
to the other ones at lower temperatures. Later on more
detailed MEH experiments on Ni-I boracites showed more
clearly the negative peak [19]. We call this α32(T ) of Ni-
I boracites a pseudo-orthorhombic coefficient because it
was recognized [70] that Ni-I boracite was actually of lower
symmetry than orthorhombic (m′m2′), namely monoclinic
(m′). This was based on observations on a (001)cubic cut
of spontaneous Faraday rotation below TN , showing some
magnetic domains, see Figure 1 (colour picture only on the
online document). It was possible to move these magnetic
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Fig. 1. (Color online) A pseudo (001) orthorhombic cut of Ni-I boracite, at T = 51.2 K below TN = TC = 61.5 K, obtained
from a (001) cubic cut at room temperature [70]. Thanks to the spontaneous Faraday effect it shows magnetic domains, these
magnetic bubbles were moveable with a small magnet outside of the cryostat. Polarized light, with the crystal oriented close
to extinction, the analyzer being slightly uncrossed relatively to the polarizer. The central spot is the contacted gold (∼70 μm
dia.) wires to the semi-transparent gold deposited electrodes. Silver paste electrodes would not have allowed us to observe these
domains.

Fig. 2. (Color online) Another Ni-I boracite crystal, below TN , showing stacking of domains, typical of a monoclinic phase and
the possibility of switching the optical indicatrix direction with an applied E field. The stacking of very fine lamellar domains
are best seen directly through the polarized light microscope (PLM). This is a (110) cubic cut at 300 K and a pseudo (100) or
pseudo (010) orthorhombic cut below TN .

domains, close to TN , using a small magnet (e.g., NdFeB
magnet) outside of the cryostat. An orthorhombic phase
(m′m2′) would not show on this cut such magnetic do-
mains. Moreover, perpendicularly to a pseudo (110)cubic

cut, a rotation of the optical indicatrix of about + or −30◦
was found (Fig. 2) by switching the component of the
spontaneous polarization along a [001]pseudocubic direction,
on applying a + or −E field along this direction. This is
definitively not consistent with an orthorhombic symme-
try. Note that Ni-I boracite is particularly interesting be-
cause it is the first ferroelectric, weak-ferromagnet (but es-
sentially an antiferromagnet), magnetoelectric, which has

the same ferroelectric-Curie temperature and Néel tem-
perature [2], TC ≈ TN ≈ 61.5 K [70]. The temperature was
measured with a calibrated Carbon-Glass Resistor placed
very near (about 8 mm) to the crystal in a cryostat with
low pressure of He gas, as thermal exchange gas. In [2,81],
it was shown that Ms can be rotated, by about 90◦, by
reversing the main component of Ps.

Continuing now with the toroidal moment T, we
should be very cautious not to add in −g explicitly a
term proportional to T · S (scalar product), with S ≡
E × H (cross product of E and H) and not write −g(E,
H, S, σ; T ), as for example in [87], because S is not a new
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independent variable as could be, e.g., v, j or grad M [6].
We cannot compute −∂g /∂Sk, for obtaining the spon-
taneous toroidal moment components Tk, because the Sk

are functions of the E and H components, by definition.
If we add to −g, as in [87], terms of the form

. . . + λiiTiSi + θijSiEj + ζijSiHj + . . . (21)

and substitute into them the components of Sk,

S1 = (E2H3 − E3H2), S2 = (E3H1 − E1H3)

and
S3 = (E1H2 − E2H1), (22)

one obtains:

−g = . . . + λ11T1(E2H3 − E3H2)
+ λ22T2(E3H1 − E1H3)
+ λ33T3(E1H2 − E2H1)
+ 18 terms in θijfij(E,H)
+ 18 terms in ζijkij(E,H) + . . ., (23)

where fij(E, H) and kij(E, H) are complicated functions
of the components of E and H.

Let’s compute the derivative of −g with respect to Ek,
to obtain Pk (with “Maple”TM, a software for symbolic
mathematical computation [58]). We only show the P1

components:

P1(T,H) = −λ22T2H3 + λ33T3H2, (24)
P1(θ, H, E) = 2(θ13H2 − θ12H3)E1 + (−θ13H1

+ θ23H2 + (θ11 − θ22)H3)E2

+ (θ12H1 + (−θ11 + θ33)H2 − θ32H3)E3

(25)

and

P1(ζ,H,E) = (−ζ12H3 + ζ13H2)H1

+ ζ23H
2
2 + (ζ33 − ζ22)H3H2 − ζ32H

2
3 (26)

we see that in the most general case, for a triclinic mag-
netic point group, we have only 2, 8 and 5 terms, respec-
tively. The other components of P, i.e., P2 and P3, were
also computed with Maple but could be simply obtained
by cyclic permutation of the indices. Note that Pk(θ, E, H;
T ) is only a special case of Pk(E, H; T ) = γkijEiHj , the
ME effect linear in E and H and for which no E2

k compo-
nents are effective. Pk(ζ, E, H; T )) is also a special case of
Pk(E, H; T ) = ξkijHiHj , for which we have no component
in H2

k . Similar results (not shown) are obtained concerning
the magnetization due to the toroidal moment. Instead of
computing the magnetization, we could have permute the
role of E and H, the role of θ and ζ and changed the signs
of the terms in the above equations for the polarization.

Thus, the addition of such terms to the density of free
energy is redundant until we have a detailed theory of
the toroidal and ME effect. This redundancy was already
pointed out, intuitively, in [87].

For recent reviews on toroidal moments in condensed-
matter physics and its relation to the ME effect
see [23,55,93].

Until now, it seems that no direct measurements of the
toroidal moment were undertaken. Only indirect methods
are known, as for example, the detection of the peak of
the α32(T ) ME coefficients just below TN in some boracite
crystals, already mentioned and well explained by the the-
ory of Sannikov, or the observation of toroidal and weak
ferromagnetic (essentially antiferromagnetic) domains by
optical second harmonic generation (SHG) by van Acken
et al. [1]. In [87] it is explained that we do not have two
different kinds of domain in LiCoPO4, i.e., “antiferromag-
netic” and “ferrotoroidic”, as assumed in [1], but that all
four occuring domains are equivalent, i.e., they are all “fer-
rotoroidic and weakly ferromagnetic”. The different con-
trast formation of the magnetic SHG signal was in fact
caused by two different kinds of mutual spatial orientation
of the “weakly ferromagnetic/ferrotoroidic” domains [87].

4 Magnetic symmetries

For a long time, in crystallography, only space inversion
was considered in addition to other symmetry elements
(axes, mirror planes, etc.) to establish the list of the
32 point groups (Hessel (1830), Bravais (1848)) and the
230 space groups (Fedorov (1890), Schönflies (1891)) [43].
Adding time reversal, one obtains 122 magnetic point
groups (Heesch (1930), Shubnikov (1951)) and 1651 mag-
netic space groups (Zamoraev (1952), Belov, Neronova
and Smirnova (1955)). See the recent paper by Litvin
“Tables of crystallographic properties of magnetic space
groups”, reference [56], and his electronic book: “Magnetic
Space Groups” [57].

Magnetic point groups admitting several physical
properties as spontaneous polarization, anti-, ferromag-
netism (and weak ferromagnetism), linear and/or bilinear
ME effects, etc., are tabulated in many books or publica-
tions. But, as far as we know, one of the most useful ones
for experimentalists (and theoreticians!) is Table II, by
Schmid, “Classification of the 122 Shubnikov groups ac-
cording to magnetoelectric types” [83]. A too much abbre-
viated version appeared in Tables 1.5.8.3. “Classification
of the 122 magnetic point groups according to magneto-
electric types” [14], p. 140. One can find also an adapta-
tion of Table II [83] in “Table 2. Classification of the 122
Heesch-Shubnikov point groups”, in reference [87]. Nev-
ertheless, and following Ederer [24], all the 122 magnetic
point groups allow antiferromagnetism. See also Tables 4–
8, Magnetic point groups in reference [96], p. 304.

There are 58 magnetic point groups allowing the lin-
ear α ME effect, 66 allowing the bilinear β ME effect and
66, with partial overlap with the preceding ones, allowing
the bilinear γ ME effect, see Table II [83] or Table 2 [87].
Many former published tables with the tensor forms of the
linear α ME effect have been corrected in [75]. Borovik-
Romanov and Grimmer in [14] gave only a partial table
of the tensor forms of the linear effect. The forms had
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Fig. 3. Tabulation (L1 and L2) of the 18 possible tensor forms of the linear ME effect, including the three settings for the
monoclinic symmetries, with the binary axis (2 or 2′) either parallel (//) or perpendicular (⊥) to the z, y or x crystallographic
axes, respectively. For the monoclinic symmetries, the recommended “standard” setting is the one with the binary axis parallel
to the y axis or perpendicular to the monoclinic plane. Non “standard” crystallographic point groups are in parentheses. As
to the orthorhombic symmetries, the recommended setting is the one with the binary axis parallel to the z axis. But when we
have phase transitions as a function of temperature, it is essential to know all the possible tensor forms, as it was important
when studying the case of LiCoPO4 crystals [99].

been computed by Grimmer using the Fumi’s “Direct-
Inspection Method” [29], see also [9]. They gave only one
setting for the monoclinic magnetic point groups, which is
not enough when we have a crystal having magnetic phase
transitions as a function of temperature. In more recent
papers, Schmid [86,87] reproduced the table of the tensor
forms of α [75] with slight modifications in the presenta-
tion by asking me to take into account also the third set-
ting of the monoclinic magnetic point groups. These ten-
sor forms are reproduced above for convenience (Fig. 3),
but with indication of the crystallographic axes (x, y or
z) underneath some symmetry elements. They are either
parallel (//) or perpendicular (⊥) to these symmetry ele-
ments.

The bilinear ME effect with the βijk, also denoted by
βiμ, and γijk (or γiμ) third rank tensors have the same
forms [3] as the piezoelectric [94] and piezomagnetic [14]
tensors, respectively. Grimmer in [33] gave the transposed

forms of these tensors, by including also the toroidal ef-
fects.

Depending on the experimentally determined tensor
forms of the linear and/or the bilinear ME effects, some
possible magnetic point groups can be inferred, by using
only tiny single domain crystals, and can usefully comple-
ment usual neutron and/or X-ray diffraction methods.

Recently, magnetic SHG was also shown to be a
powerful complementary method for the determination of
complex magnetic structures, such as that of hexagonal
manganites [25]. This method is even a more local probe
than the ME effect.

5 Direct measurement of the ME effect

For antiferromagnets μk ≈ 1.00, as we saw for Cr2O3,
but for weak ferromagnets, ferrimagnets or ferromagnets
as, e.g., magnetite crystals, this simplification is certainly
not fully justified. In these cases, we obtain only effective
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components of the ME tensors. It is known by experi-
ence, that weak-ferromagnets, as boracite crystals, have
to be clamped with some “Scotch tape” or glued on a
small sample holder before applying a magnetic field in
a ME experiment. Otherwise, even a small platelet may
be subject to a torque with a magnetic field of a few tens
of tesla or less. Another point should be mentioned, the
demagnetizing field is usually never taken into account in
ME experiments because of irregularly shaped platelets
used, resulting here, too, in effective components of the
ME tensors.

Deposition of semi-transparent gold electrodes applied
to a crystal is mandatory before ME experiments. It is rec-
ommended not to apply silver paste electrodes because the
effective area is smaller than imagined as demonstrated by
transmission light microscopy. Silver paste electrodes are
also less effective for polarizing a crystal and they induce
strains at low temperature. At room temperature, LiF salt
water electrodes seem to be most efficient for polarizing a
crystal [82].

5.1 MEB quasi-static experiments

O’Dell [61] mentions that the MEB method is better than
the MEE one, because a higher energy density can be
created with a magnetic field rather than with an electric
field. It is also easier to apply a high magnetic field than
a high electric field. With MEE measurements there is
always a risk of an electrical breakdown. With the quasi-
static MEB method at constant temperature, and if we
measure the charges with an electrometer in charge mode,
the electrometer input is at virtual ground (Einput ≈ 0),
so a small crystal conductivity is less critical than if we
measure a voltage. Another possibility to overcome this
problem of conductivity is to use pulsed magnetic fields.

In any case, before measuring the ME effect, it is
mandatory to cool the crystal by so-called ME annealing,
see, e.g., [89].

The quasi-static MEB method consists in the applica-
tion to a crystal of a slowly varying magnetic field with a
rate of about 0.05 to 0.5 T/min. We first start by measur-
ing Q(t)B=0, with B ∼= 0, for half a minute. Then, we in-
crease B linearly vs. time, from 0 to about 1 T, stabilizing
B at this value for half a minute. We decrease B linearly to
0 and finally we continue to measure the charges for about
half a minute with B = 0. With this method, see an ex-
ample in Section 6 (Fig. 6) below, we obtain, with B ∼= 0
before and after the experiment, an oblique base line as
in optical absorption spectroscopy experiments. The base
line can be used to correct (subtract) the measured curve.
The origin of this drift can be due to a component of the
spontaneous polarization, when present, i.e., a pyroelectric
signal when T is not absolutely stable. Whenever possi-
ble, temperature should be kept stable to about ±0.03 K.
In a pyroelectric crystal, not necessarily ferroelectric, the
magnetic field induced polarization of the linear effect, say
along a z-axis, for a field of 1 T, may be about thousand
times smaller than the spontaneous polarization along this
same axis. Thus crystals with a spontaneous polarization

parallel to the magnetically-induced polarization can dis-
turb for a while MEB measurements. Another origin of
drift during quasi-static MEB measurements can be due
to small movements of the coaxial cables inside the cryo-
stat (i.e., triboelectricity). It is necessary to use low noise
coaxial cables, the impedance of which is not too criti-
cal at frequencies below, say, 10 kHz, usually they have
50 Ω. These low noise coaxial cables have a conductive
graphite ribbon or foil between the central isolation and
the external electrical shield.

Calibrated Carbon Glass Resistors are very conve-
nient to measure the temperature as they have a mono-
tonic temperature variation of the electrical resistance,
for example a CGR2000TM from Lake Shore, has a re-
sistance of about 10 ohm at room temperature increasing
to 2000 ohm at 4.2 K. CGRs are not too much sensitive to
magnetic fields, at least up to 1 T. A four point technique
must be used to measure the electrical resistance of a CGR
by applying a known current, about 1 mA at 300 K and
only 10 μA at 4 K, and measuring the voltage. In order to
suppress any thermocouple effects at wire soldering and
connectors, it is wise, for each temperature measurement,
to reverse automatically the sign of the current, measure
again the voltage and then compute the mean resistance.
Calibrated GGRs could be obtained with tables of their
Chebyshev coefficients allowing to compute automatically
the CGR electrical resistance and then the temperature.
Other new miniature temperature sensors are now avail-
able on the market, but for example, silicon resistors can
only be used above 25 K. Below 4 K, it is advantageous to
measure the temperature with a capacitive helium pres-
sure meter. The pressure inside the crystal sample cham-
ber is lowered by pumping over a small quantity of liquid
He with rather large diameter tubes. Using a special valve,
the He gas pressure inside this chamber can be stabilized.
It is advantageous to protect the sample from gas tur-
bulence by a small non-magnetic metal can around the
crystal but having small holes for pressure compensation.

A very high input impedance electrometer must be
used, in charge mode, with a sensitivity close to the fem-
tocoulomb range. This depends of course on the area of
the crystal and the order of magnitude of the ME coeffi-
cients. In charge mode, the electrometer works as having
a virtual ground, thus Einput ≈ 0, as already mentioned.
Needless to say that cables, sample holder and connectors
must be kept very clean for having an impedance as high
as possible. The electrometers generally have a humidity
absorbing compound in their head module. The DC or
quasi-static charges Q(B) are converted to an AC signal
for easier amplification. Former electrometers were built
with a low frequency (tens of hertz) mechanical vibrating
plate condenser to convert the DC signal to an AC one.
Now MOS-FET or other electronic components are used.

Magnetoelectric annealing by applying simultaneously
B and E fields when cooling the crystal is mandatory,
otherwise the ME signal is strongly diminished due to
ferroelectric and/or ferro- and/or antiferromagnetic op-
posite domains. Experimentally, it is found that a mag-
netic field is more efficient than an electric field, as already
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mentioned. Preliminary experiments with a polarizing mi-
croscope or with a SHG setup and an optical cryostat,
allowing observation of domains down to 4 K, whenever
possible, is also very important. An optical cryostat for
simultaneous measurement of the quasi-static ME effect
and optical domain checking appeared to introduce too
much electrical noise, at least as concerns quasi-static ME
experiments.

5.2 MEB dynamic experiments

The MEB dynamic method is realized by applying, with
Helmholz coils outside the cryostat, a low frequency (f =
70 to 140 Hz) magnetic field b0 (5 to 20×10−4 Trms) and
if necessary simultaneously a DC magnetic bias field B0.

When B0 and b0 are parallel, the total magnetic field
is, with ω = 2πf ,

B = B0 + b0 sin(ωt). (27)

As the magnetic field-induced polarization is P = αB +
βB2, one obtains

P = (αB0 + βB2
0 + βb2

0/2) + (αb0

+ 2βb04B0) sin(ωt) − (1/2)βb2
0 cos(2ωt). (28)

A “lock-in” amplifier “clamped” at the fundamental ex-
citation frequency f , gives a “root mean square” voltage
proportional to (αb0+2β b0B0). The phase of the “lock-in”
amplifier must be carefully adjusted. If α ≈ 0, this method
with a DC magnetic field B0 boosts the dynamic detec-
tion of the bilinear or quadratic ME βijk components. The
gain compared to the detection of the signal at 2f , pro-
portional to βb2

0/2, with B0 ≈ 1 T and b0 ≈ 0.002 T,
is 4B0/b0 ≈ 2000. This method was applied successfully
to enhance, via the quadratic MEB component β333, the
detection of two magnetic phase transitions in Cr-Cl bo-
racite, at TN1 = 9.7 K and at TN2 = 13.5 K, respec-
tively [75]. The β333 pseudo-coefficient presented, at the
TN1 = 9.7 K magnetic phase transition, a marked peak,
see Figure 4, possibly related to the existence of a toroidal
moment. As far as we know, no theory can explain the ef-
fect of a toroidal moment on the bilinear ME effect. For
details concerning the sequence of phase transitions in Cr-
Cl boracite see references [75,88].

With the MEB dynamic method, by sweeping B0, a
false linear ME effect could be mimicked. This is why one
has always to start with the quasi-static MEB effect, with
angular measurements Q(ϕ), at constant magnetic field,
then by sweeping slowly the B field to see if we have a
linear and/or a bilinear ME effect and compute its or their
value(s).

MEE measurements will not be discussed as we have
no experience with this method, but we only mention that
by measuring the induced magnetization with a low fre-
quency electric field eAC applied to a platelet, and some-
times superimposed with a DC electric field EDC as well
as a DC magnetic field BDC , can give complex signals,
which is a source of errors. MEE experiments are now
usually performed with a SQUID device [15,51].

Fig. 4. Temperature dependence, at a rate of 2 K/min, of
the pseudo β333 coefficient of the quadratic ME effect of Cr-Cl
boracite measured dynamically with DC magnetic fields of 0,
5 and 10 kOe, superimposed to the AC magnetic field. The
“boost” effect of H0 on the detection of β333(T ) is well ex-
emplified, the noise being the same in each run. Two magnetic
phase transitions are easily detected. The inset shows the detail
of measurement of the spontaneous polarization.

Moreover, the MEE method needs a calibration of the
experimental set-up, which is not the case for the MEB

method. In order to find the magnetoelectric components
of α and β with this latter method, we only measure the
area of the crystal platelet, the magnetic field and the
induced charges.

The detection of the so-called “butterfly” loop (Q(B),
−Bcor < B < + Bcor, where Bcor is the coercive field)
was shown for the first time in Figure 4 of reference [2], see
also [81], called at that time “quadratic magnetoelectric
hysteresis loop” although it concerned the linear ME ef-
fect of a Ni-I boracite crystal and was not at all quadratic.
Such a “butterfly” loop is the signature of (weak) ferro-
magnetism, the magnetic domains switching back when
the magnetic field |B| is greater than the magnetic coer-
cive field |Bcor|, changing the sign of the slope of Q(B).
Such “butterfly” loops were found in other boracite crys-
tals, e.g., in Ni-Br boracites [71], and in LiCoPO4 [74]
single crystal, at T = 21.5 K and at T = 21.8 K, thus
below and very close to TN = 21.9 K. This was confirmed
at lower temperature and higher magnetic fields [52,101].
In previous works [76], it was found that LiCoPO4 had a
magnetic symmetry allowing “true” antiferromagnetism.
New neutron scattering [99] and SQUID measurements
of a weak magnetization [48,50] confirmed a lowering of
symmetry from mmm′ to 2′.

When single crystals are not at hand or if unpolarizable
polydomain crystals are available only, linear ME effect
measurements are possible on insulating powders and can
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Fig. 5. TbPO4 (110)tetra single crystal after ME annealing. Angular charges Q measurement, at T = 1.50 K, vs. the angle
ϕ of the magnetic field in a plane of the monoclinic y-axis (or x-axis) and the z-axis. The z-axis is parallel to the tetragonal
z-axis and the x and y axes are at 45◦ to the tetragonal a and a′ axes. The open circles are computed and normalized points
of a sine function of the orientation of the magnetic field.

yield information, whether diagonal, off-diagonal or both
diagonal and off-diagonal ME coefficients are present [89].

6 Example of a MEB measurement: TbPO4

At room temperature TbPO4 has a tetragonal zircon
structure I41/amd (4/mmm1′). It is known that two mag-
netic phase transitions take place at low temperature in
a narrow temperature range. Between TN1 and TN2 the
magnetic symmetry is tetragonal 4′/m′mm′, with TN1 be-
ing the upper magnetic phase transition to the paramag-
netic phase. Below TN2, the symmetry is most probably
monoclinic 2′/m [11], with a unit cell (x, y) rotated by
45◦ around the tetragonal axis (z-axis). A detailed analy-
sis of the domains in this phase is described in [11]. This
type of crystal was repeatedly measured in the past [11,69]
because it was claimed to have at low temperature the
largest linear ME effect of any crystals. Unfortunately, it
was not clear whether not rationalized Gaussian or ra-
tionalized Gaussian units where used in [69]. In [11,45]
and [46] only relative values of α(T ) where measured and
discussed. Here, two crystals of TbPO4, a (110) tetrago-
nal crystal cut (# 1: Sx ≈ (1.90 ± 0.10) mm2, thickness
ty ≈ (340 ± 6) μm) and a (100) tetragonal crystal cut
(# 2: Sa ≈ ? ≈ 60% Sx, ta′ ≈ (280± 6) mm) were pre-
pared and gold evaporated from samples kindly supplied,
in 2001, by Kahle, University of Karlsruhe. The results
described below were never published.

6.1 First step

In Figure 5, crystal #1, the first experiment after the ME
annealing on cooling was to measure the ME signal vs.
the angle of the magnetic field. The orientation of the
electromagnet was simply recorded by fixing a wheel on
the axis of a 15 turns potentiometer, a linear variable re-
sistor with a maximum resistance of 50 kΩ, fixing this
system on the base of the electromagnet turn table and
by measuring the voltage proportional to the angular po-
sition. At T ≈ 1.50 K, the magnetic field was rotated in
the plane formed by the pseudo tetragonal z-axis and the
monoclinic y-axis (it could be the x-axis). We observed a
“true” sinusoidal curve by measuring the quasi-static sig-
nal Q(ϕ), at constant amplitude of H , with an electrom-
eter in charge mode. The maximum signal is obtained for
αxy (or αyx) when H is oriented perpendicularly to the
pseudo-tetragonal z-axis. For H parallel to the z-axis the
signal was zero, thus αxz (or αyz) is zero.

6.2 Second step

It was necessary to verify whether the ME effect is only
linear (Fig. 6). The procedure was already described in the
preceding Section 5. It is evident from Figure 6 that we
have only a linear component. From the difference of the
charges at Hmax and at Hmin, corrected for a slight drift,
we can compute the linear ME component αxy (or αyx),
in SI units: αxy(1.50 K) = ΔQ/(SxΔHy) ≈ 730 ps/m
and by multiplying with c ≈ 3 × 108 m/s we obtain the
Gaussian value: αxy(1.50 K) ≈ 0.220, or, in the “rational-
ized” Gaussian units, 0.0174. This last value is obtained
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Fig. 6. TbPO4 (110)tetra single crystal after ME annealing. Charge measurement Q(time), at T = 1.50 K, with the procedure
described in the text (i) to test if we have a linear or quadratic ME effect or both, here a linear ME effect only and (ii) to
compute, here only the linear ME component, after correction of the small drift. The ME linear coefficient is the largest of any
other single crystals known.

Fig. 7. TbPO4 (110)tetra single crystal after ME annealing. Dynamic MEH measurement of αxy(T ) (or αyx(T )) (a.u.), at
constant magnetic fields, with a small DC magnetic field, to maintain the domains during heating, superimposed and parallel
to the AC magnetic field. Both magnetic phase transitions (TN2 = 2.18 K and TN1 = 2.38 K) are well observed in a narrow
temperature interval of only 0.20 K.
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Fig. 8. TbPO4 (100)tetra single crystal after ME annealing. Dynamic MEH measurement of αaa(T ) (a.u.) at constant magnetic
fields, with a small DC magnetic field, to maintain the domains during heating, superimposed and parallel to the AC magnetic
field. The magnetic phase transition TN2 = 2.18 K is not so well observed than with crystal #1, as in reference [11].

by dividing by 4π the value in the Gaussian units. Rado
et al. in [69] found in the monoclinic magnetic phase with
a tetragonal cut: αaa (1.92 K) ≈ 0.011. Thus the value
they gave was in “rationalized” Gaussian units! In Fig-
ure 7 the temperature dependence of αxy (or αyx) is rep-
resented, measured with a dynamic MEH method. We see
very well the two phase transitions, at TN2 ≈ 2.18 K and
at TN1 ≈ 2.38 K, respectively. Note that the linear ME
effect is measured in a range of temperatures of less than
1 K and that the magnetic phase between TN1 and TN2

exists only in a temperature interval of ΔT ≈ 0.20 K. The
ME linear coefficient of TbPO4 is 24 times larger than
αyx(4.2 K) of LiCoPO4 [74]. In Figure 8, αaa of TbPO4

is displayed as a function of temperature. It is consistent
with the experiments described in reference [11], with a
maximum near 2.0 K. The TN2 = 2.18 K magnetic phase
transition is also much less pronounced than in the case
of αxy(T ). The surface of this crystal had some defects
which prevented us to measure the absolute value of αaa.

The author wishes to express his thanks to Prof. Hans Schmid
(University of Geneva) for suggesting this short review and
for corrections and suggestions to this text, to Prof. Friedrich
W. Hehl (Universities of Cologne and Missouri (Columbia))
for our recent collaboration, for corrections and suggestions to
this text and to Prof. H.G. Kahle (University of Karlsruhe) for
providing TbPO4 crystals. Financial help from the organizers
of the MEIPIC6 workshop, held at Santa Barbara, Jan. 25–28,
2009, is also gratefully acknowledged.

References

1. B.B. van Aken, J.-P. Rivera, H. Schmid, M. Fiebig, Nature
449, 702 (2007); B.B. van Aken, J.-P. Rivera, H. Schmid,
M. Fiebig, Phys. Rev. Lett. 101, 157202 (2008)

2. E. Ascher, H. Rieder, H. Schmid, H. Stössel, J. Appl. Phys.
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