
(Die Preisträgervorträge wurden in einer Plenarsitzung am 15. November 2013 vorge-

tragen)

Der Dannie-Heineman-Preis 2013 wurde Emmanuel Jean Candès, Stanford/USA,

verliehen.Herr Candès hat als einer der Architektendes Compressive Sensing Prinzips

die Brücke zwischen Grundlagenforschung und der vielfältigen praktischen Nutzung

dieser Theorie hergestellt und hierdurch die Entwicklung der mathematischen Sta-

tistik, der angewandten Mathematik und angrenzender Gebiete in jüngster Zeit maß-

geblich geprägt.

Emmanuel J. Candès

A Short Tour of Compressive Sensing

Ladies and gentlemen,

I am truly honored and happy to have been

selected to receive the Dannie Heineman

Prize 2013, and would like to o�er my war-

mest thanks to the Academy. I am especially

grateful to the members of the selection com-

mittee for proposing my name.

It is a real privilege for me to be addres-

sing such a distinguished audience, and

speak in a city of science where some of

my scienti�c heroes, at one time or another,

have lived and worked. One of these is of

course Carl Friedrich Gauss, who more than

150 years after his death, still is the ultimate

inspiration and model for any mathematical

scientist in the world. David Hilbert, Werner

Heisenberg are other “Göttingen heroes” of

mine and in truth, I have learnedmuch about

their accomplishments as an undergraduate

studyingmathematics and physics in France,

long long time ago. Speaking of early years,

some of you may have heard of a French sin-

Emmanuel J. Candès, Professor of

Mathematics, of Statistics and of Electrical

Engineering (by courtesy) Stanford

University, Dannie-Heineman-Preisträger

2013

ger named Barbara. I was and am still very fond of her. She wrote a beautiful song

called “Göttingen” – there are both a French and a German version – which paints a

poetic picture of this city, and which I adored. So I suppose that because of the scien-

ti�c history attached to this place and the romantic view I had of this city, the name

“Göttingen” always fascinated me. The couple of days I spent here far from shattered

this mindset.
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Mygoal in this lecture is to give youa little idea ofmywork and Iwill take you througha

short tour of compressive sensing (CS).While this subject can be highlymathematical,

this tour will be non-technical and I will essentially present my story through pictures

and diagrams.

From my point of view, the story of compressive sensing really begins with a sur-

prising experiment in the area of medical imaging. To tell the truth, I have always

found biomedical imaging techniques both imaginative and daring, and because this

lecture is designed for a broad audience, it is probably best to start with a very brief

history of such methods. Centuries ago, before World War I, to understand anatomy,

one had to perform dissections. Simply put, we could not image internal organs, and

had to open up the human body just to see what it is made of and visualize trau-

mas. The discovery of X-rays by Wilhelm Röntgen in 1895 – Röntgen received the very

�rst Physics Nobel Prize for this discovery – changed all of this. It was indeed quickly

realized that X-rays had great medical applications since they could be used to view

a non-uniform medium such as the human body (this is the basis of radiography).

The limitation of radiography, however, is that this technique only provides a two-

dimensional impression of structures inside the human body.We cannot really distin-

guish what is far from what is close, what is in front from what is behind. Expressed

di�erently, it is not really possible to recover this three-dimensional universe as we

only see its shadow. Two fairly contemporary breakthroughs radically changed the

situation: the �rst is the discovery of computed tomography (CT) in 1972 by Houns-

�eld and Cormack, and the second, that of magnetic resonance imaging (MRI) by

Lauterbur and Mans�eld in 1972. Both these discoveries profoundly altered medical

diagnostics and were each eventually recognized by the Nobel Prize in Medicine. In

a nutshell, CT and MR scans probe the human body by measuring its response to an

excitation and, hence, provide indirect measurements about biological tissues. A CT

scan measures the absorption of energy along the path of X-rays, which are shot from

various locations and at various angles. This process produces a large series of two-

dimensional radiographic images from which it is possible to generate an image of

the 3-dimensional human body. Mathematically, there is a relationship between the

collected data and the object of interest known as the Radon transform, named after

themathematician JohannesRadon (1887–1956)who�rst proposed its study. Inverting

this transformation yields the image we are looking for. MRI is an even more revolu-

tionary non-invasive technique, which uses the quantum properties of matter. An MR

scan excites the nucleus of atoms by means of a magnetic �eld. These nuclei have a

magnetic spin, and will respond to this excitation, and it precisely is this response

that gets recorded. As in CT, there is amathematical transformation, which relates the

object we wish to infer and the data we collect. In this case, after performing a few

approximations, this mathematical transformation is given by the very well-known

Fourier transform, introduced 150 years earlier by Jean-Baptiste Joseph Fourier as a

tool for understandingheat transfer or thermal conduction. To say the least, it is rather

spectacular to �nd the same transformation arising naturally in a completely di�erent
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context! Applying the inverse Fourier transform to MR data produces an MR image of

body tissues.

A major issue with MRI is that data collection is inherently slow. Long acquisition

times are especially problematic in pediatrics because children have di;culties stay-

ing still and cannot hold their breadth. The consequence is that images are always

blurred and often cannot be used for medical diagnostic. A current solution would

shut down a child’s breathing for a couple minutes by deepening the anesthesia; this

is obviously risky and costly. Away from pediatrics, faster imaging would decrease

scan time, decrease image artifacts, increase spatial and temporal resolution, increase

coverage; in short, enable a host of new applications. Now long scan times are caused

by incompressible relaxation times (this why the data collection process is inherently

slow) so that faster acquisition truly means a reduced data rate.

A few years ago, I was fortunate to be contacted by radiologists from the Univer-

sity of Wisconsin, who were trying to speed things up. The idea was to reconstruct

a 512 × 512 pixel image from about 22 × 512 data points, i.e. Fourier samples. We

need to do the math here: we have about 262,000 unknown pixel values and roughly

11,200 equations (this means that we are missing about 95% of the minimum number

of equations we would need). How can we possibly solve such a heavily underdeter-

mined system? If Gauss were to listen to us, he would likely be scornful. Looking at

Figure 1, this may explain why the naive method radiologists were using gives disas-

trous results, compare the reconstruction in (b) with the original picture in (a). The

surprise is the reconstruction in (c) obtained by solving a simple convex optimiza-

tion problem: among all the feasible solutions to the underdetermined system, �nd

that whose sum of gradient magnitudes is minimal, see [4] for details. This method,

which does not make any parametric assumption about the unknown image we wish

to reconstruct, is perfect; that is to say, it perfectly recovers the input image with no

error whatsoever. The same ‘miracle’ occurs if we substitute the image in Figure 1 (a)

with other images of this type.

How can this be? Together with Justin Romberg and Terence Tao, we set out to

mathematically explain this curious phenomenon. Suppose we have a signal x[t],
t = 0, 1, . . . ,n − 1, with possibly complex-valued amplitudes and let x̂ be the discrete

Fourier transform (DFT) of x de�ned by

x̂[!] =
n−1
∑
t=0

x[t]e−i2⁄!t/n, ! = 0, 1, . . . , n − 1.

We do not have the time to acquire all the Fourier coe;cients so we only sample m of

them by sampling frequencies! uniformly at random. This leads to an underdetermi-

ned system of the form y = Ax,where y is the vector of Fourier samples at the observed

frequencies and A is the m × n matrix whose rows are correspondingly sampled from

the DFT matrix. To recover, we simply �nd among all solutions that with minimum ℓ1
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(a) (b) (c)

Fig. 1. (a) The Logan-Shepp phantom test image. (b) Minimum energy reconstruction obtained by

setting unobserved Fourier coe�cients to zero. (c) Reconstruction obtained by minimizing the sum

of gradient magnitudes. (Figure reproduced from [4].)

norm:
minimize ‖x‖ℓ1 = ∑

n−1
t=0 |x[t]|

subject to Ax = y

(with real data, this can be recast as a linear program). In other words, we just mini-

mize the sum of the amplitudes of the signal. The main result in [4] proves that on

the order of k log n samples su;ce for this method to achieve perfect recovery almost

always, see Figure 2 for an illustrative example (also showing the role played by the

ℓ1 norm versus the usual ℓ2 norm). This phenomenon is not limited to Fourier sampl-

ing. It is now well understood that ℓ1 minimization recovers exactly sparse solutions

to underdetermined systems of equations Ax = y provided that the rows of A are not

sparse and diverse [3]. It is also established that recovery is accurate – although not

exact – in case of approximate sparsity.

Early papers such as [5] and [2] extended the initial discovery in [4] – I would

like to note that in addition to having made seminal contributions, Donoho coined

the term ‘compressed sensing’ – triggering a massive literature so that by now CS

is a rich and well-developed mathematical theory. In fact, “CS built on, and help-

ed make coherent, ideas that had been applied or developed in particular scien-

ti�c contexts, such as geophysical imaging and theoretical computer science, and

even in mathematics itself (e.g., geometric functional analysis).”¹ In particular, the

use of the ℓ1 norm is not new. On the practical side, thanks to the tireless work of

several teams around the world, this discovery is changing MRI. Instead of having

to sedate a sick toddler for a couple of minutes, CS scans can be made in just

15 seconds – the length of a single breath. Figure 3 and its caption, retrieved from

http://www.eecs.berkeley.edu/Research/Projects/Data/106899.html,will give the rea-

1 The quote is taken from [7].
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(c)

Fig. 2. Recovery of a sparse signal of length n = 256 from m = 32 complex-valued Fourier sam-

ples. (a) Sparse signal (15 spikes). (b) Minimum ℓ2 reconstruction. (c) Minimum ℓ1 reconstruction is
perfect!

der a sense of recent progress in this �eld, please see the accompanying paper [6] as

well as [8] for further contemporary developments.

Finally, compressive sensing has broader implications than accelerating MR

scans, and touches on the very nature of signal acquisition. Consider that while a

digital camera records millions of pixel values stored in a very large data �le, it is

however often possible to compress these data 10 or even 100 fold without much

distortion. (In fact, a digital camera begins to throw away most of the measured bits

as soon as the shutter closes. This is a little disturbing although how would we know

which bits to discard a priori?) I quote from David Brady [1]: “one can regard the pos-

sibility of digital compression as a failure of sensor design. If it is possible to compress

measured data, one might argue that too many measurements were taken.” The rea-

son why data compression works is that information in an image is often redundant –

it is not white noise. Against this background, CS asserts that if you know that the
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Fig. 3. Example of image quality: Submilimeter resolution, 8-fold accelerated acquisition of a �rst

pass contrast MR angiography with compressed sensing of a 6 years old patient. Pediatric patients

have smaller vessels and faster circulation than adults and require much faster imaging. (a) Volume

rendering (b) Maximum intensity projection (MIP) and (c) Zoomed MIP showing extraordinary level

of details. The data was acquired within 16 seconds compared to 2 min that are required for Nyquist

sampling and was reconstructed with our parallel implementation in less than 2 min. At that tempo-

ral resolution there is no venus contamination in the image.

scene we are interested in photographing is information-sparse, then it is possible to

condense it in just a few measurements, each measurement being a randomly weigh-

ted sum of all the pixel values in the scene, just as in anMR scan. To recover the scene

and look at it, simply solve an ℓ1 minimization problem as to �nd the simplest object

consistent with the measured data. Just as Shannon sampling theory has informed

sensor design, the possibility of fast acquisition techniques of approximately sparse

signals o�ers new trade-o�s and perspectives for sensor design. Such techniques

begin to be applied in microscopy, astronomy, and electronics for radio-frequency

sensing.
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