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The short-term, demand-forecasting model described in this paper forms the third constituent

part of the POWADIMA research project which, taken together, address the issue of real-time,

near-optimal control of water-distribution networks. Since the intention is to treat water

distribution as a feed-forward control system, operational decisions have to be based on the

expected future demands for water, rather than just the present known requirements.

Accordingly, it was necessary to develop a short-term, demand-forecasting procedure. To that

end, monitoring facilities were installed to measure short-term fluctuations in demands for a

small experimental network, which enabled a thorough investigation of trends and periodicities

that can usually be found in this type of time-series. On the basis of these data, a short-term,

demand-forecasting model was formulated. The model reproduces the periodic patterns observed

at annual, weekly and daily levels prior to fine-tuning the estimated values of future demands

through the inclusion of persistence effects. Having validated the model, the demand forecasts

were subjected to an analysis of the sensitivity to possible errors in the various components of

the model. Its application to much larger case studies is described in the following two papers.
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INTRODUCTION

Need for demand forecasting

In the context of operational control, the demand for water

comprises not only that required for customers but also

leakage from the distribution network, since it is the

combined amount which is put into supply. Therefore,

demands are normally estimated by means of district

metering. For the efficient operation of water-distribution

networks, some form of demand forecasting is usually

needed in order to programme the pumping arrangements

over the next 24h, to take advantage of the electricity tariff

structure. For example, in the case of pump-scheduling

(Sterling & Coulbeck 1975; Zessler & Shamir 1989; Jowitt &

Germanopoulos 1992; etc.), a short-term demand forecast is

required at the beginning of each morning for the following

24h. More often than not, these are based on averaged

demand profiles for the particular day of the week, which

may vary according to the season or month of the year. If for

any reason, there is a significant difference between the

demand profile assumed and that which materializes as the

day progresses, it may be necessary to re-run the pump-

scheduling software with the revised data but even then,

further assumptions need to be made about the future

demands for the remaining portion of the 24h.

Real-time control requirements

The alternative to using a pre-defined demand profile is to

develop an adaptive demand-forecasting process which can

be continually updated to account for any deviations

between that forecasted and reality. For real-time,
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near-optimal control of water-distribution networks, this

alternative approach is the more appropriate since the

pump and valve control settings need to be re-optimized at

short, regular intervals, in response to the highly variable

demands. Accordingly, this particular paper describes the

demand-forecasting process used in the POWADIMA

(Potable Water Distribution Management) research project

(Jamieson et al. 2007). As such, it forms the third constituent

part of the DRAGA-ANN (Dynamic, Real-time, Adaptive,

Genetic Algorithm – Artificial Neural Network) control

system, the other two being the means of predicting the

consequences of different control settings (Rao & Alvarruiz

2007) and the search engine to find the best combination of

control settings (Rao & Salomons 2007). The aim was to

develop a model for real-time demand forecasting, consist-

ent with the needs of the DRAGA-ANN control process. As

such, the spatial variation in demands has been incorpor-

ated by having a separate forecast for each of the district

metering areas (DMA) that comprise the distribution

network.

Previous examples of demand-forecasting models

Any cursory examination of the scientific literature will

confirm that a considerable amount of effort has been

expended on water-demand forecasting. In the case of

operational control, the interest is restricted to short to

medium timescales (hourly, daily and monthly), rather than

annual which largely relates to longer-term water-resources

planning. Even then, there are still a large number of papers

detailing various methodologies for hourly forecasts (for

example, Shvartser et al. 1993; Zhou et al. 2002; etc.) as well

as daily/monthly timescales (Maidment & Parzen 1984a,b;

Maidment et al. 1985; Franklin & Maidment 1986; Smith

1988; Miaou 1990). Without exception, all these papers refer

to the recurring patterns and periodicities that exist in

water-demand data, at different levels of temporal aggrega-

tion. For this reason, work began with an extensive

monitoring campaign for a small, urban water-distribution

network in order to understand and, later, predict the

observed variability in demands, before progressing to the

much larger networks of Haifa-A (see Salomons et al. 2007)

and Valencia (Martinez et al. 2007).

MONITORING CAMPAIGN AND DATA ANALYSES

Choice of case study

Prior to the outset of the POWADIMA research project, the

University of Ferrara was already involved with the

Municipality of Castelfranco Emilia in measuring short-

term fluctuations of water demands. Therefore, rather than

installing a completely new monitoring scheme at a

different location, it seemed logical to make use of the

existing facilities by extending them to meet the revised

requirements. Castelfranco Emilia is situated in Emilia

Romagna, Italy, between Modena and Bologna. Its water-

distribution network is greatly influenced by the town’s

development pattern, which extends radially from the

centre towards the more sparsely inhabited rural areas. As

a result, there is a dense, grid-like network of pipes in the

town centre, which is replaced by a more open, ribbon-like

structure in the outlying areas (Figure 1). The overall length

of pipes forming the network amounts to some 160km, the

network itself being supplied by a local well field via a

storage tank near the town centre.

Monitoring scheme

The distribution network is monitored for both flow and

pressure at 14 stations, strategically located so that data could

be gathered for different types of customers (residential,

commercial, etc.) at different levels of spatial as well as

temporal aggregation, thereby enabling an in-depth analysis of

how space–time correlation characteristics vary according to

the level of aggregation (Alvisi et al. 2003). Since the overall

aim is to develop a water-demand forecasting model suitable

for large, complex distribution networks, as in the case of

Haifa-A and Valencia, special attention was focused on data

acquisition for Station 9, which is located near to the storage

tank serving the whole network. This measured the supply to

the entire population of some 23,000 inhabitants, which

roughly equates to the size of a DMA found in major cities.

Water-demand patterns

As expected, an analysis of the observed hourly and daily

water-demand time-series revealed the existence of patterns
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in which it is possible to identify seasonal and weekly

periodicities in daily water demands as well as daily

periodicities in hourly water demands. Figure 2 shows the

pattern in daily water demands for a whole year, with

demand rising over the summer period and during the week

from Sunday to Saturday. Likewise, the hourly water

demands show a variable diurnal behaviour over the day,

with different patterns depending whether it is a weekday or

weekend and, to a lesser extent, the season (Figure 3).

Analysis of the observed daily and hourly time-series data

indicated that the demand pattern during public holidays

was very similar to that observed during weekends. There-

fore, public holidays have been treated as weekends for the

purposes of demand forecasting.

PATTERN-BASED WATER-DEMAND FORECASTING

MODEL

Structure of model

The forecasting model proposed is based on the patterns

implicit in the water-demand time-series data and for this

reason, it is referred to as the Pattern-based Water Demand

Forecasting (Patt_WDF) model. In the first of its two

modules, whose purpose is to estimate the average daily

water demand on the day (or days) covered by the rolling

24h forecasting window, the seasonal and weekly patterns

are taken into account, together with the medium-term

persistence. In the second module, these daily amounts are

then combined with the daily demand patterns and short-

term persistence to provide hourly forecasts over the

following 24h period (Figure 4).

The daily water-demand module (DM)

In this approach, the average daily water demand Qd;for
m for

the Julian date m is estimated by means of the following

relationship:

Qd;for
m ¼ �Q

d;s
m þ �D

d;w
i;j þ ddm ð1Þ

where �Q
d;s
m is the long-term average daily water demand

representing the seasonal periodic component, �D
d;w
i;j is a

correction representing the weekly periodic component and

Figure 1 | The main water distribution network of Castelfranco Emilia (Province of Modena, Italy) and location of the 14 monitoring stations installed. Station 9 was used in this

study.
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ddm is a deviation representing the medium-term persistence

component.

The long-term average daily water demand �Q
d;s
m

(Figure 2) is modelled using a Fourier series:

�Q
d;s
m ¼ a0 þ

XK
k¼1

ak cos
2pk

365
mþ bk sin

2pk

365
m

� �
; m

¼ 1;2; … ;365 ð2Þ

where a0 is the mean value of the seasonal cycle, ak and bk

are Fourier coefficients and K is the number of harmonics

considered. The Fourier coefficients ak and bk are

calculated as:

ak ¼
2

365

X365
m¼1

Qd;obs
m cos

2pm

365
k; ð3Þ

bk ¼
2

365

X365
m¼1

Qd;obs
m sin

2pm

365
k ð4Þ

where Qd;obs
m are the observed average daily water demands.

The weekly correction factor �D
d;w
i;j is defined as:

�D
d;w
i;j ¼ �Q

d
i;j 2

�Q
w
j ð5Þ

where �Q
d
i;j is the mean value of the average daily water

demand observed on day i of the week (i ¼ 1,… ,7, Mon-

day,… , Sunday), j the season ( j ¼ 1,… ,4, winter, spring,

summer, autumn) and �Q
w
j is the mean value of the average

Figure 2 | Average daily water demand Qd,obs measured at the outlet of the storage tank in Castelfranco Emilia during the year 1998. Seasonal and weekly periodicities are shown.
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weekly water demand in season j. Finally, ddm, which

represents the deviation between the average daily water

demand Qd
m and the mean value estimated solely on the

basis of the periodic components �Q
d;s
m and �D

d;w
i;j , is modelled

using an autoregressive process AR(1) (Box et al. 1994). For

forecasting purposes, this may be written as:

ddm ¼ F1·d
d
m21 ð6Þ

whose parameter F1 is calibrated on the basis of the

observed deviations:

dd;obsm ¼ Qd;obs
m 2 �Q

d;s
m þ �D

d;w
i;j

� �
; ð7Þ

Figure 5 shows the pattern of the daily residuals observed

and modelled by means of Equation (7), with reference to a

year of measured data at Station 9.

The hourly demand-forecasting module (HM)

The hourly module, like the daily module, is composed of

two parts: a periodic component and a persistence

component. Here, the hourly water demand Qh;for
tþk fore-

casted at the tth hour for k hours ahead is given by

Qh;for
tþk ¼ Qd;for

m þ �D
h
n;i;j þ 1tþk ð8Þ

Figure 3 | Daily patterns in hourly water demand for the seven days of the week: (a) in winter, (b) in spring, (c) in summer and (d) in autumn.

Figure 4 | Structure of the two modules making up the Patt_WDF model.
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where Qd;for
m is the average daily water demand forecast by

means of the DM using the information available up to

Julian date m-1 (see Equations (1) and (6)), which is

replaced with Qd;for
mþ1 when t þ k leads to the definition of an

hour falling in the following day (see Figure 6). �D
h
n;i;j is the

hourly deviation representing the daily pattern defined by

�D
h
n;i;j ¼

�Q
h
n;i;j 2

�Q
d
i;j ð9Þ

where �Q
h
n;i;j represents the mean value of the average hourly

water demands observed in hour n (n ¼ 1,… ,24, the hour

of the day) of day i in season j, and �Q
d
i;j is the mean value of

the average daily water demands observed on day i in

season j (see Figure 7). Finally etþk represents the hourly

persistence component, which is modelled using a

regression on the errors etþk-1 and etþk-24 as follows:

1tþk ¼ c1·1tþk21 þ c24·1tþk224: ð10Þ

The coefficients c1 and c24 depend on the hour of the

day t þ k ; n ¼ 1,2,… ,24 corresponding to the hour t þ k

considered (it should be noted that the hour t þ k is

counted starting from the beginning of the year) and are

calibrated on the basis of the observed errors 1obst where

1obst ¼ Qh;obs
t 2 Qd;obs

m þ �D
h
n;i;j

� �
: ð11Þ

ANALYSES OF RESULTS

Accuracy of forecast

The accuracy of the forecast was initially assessed by

separately considering the forecast for 1 h ahead, 2 h

ahead and so forth up to 24h ahead, independently of the

time serving as the starting point of the forecast. Then

followed an analysis of how the model’s performance varied

according to the hour in which the forecast was made.

These assessments were made in reference to both the year

of data on which the calibration was based and the year of

data utilised for validation.

Forecasting accuracy was measured by the explained

variance (EV), the root mean square error (RMSE) and the

mean absolute percentage error (MAE%) as defined by

EV ¼ 12

Pn
i¼1 ðei 2 meÞ

2

Pn
i¼1 xobsi 2 mobs

� �2 ð12Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffi
1

n
·
Xn
i¼1

e2i

vuut ð13Þ

MAE% ¼
1

n
·
Xn
i¼1

ei
mobs

�����
�����·100 ð14Þ

where n is the number of observed data (which in this case

is the number of hours in the year), e ¼ x obs 2 x for the

errors, x obs the observed values, x for the forecast values, me

the mean error and mobs the mean of the observed values.

Figure 5 | Daily residuals ddm observed (unbroken line) and modelled via the AR(1) model (dotted line).

Figure 6 | Forecast average hourly water demands Qh;for
tþk obtained by combining the

forecast average daily water demand Qd;for
m , the daily pattern �D

h
n;i;j and an

estimated error etþ k.
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Figure 8 shows the three indexes obtained considering

the water-demand forecast for 1, 2,… , 24h ahead,

independently of the forecast starting point, for both the

calibration and validation phases. In the calibration phase,

the explained variance for the one-hour-ahead forecast is in

excess of 0.97 and close to 0.96 for forecasts over the longer

time horizons. The corresponding EV values in the

validation phase are 0.97 for the one-hour-ahead forecast

and 0.94 for forecasts over the longer time horizons.

As might have been expected, in both cases the best forecast

was obtained for the first hour ahead. This is under-

standable bearing in mind that the correlation, and hence

the persistence, rapidly declines as the number of hours

ahead increases. The other observation that can be made

relates to the quality of the forecast, which does not vary

significantly between the calibration and validation phases.

The RMSE and MAE% display a similar pattern to the

one described for EV. In particular, it can be observed that

in the calibration phase the RMSE is less than 3.5 l/s for the

1-hour-ahead forecast and less than 4 l/s for the 24-hour-

ahead forecast, for an average hourly water demand of

54 l/s. This corresponds to a MAE% in the range of 4–6%.

Similarly, in the validation phase the RMSE is less than

4.5 l/s for the 1-hour-ahead forecast and less than 8 l/s for

the 24-hour-ahead forecast, for an average hourly water

demand of 68 l/s, corresponding to a mean absolute

percentage error of between 5–9%.

Again, the quality of the forecast is better for the first hour

ahead and does not change significantly between calibration

and validation phases. This is demonstrated in Figure 9,

where the 1- and 24-hour-ahead water-demand forecasts for

the calibration and validation phases are compared to the

observed data. In all four cases, the points are near the 458

line, which represents an exact fit, but in the case of the

1-hour-ahead forecast (Figure 9(a) for calibration and

Figure 9(c) for validation) the cluster shows less dispersion

compared to the 24-hour-ahead forecast (Figure 9(b) for

calibration and Figure 9(d) for validation). Moreover, the 1-

hour-ahead forecast for the calibration phase (Figure 9(a))

shows a similar degree of dispersion to the 1-hour-ahead

forecast for the validation phase (Figure 9(c)).

The statistics mentioned so far, which relate to different

lead times independent of the forecasting start point,

furnish a good estimate of the model’s performance.

However, they do not provide an adequate basis for

analysing the errors incurred in relation to the different

hours of the day to which the forecast refers. Indeed, the

water demands observed during the day not only show

different average values but also different standard devi-

ations. The latter are largest in the early morning and

Figure 7 | The daily patterns �D
h
n;i;j associated with a weekday (Friday), Saturday and Sunday in the winter and summer seasons. The daily pattern is characterized on the basis of the

mean deviations in hourly flow compared to the average daily value.
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evening hours due to the fact that consumption varies

significantly at these times, resulting in a wider dispersion.

Larger or smaller standard deviations in water demand at

different times of the day will result in higher or lower

forecasting precision. Figure 10 shows the RMSE and

corresponding MAE% obtained in the calibration phase

when the time of forecasting was fixed and the errors

incurred in the predictions for the next 24h were

calculated. For example, in Figure 10(a), all the forecasts

made at hour 1 for hours 2, 3,… , 24 of the same day and

hour 1 of the next day are considered. Looking at the graphs

in Figures 10(a), 10(b), 10(c) and 10(d), it can be seen that

the RMSE pattern is similar but the curve shifts laterally

according to the time of forecasting. The patterns only differ

for the first or second hour following the time the forecast

was made, revealing a slight decrease in the RMSE

compared to when the water demands of the same hour

of the day are forecast many hours in advance. This is due to

the effect of short-term persistence, which leads to

improvements in the forecasts for the hours that immedi-

ately follow the time of forecasting. Beyond this, the RMSE

behaviour is solely a function of the hour of the day

considered which is determined by the representation of the

hourly water-demand patterns present in the hourly

forecasting module. For example, the forecast of the water

demand for hour 7 shows an RMSE equivalent to 6 l/s,

regardless of whether the forecast was made at hour 1 of the

same day (6h ahead), at hour 12 of the previous day (19h

ahead), or at hour 18 of the previous day (12h ahead), as

indicated in Figures 10(a), 10(c) and 10(d). The RMSE is

Figure 8 | EV, RMSE and MAE% between the observed hourly water demands and those forecast with the Patt_WDF model, based on the periodic component alone and on the

complete model, 1,2,… ,24 h ahead in the calibration (cal.) and validation (val.) phases.
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slightly lower (5.2 l/s) only when the forecast is made 1h

ahead of time, that is to say at hour 6 (Figure 10(b)). Similar

behaviour can be seen in the MAE% (Figures 10(e), 10(f),

10(g), 10(h)). In particular, it is evident that there is an

increase in the percentage errors during the night-time

hours which is due to the low values of the average water

demand used to normalize the errors.

The above considerations find further confirmation in

Figure 11. In this case, the fixed parameter was the hour of

the day pertaining to the forecast. Here, the RMSE and

MAE% relating to the forecasts for a specific hour, made at

different times of the day, were calculated during the

calibration phase. For example, Figure 11(a) shows the

RMSE of the forecast for hour 1 made at hours 24, 23,… ., 2.

Again, the RMSE follows a similar pattern to that shown in

Fig. 8, except in this case there are 24 different series

associated with the 24 forecasted hours of the day.

The curves obtained also confirm that the RMSE of the

water-demand forecasts for a given hour do not depend on

when the forecast was made, apart from the two or three

hours immediately before the forecasted hour. On the other

hand, RMSE values vary according to the hour pertaining to

the forecast. For example, forecasts for hour 12 are

associated with a lower RMSE than forecasts for hour 6,

since the former are characterized by a lower degree of

variability. Similar behaviour may be observed for MAE%,

though higher values are associated with the night-time

hours. This is due to the low values of the average water

demand during the night which were used to normalize the

errors and hence calculate the MAE%.

Sensitivity analysis

The sensitivity of the forecasting model to its pattern and

persistence components has been assessed on the basis of

both its daily and hourly water-demand forecasts, taking into

Figure 9 | Water demand as forecast (a) 1 h ahead in the calibration phase, (b) 24 h

ahead in the calibration phase, (c) 1 h ahead in the validation phase and (d)

24h ahead in the validation phase, compared to the observed data.

Figure 10 | Patterns in RMSE and MAE% obtained by fixing the hour in which the forecast was made and calculating the errors in the forecasts for each of the next 24 h.
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account, firstly, the periodic components alone and, sec-

ondly, the periodic and persistence components together. To

that end, the forecasts were compared with the actual water

demands observed in order to analyse the errors incurred for

each case. More specifically, the EV and RMSE were

calculated for the daily water-demand forecasts based on

the patterns alone (the seasonal pattern �Q
d;s
m and weekly

pattern �D
d;w
i;j ), in addition to the forecasts based on both the

periodic and persistence components (i.e. also taking

account of the residual ddm, modelled using the autoregressive

processAR(1)). Similarly, theEV andRMSEwere calculated

for the hourly water demand forecasts based on the patterns

alone ( �Q
d;s
m , �D

d;w
i;j and �D

h
n;i;j) and the forecasts based on both the

periodic and persistence components (i.e. also taking into

account the daily residual ddm as well as the hourly residual

1tþk,modelledusing a regressionequation). Table1 shows the

values obtained in the four cases described for both the

calibration and validation phases.

In both instances, inclusion of the persistence com-

ponent has the effect of fine-tuning the forecast. This can also

be seen from Figure 8, where the EV, RMSE and MAE%

relating to the hourly forecasts using the complete Patt_WDF

model, are compared to the values obtained when only the

periodic components of the model were considered. When

the persistence components are absent, the EV takes on a

constant value of about 0.94, regardless of lead time, in

comparison with an EV of 0.97 for a lead time of 1 and an EV

of 0.96 for all other lead times, using the complete model. In

terms of mean absolute percentage error, omitting the

persistence component would cause the MAE% to increase

from 4.3% for a lead time of 1 and 5.4 for all other lead times,

to 6.4%. Whilst the contribution of the persistence com-

ponent for the calibration period is modest, it increases

Figure 11 | Patterns in RMSE and MAE% obtained by fixing the hour the forecast was for and calculating the errors in the forecasts made starting from each of the previous 24 h.

Table 1 | Explained variance EV and RMSE of daily and hourly water demand as

forecast on the basis of patterns alone and on the basis of both the periodic

and persistence components of the Patt_WDF model in the calibration

(average observed water demand 54 l/s) and validation (average observed

water demand 68 l/s) phases

Calibration Validation

Daily Hourly Daily Hourly

EV periodic comp. 0.69 0.94 0.36 0.89

EV periodic þ persistence comp. 0.84 0.97 0.76 0.97

RMSE periodic comp. 2.83 4.63 13.52 14.64

RMSE periodic þ persistence comp. 2.01 3.17 4.61 4.42
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markedly when the focus shifts to the validation period (see

Table 1). In this latter case, the variance explained by the

periodic component alone decreases significantly but this is

compensated by the increased contributionof the persistence

component. For example, when using the complete model at

the hourly level, both the calibration and validation phases

have an EV of 0.97 whereas for the periodic component

alone, the EV deteriorates from 0.94 in the calibration phase

to 0.89 in the validation phase. Similar trends can be seen in

Figure 8where, in the case of the completemodel, theMAE%

is 5.0% for a lead timeof 1and7.7%for lead times greater than

1, whilst that for the pattern component alone is 19.3%.

The explanation of why the contribution of the persist-

ence component increased in the validation phase is likely to

be a result of the fact that thepatterns used for validationwere

the same as those defined in the calibration year.Whilst using

such patterns makes it possible to represent periodicities in

water demand effectively, some changesmaywell occur from

one year to the next. For example, although the observed

water-demand patterns in Castelfranco Emilia have been

very similar over the past few years, average consumptionhas

undergone a slight increase, thereby increasing the size of the

deviations. However, it would seem from this analysis that

the persistence component is able to compensate for these

systematic discrepancies.

CONCLUSIONS

Methodology developed

Prior to selecting this modular, pattern-based approach to

short-term water-demand forecasting, consideration was

given to using an artificial neural network (Stark et al. 1999)

to serve the same end, which perhaps was more in keeping

with the nature of the overall research project. Whilst the

latter provided equally good results for a particular day,

difficulties were encountered with the transition from one

day to the next, especially between weekdays and week-

ends. By adopting a pattern-based approach, which con-

tains seasonal, weekly and daily cycles, these difficulties

could be avoided. However, reliance on the cyclic patterns

alone also has its own shortcomings since amongst other

things, no attention is paid to short-term exogenous

variables such as the prevailing weather which can

significantly influence demands on a day to day basis.

Nevertheless, by including a persistence component as well

as a periodic component, these limitations can, to a large

extent, be overcome since such factors are implicitly taken

into account by the hourly updating of the persistence

component. Therefore, the resulting demand-forecasting

model developed for the POWADIMA research project

comprised two modules, each containing a periodic

component and a persistence component. Whereas the

aim of the first module was to forecast the daily water

demands, that for the second module was to superimpose

the hourly fluctuations. By this means, the observed

seasonal, weekly and daily cycles can be preserved as well

as the persistence effects.

Attributes of the model developed

An analysis of the results obtained shows that the model is

capable of delivering an accurate and robust forecast of

future water demands on an hourly basis. Whilst the

periodic component represents the mainstay of the model,

the persistence components enables the forecast to be fine-

tuned. This is of particular relevance to real-time control

where the forecast is updated at short, regular intervals by

‘grounding’ any discrepancies between the actual demand

at the next update and that forecast at the previous time-

step. In this way, rather than just scaling the existing 24h

forecast in accordance with the actual demand, a new

forecast can be generated at the next time-step, taking the

internal structure of the demand patterns into account.

However, it is important to stress that, in the light of the

results obtained from the calibration and validation phases

of the Castelfranco Emilia’s water-demand forecasting

model, consideration should be given to re-estimating the

periodic and persistence parameters whenever there is a

distinct increase in the number of customers served or a

noticeable change in the per capita consumption.
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