
Verifier-Local Revocation Group Signature
Schemes with Backward Unlinkability from

Bilinear Maps

Toru Nakanishi and Nobuo Funabiki

Department of Communication Network Engineering, Okayama University,
3-1-1 Tsushima-Naka, Okayama 700-8530, Japan
{nakanisi,funabiki}@cne.okayama-u.ac.jp

Abstract. An approach of membership revocation in group signatures
is verifier-local revocation (VLR for short). In this approach, only ver-
ifiers are involved in the revocation mechanism, while signers have no
involvement. Thus, since signers have no load, this approach is suitable
for mobile environments. Although Boneh and Shacham recently pro-
posed a VLR group signature scheme from bilinear maps, this scheme
does not satisfy the backward unlikability. The backward unlikability
means that even after a member is revoked, signatures produced by the
member before the revocation remain anonymous. In this paper, we pro-
pose VLR group signature schemes with the backward unlinkability from
bilinear maps.

1 Introduction

A group signature scheme [10, 8, 1, 15, 2, 9, 16, 13, 6, 7, 14] allows a group member
to anonymously sign a message on behalf of a group, where a group manager
controls the membership of members. Then, often a third party can cancel the
anonymity of signatures to trace the signers. Some schemes support membership
revocation [15, 2, 9, 16, 6, 7], where the membership of a member can be disabled
without influencing the other members.

This paper focuses on the membership revocation. The simplest revocation
method is that the manager changes the group public key and secret keys of
all members except the revoked member to re-distribute the keys [2]. However,
the other members’ loads are enormous. A better solution is to broadcast a
small public membership message to all signers and verifiers, as in [9, 16, 6].
Although the costs of signers are better, the signer still has to obtain some
data depending on the size of the group (or the number of revoked members)
whenever signing. On the other hand, there is another approach [15, 2, 7], where
some revocation messages are only sent to verifiers, although the verifiers need
the computational cost depending the number of revoked members. Since the
signers’ costs are lower, this type is suitable for mobile environments where
mobile hosts anonymously communicate with the servers. We refer to this type
as Verifier-Local Revocation (VLR for short) group signature scheme, as in [7].

In [15, 2], VLR group signature schemes based on the strong RSA assumption
are proposed. However, the schemes have some drawbacks on efficiency. The first
scheme of [15] and the scheme of [2] suffer from the inefficiency of signing, due
to the used inefficient zero-knowledge proofs. The second scheme of [15] forces a
signer to compute O(T) exponentiations at every time interval, where T is the
total number of time intervals. Since the revocation can be performed only at
the beginning of each time interval, T should be large. This means the signer’s
heavy load.

In [7], a VLR group signature scheme based on bilinear maps is proposed by
Boneh and Shacham. The advantage of this scheme is that signatures are short,
since the elliptic curves can be adopted. On the other hand, the schemes of [15,
2] have an advantage over [7], backward unlinkability. This property means that
even after a member is revoked, signatures produced by the member before the
revocation remain anonymous. However, in the scheme of [7], all the signatures
produced from the revoked member are linkable. This means that the anonymity
of signatures produced before the revocation is compromised. In some cases that
all signatures from an illegal person should be traced, the linkability is useful,
as well as traceable signatures in [13]. However, the linkability is undesirable in
most cases. In case a member leaves voluntarily, the anonymity of signatures
before leaving should be ensured. This is the same in case a member’s secret key
is stolen.

In this paper, we propose VLR group signature schemes from bilinear maps,
which moreover satisfy the backward unlinkability. In the schemes, the concept of
time intervals is adopted, as [15]. For each member, there are revocation tokens
of all intervals 1, . . . , T . When a revocation happens at interval j∗, the revoca-
tion tokens of the member at all j ≥ j∗ are sent to verifiers. Then, signatures
after j∗ (including j∗) can be detected, while signatures before j∗ remain anony-
mous. Therefore, the backward unlinkability holds. Since the proposed schemes
adopt only efficient zero-knowledge proofs, signing process is efficient. Moreover,
a signer does not need any computation depending on T .

We first propose a basic VLR group signatures scheme, and prove the secu-
rity. In the basic scheme, a group manager publishes revocation tokens at every
interval. Thus, the total data of the revocation tokens published up to a pro-
ceeded interval becomes very long. Therefore, we propose an extended scheme,
where the total data size is reduced at the sacrifice of the signer’s slight cost.

2 Model and Security Definitions

We show a model of VLR group signature scheme with backward unlinkability,
which is extended from a model of VLR group signature scheme proposed in [7].

Definition 1. A VLR group signature scheme with backward unlinkability con-
sists of the following algorithms:

KeyGen(n, T): It is a probabilistic algorithm on inputs n, which is the number
of members, and T , which is the number of time intervals. It outputs a

2

group public key gpk, an n-element vector of members’ secret keys gsk =
(gsk[1], . . . , gsk[n]), and an n×T -element vector of revocation tokens grt =
(grt[1][1], . . . , grt[n][T]), where grt[i][j] indicates the token of member i at
time interval j.

Sign(gpk, j, gsk[i], M): This takes as inputs the group public key gpk, the cur-
rent time interval j, a secret key gsk[i], and a message M ∈ {0, 1}∗, and
outputs the signature σ.

Verify(gpk, j, RLj , σ,M): This takes as inputs gpk, j, a set of the revocation
tokens RLj at the time interval j, a signature σ, and the message M . Then,
it outputs either valid or invalid. The validity means that σ is a correct
signature on M at interval j w.r.t. gpk, and that the signer is not revoked
at the interval j.

Remark 1. In practice, algorithm KeyGen is performed by a trusted group
manager. The manager gives each gsk[i] to each group member indexed by i,
who can compute a group signature using algorithm Sign. Furthermore, at each
interval j, the manager distributes revocation list RLj , which consists of tokens
grt[i][j] for all revoked members at j, to verifiers. The verifiers can verify a
group signature using algorithm Verify.

Then, the security requirements, Correctness, Traceability, and BU-anonymity,
are defined as follows, which are also extended from [7].

Definition 2 (Correctness). Correctness requires that for all (gpk, gsk, grt) =
KeyGen(n, T), all j ∈ [1, T], all RLj, all i ∈ [1, n], and all M ∈ {0, 1}∗,

Verify(gpk, j, RLj ,Sign(gpk, j, gsk[i],M),M) = valid ⇐⇒ grt[i][j] /∈ RLj .

As well as [7], we introduce implicit tracing algorithm: For any interval j,
using the revocation token grt[i][j] of all members, the implicit tracing algorithm
can trace the signer from a valid signature-message pair (σ,M).

The following traceability requirement captures the unforgeability of group
signatures, introduced first by [3]. Consider the following traceability game be-
tween an adversary A and a challenger, where A tries to forge a signature that
cannot be traced to one of members corrupted by A.

Setup: The challenger runs KeyGen(n, T), and obtains gpk, gsk, and grt. He
provides A with gpk and grt, and sets U with empty.

Queries: A can query the challenger about the following.
Signing: A requests a signature on an arbitrary message M for an arbi-

trary member i at an arbitrary interval j. The challenger responds the
corresponding signature.

Corruption: A requests the secret key of an arbitrary member i. The chal-
lenger adds i to U , and responds the key.

Output: Finally, A outputs a message M∗, an interval j∗, a set RL∗
j∗ of revo-

cation tokens, and a signature σ∗.

3

Then, A wins if (1) Verify(gpk, j∗, RL∗
j∗ , σ∗,M∗) = valid, and (2) σ∗ traces to

a member outside of the coalition, i.e, U \ RL∗
j∗ or the trace is failure, and (3)

A did not obtain σ∗ by making a signing query at M∗.

Definition 3 (Traceability). Traceability requires that for all PPT A, the
probability that A wins the traceability game is negligible.

The following BU-anonymity requirement captures the anonymity with the
backward unlinkability. Consider the following BU-anonymity game.

Setup: The challenger runs KeyGen(n, T), and obtains gpk, gsk, and grt. He
provides A with gpk.

Queries: At the beginning of every interval j ∈ [1, T], the challenger announces
the beginning of j to A, where j is incremented. At the current interval j,
A can query the challenger about the following.
Signing: A requests a signature on an arbitrary message M for an arbi-

trary member i at the current interval j. The challenger responds the
corresponding signature.

Corruption: A requests the secret key of an arbitrary member i.
Revocation: A requests the revocation of an arbitrary member i at the

current interval j. The challenger responds grt[i][j].
Challenge: A outputs a message M and two members i0 and i1. The corruption

of i0 and i1 must not be requested. Furthermore, the revocations of i0 and
i1 must not be requested before the current interval j0 (including j0). The
challenger chooses φ ∈R {0, 1}, and responds the signature on M of member
iφ at the current interval j0.

Restricted queries: Similarly, A can make the signing queries, corruption
queries, and revocation queries, while the time interval is incremented. How-
ever, A cannot query the corruptions of i0 and i1, and the revocations of i0
and i1 at the interval j0 (Note that the revocations of i0 and i1 after j0 is
permitted).

Output: Finally, A outputs a bit φ′ indicating its guess of φ.

If φ′ = φ, A wins. We define the advantage of A as |Pr[φ′ = φ] − 1/2|.

Definition 4 (BU-anonymity). BU-anonymity requires that for all PPT A,
the advantage of A on the BU-anonymity game is negligible.

3 Preliminaries

3.1 Bilinear Groups

Our scheme utilizes bilinear groups and bilinear maps as follows:

1. G1, G2 and G′ are multiplicative cyclic groups of prime order p,
2. g1 is a generator of G1, and g2 is a generator of G2,
3. ψ is an efficiently computed isomorphism from G2 to G1, with ψ(g2) = g1,

4

4. e is an efficiently computed bilinear map: G1 × G2 → G′, i.e., (1) for all
u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab, and (2) e(g1, g2) 6= 1.

Hereafter, for simplicity, we consider only the case of G1 = G2, and we set
G = G1 = G2, and g = g1 = g2. Our scheme can be extended to the case of
G1 6= G2, as [7].

3.2 Assumptions

Our scheme is based on the q-SDH assumption [6, 7] and the DBDH assumption
[4] in G.

Definition 5 (q-SDH assumption). For all PPT algorithm A , the probability

Pr[A(g, gγ , . . . , g(γq)) = (g(1/γ+x), x) ∧ x ∈ Z∗
p]

is negligible, where γ ∈R Z∗
p .

Definition 6 (Decision BDH (DBDH) assumption). For all PPT algo-
rithm A, the probability

|Pr[A(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[A(g, ga, gb, gc, e(g, g)d) = 0|

is negligible, where a, b, c, d ∈R Z∗
p .

3.3 Proving Relations on Representations

As well as [6, 7], we adopt signatures converted by Fiat-Shamir heuristic (using
a hash function) from zero-knowledge proofs of knowledge (PK), where a signer
can convince a verifier of knowledge with relations on representations. We call
the signatures SPKs. The SPKs we adopt are the generalization of the Schnorr
signature, and the underlying PKs are basically derived from [11, 12, 8]. We
introduce the following notation.

SPK{(x1, . . . , xt) : R(x1, . . . , xt)}(M),

which means a signature of message M by a signer who knows secret values
x1, . . . , xt satisfying a relation R(x1, . . . , xt). In this paper, the following SPKs
on G,G′ are utilized.

SPK of representation: An SPK proving the knowledge of a representation
of C ∈ G to the bases g1, g2, . . . , gt ∈ G on message M is denoted as

SPK{(x1, . . . , xt) : C = gx1
1 · · · gxt

t }(M).

This can be also constructed on group G′.

5

SPK of representations with equal parts: An SPK proving the knowledge
of representations of C, C ′ ∈ G to the bases g1, . . . , gt ∈ G on message M ,
where the representations include equal values as parts, is denoted as

SPK{(x1, . . . , xu) : C = g
xj1
i1

· · · gxjv
iv

∧ C ′ = g
xj′1
i′1

· · · g
xj′

v′
i′
v′

}(M),

where indices i1, . . . iv, i′1, . . . i
′
v′ ∈ {1, . . . , t} refer to the bases g1, . . . , gt, and

indices j1, . . . jv, j′1, . . . , j′v′ ∈ {1, . . . , u} refer to the secrets x1, . . . , xu. This
SPK can be extended for different groups G and G′ with the same order p,
as follows.

SPK{(x1, . . . , xu) : C = g
xj1
i1

· · · gxjv
iv

∧ C ′ = g′
xj1
i′1

· · · g′
xj′

v′
i′
v′

}(M),

where C, g1, . . . , gt ∈ G, and C ′, g′1, . . . , g
′
t ∈ G′.

In the random oracle model, the SPK can be simulated without the knowl-
edge using a simulator in the zero-knowledge-ness of the underlying PK. More-
over, the SPK has an extractor of the proved secret knowledge given two ac-
cepting protocol views whose commitments are the same and whose challenges
are different.

4 Proposed Scheme

4.1 Idea

The scheme of [7] is intuitively as follows. For group public key gpk = (g, gγ),
an SDH pair (Ai = g1/(γ+xi), xi) is secret key gsk[i] of member i, which is
unforgeable without γ. Then, group signature of member i consists of T1 =
urAi and T2 = vr, where u, v ∈R G and r ∈R Z∗

p , and the SPK proving the
correctness. The revocation token of member i is Ai. By checking e(T1/A, v) =
e(u, T2) for all revocation tokens A, it can be checked whether T1 includes a
token of a revoked member.

The proposed scheme is an extension of [7]. To the public key, we add hj ∈ G
for all 1 ≤ j ≤ T , and the secret key is the same. Then, the group signature is
modified into T3 = e(gxi , hj)r, T4 = gr and the SPK proving the correctness
and the ownership of Ai corresponding xi. The revocation token at interval j
is Bij = hxi

j . Then, by checking T3 = e(T4, B) for all revocation tokens B at
interval j, it can be checked whether T3 includes a token of a revoked member.
On the other hand, the revocation tokens at different interval j′ do not satisfy
the above checking. Moreover, the computation from a token hxi

j at j to another
hxi

j′ at j′ is infeasible. Therefore, backward unlinkability is achieved.

4.2 Proposed Algorithms

KeyGen(n, T): This key generation algorithm is given the number of members
and the number of time intervals, and computes keys as follows.

6

1. Select a generator g ∈ G and g̃ ∈R G. Additionally, select hj ∈R G for all
j ∈ [1, T].

2. Select γ ∈R Z∗
p and compute w = gγ .

3. Select xi ∈R Z∗
p and compute Ai = g1/(γ+xi) for all i ∈ [1, n].

4. Compute Bij = hxi
j for all i and j.

The group public key gpk is (g, g̃, h1, . . . hT , w). Each member’s secret key
gsk[i] is (Ai, xi). The revocation token at interval j of member with secret
(Ai, xi) is grt[i][j] = Bij . Output (gpk, gsk, grt).

Sign(gpk, j, gsk[i], M): The inputs of this signing algorithm are gpk = (g, g̃, h1,
. . . hT , w), the current time interval j, the signer’s secret gsk[i] = (Ai, xi) and
a signed message M ∈ {0, 1}∗. Hereafter, we assume that M includes the time
interval j in order to bind the signature to the interval. The algorithm is as
follows:

1. Select randoms α, β, δ ∈R Z∗
p .

2. Compute T1 = Aig̃
α, T2 = gαg̃β , T3 = e(gxi , hj)δ, and T4 = gδ.

3. Compute

V = SPK{(α, β, δ, xi, Ai) : T1 = Aig̃
α ∧ T2 = gαg̃β

∧ T3 = e(gxi , hj)δ ∧ T4 = gδ

∧ e(Ai, wgxi) = e(g, g)}(M).

The detail of this SPK is shown in Section 4.3.

Output the group signature σ = (T1, T2, T3, T4, V).

Verify(gpk, j, RLj , σ,M): The inputs are gpk = (g, g̃, h1, . . . hT , w), the current
time interval j, the revocation list RLj that consists of grt[i][j] for all revoked
i at the interval j, a target signature σ = (T1, T2, T3, T4, V) and the message
M ∈ {0, 1}∗.

1. Signature check. Check that σ is valid, by checking the SPK V .
2. Revocation check. Check that the signer is not revoked at the interval j,

by checking T3 6= e(T4, Bij) for all Bij ∈ RLj .

4.3 Detail of the SPK

The SPK V in the algorithm Sign is computed as the following SPK V ′.

V ′ = SPK{(α, β, δ, xi, ε, ζ, η) : T2 = gαg̃β ∧ 1 = T xi
2 (1/g)ε(1/g̃)ζ

∧ e(T1, w)(1/e(g, g)) = (1/e(T1, g))xie(g̃, w)αe(g̃, g)ε

∧ T3 = e(g, hj)η ∧ T4 = gδ ∧ 1 = T xi
4 (1/g)η}(M).

This SPK can be computed by the SPK for the representations, where ε = xiα,
ζ = xiβ, and η = xiδ are adopted.

What we require is to prove that the SPK V is equivalent to V ′. The fol-
lowing lemma ensures the equivalence.

7

Lemma 1. V ′ is an SPK of knowledge (α, β, δ, xi, Ai) s.t.

T1 = Aig̃
α ∧ T2 = gαg̃β ∧ T3 = e(gxi , hj)δ ∧ T4 = gδ ∧ e(Ai, wgxi) = e(g, g).

Proof. Since V ′ is an SPK of knowledge (α, β, δ, xi, ε, ζ, η) s.t.

T2 = gαg̃β (1)
1 = T xi

2 (1/g)ε(1/g̃)ζ (2)
e(T1, w)(1/e(g, g)) = (1/e(T1, g))xie(g̃, w)αe(g̃, g)ε (3)
T3 = e(g, hj)η (4)
T4 = gδ (5)
1 = T xi

4 (1/g)η, (6)

such knowledge can be extracted. From the equations (1), (2), the equation
gεg̃ζ = gxiαg̃xiβ holds, and thus ε = xiα holds. Then, consider the following
equation transformed from (3).

e(T1, w)e(T1, g)xi/e(g̃, w)αe(g̃, g)xiα = e(g, g).

Then, from

e(T1, w)e(T1, g)xi = e(T1, wgxi) and e(g̃, w)αe(g̃, g)xiα = e(g̃α, wgxi),

we obtain e(T1/g̃α, wgxi) = e(g, g). Thus, setting Ai = T1/g̃α, we can extract
knowledge xi, Ai s.t.

T1 = Aig̃
α and e(Ai, wgxi) = e(g, g).

On the other hand, from equations (5), (6), we obtain gη = gxiδ. Therefore,
from equation (4), we can extract knowledge xi, δ s.t. T3 = e(gxi , hj)δ. ut

4.4 Details of Sign and Verify Algorithms

For efficiency consideration, this subsection describes the Sign and Verify al-
gorithms of the proposed scheme in Section 4.2, where the SPKs for represen-
tations shown in Section 4.3 are described in details. The construction of each
SPK for a representation is similar to that in [7] or Schnorr based SPKs on
groups with known orders. Thus, we omit the proof that underlying PKs of
following SPKs are zero-knowledge proofs of knowledge.

Sign(gpk, j, gsk[i], M):

1. Select randoms α, β, δ ∈R Z∗
p , and set ε = xiα, ζ = xiβ, and η = xiδ.

2. Compute T1 = Aig̃
α, T2 = gαg̃β , T3 = e(gxi , hj)δ, and T4 = gδ.

3. Compute SPK V ′ (i.e., V) as follows.
(a) Pick blinding factors rα, rβ , rδ, rxi , rε, rζ , rη ∈R Zp.

8

(b) Compute

R1 = grα g̃rβ ,

R2 = T
rxi
2 (1/g)rε(1/g̃)rζ ,

R3 = (1/e(T1, g))rxi e(g̃, w)rαe(g̃, g)rε ,

R4 = e(g, hj)rη ,

R5 = grδ ,

R6 = T
rxi
4 (1/g)rη .

(c) Compute a challenge c ∈ Zp using a hash function H that is regarded as
a random oracle.

c = H(gpk, j,M, T1, T2, T3, T4, R1, R2, R3, R4, R5, R6).

(d) Compute sα = rα + cα, sβ = rβ + cβ, sδ = rδ + cδ, sxi = rxi + cxi,
sε = rε + cε, sζ = rζ + cζ, and sη = rη + cη in Zp.

Output the group signature σ = (T1, T2, T3, T4, c, sα, sβ , sδ, sxi
, sε, sζ , sη).

Verify(gpk, j, RLj , σ,M):

1. Signature check. Check that σ is valid, by checking the SPK V ′, as follows.
(a) Retrieve

R̃1 = gsα g̃sβ (1/T2)c,

R̃2 = T
sxi
2 (1/g)sε(1/g̃)sζ ,

R̃3 = (1/e(T1, g))sxi e(g̃, w)sαe(g̃, g)sε((1/e(T1, w))e(g, g))c,

R̃4 = e(g, hj)sη (1/T3)c,

R̃5 = gsδ(1/T4)c,

R̃6 = T
sxi
4 (1/g)sη .

(b) Check the challenge c:

c = H(gpk, j,M, T1, T2, T3, T4, R̃1, R̃2, R̃3, R̃4, R̃5, R̃6).

2. Revocation check. Check that the signer is not revoked at the interval j,
by checking T3 6= e(T4, Bij) for all Bij ∈ RLj .

Signature Length. This group signature includes 3 elements from G, 1 element
from G′ and 8 elements from Zp. When an elliptic curve is used as well as [7], p
is 170 bits, elements of G are 171 bits, and elements of G′ is 1020 bits. In that
case, this group signature is 2893 bits or 362 bytes.

Performance. The signature generation requires 10 multi-exponentiations and
1 bilinear map computation (plus 3 bilinear map computations that can be
pre-computed). The verification requires 6 multi-exponentiations and 2 + |RLj |
bilinear map computations (plus 4 bilinear map computations that can be pre-
computed).

9

5 Security

Since the correctness is straightforward, only BU-anonymity and traceability are
shown.

5.1 BU-Anonymity

Theorem 1. The proposed scheme satisfies the BU-anonymity in the random
oracle model under the DBDH assumption.

The following lemma implies the above theorem.

Lemma 2. Suppose adversary A breaks the BU-anonymity of the proposed scheme
with the advantage ε and qH hash queries and qS signature queries. Then, we
can construct B that breaks the DBDH assumption with the advantage (1/nT −
qSqH/p)ε.

Proof. The input of B is (g, g1 = ga, g2 = gb, g3 = gc, Z), where a, b, c ∈R Z∗
p

and either Z = e(g, g)abc or Z = e(g, g)d for d ∈R Z∗
p . B decides which Z it is

given by communicating with A, as follows.

Setup. B simulates KeyGen(n, T) as follows.
1. B picks i∗ ∈R [1, n] and j∗ ∈R [1, T].

Furthermore, B selects g̃ ∈R G. Additionally, B selects rj ∈R Z∗
p and

computes hj = grj for all j ∈ [1, T] except j∗. For j∗, B sets hj∗ = g2 =
gb.

2. As usual, B selects γ ∈R Z∗
p and computes w = gγ .

3. As usual, B selects xi ∈R Z∗
p and computes Ai = g1/(γ+xi) for all i ∈ [1, n]

except i∗. For i∗, define xi∗ = a and Ai∗ = g1/(γ+a), which are unknown
for B.

4. As usual, B computes Bij = hxi
j for all i except i∗ and all j. For i∗,

B sets Bi∗j = g
rj

1 = garj = ha
j except for j∗. For i∗ and j∗, define

Bi∗j∗ = gab = hxi∗
j∗ , which is also unknown.

Note that simulated hj and Bij have the same distributions as the real, since
a, b, xi, rj ∈R Z∗

p .
Hash queries. At any time, A can query the hash function used in SPK. B

responds with random values with consistency.
Phase 1. A can request signing queries, corruption queries, and revocation

queries at any time interval j. If i 6= i∗, then B uses the secret key of i
to respond to the query as usual. If i = i∗, B responds as follows.

Signing queries: B computes a simulated group signature of i∗, as follows.
1. B selects δ ∈R Z∗

p .
2. B selects T1, T2 ∈R G. Furthermore, B computes T3 = e(g1, hj)δ =

e(ga, hj)δ = e(gxi∗ , hj)δ, and T4 = gδ.

10

3. B computes the simulated SPK V by using the simulator of the
perfect zero-knowledge-ness, which includes the backpatch of the
hash function. If the backpatch is failure, B outputs a random guess
ω′ ∈R {0, 1} and aborts.

Then, B responds signature σ = (T1, T2, T3, T4, V) to A. Note that each
value in σ has the same distribution as the real, since α, β ∈R Z∗

p in
the real and T1, T2 ∈R G in the simulation, and due to the perfect zero-
knowledge-ness of SPK.

Revocation queries: If j 6= j∗, B responds Bi∗j . Otherwise (i.e., j = j∗),
B outputs a random guess ω′ ∈R {0, 1} and aborts.

Corruption queries: B outputs a random guess ω′ ∈R {0, 1} and aborts.
Challenge. A outputs a message M , the current time interval j and two mem-

bers i0, i1 to be challenged. If j 6= j∗, B outputs a random guess ω′ ∈R {0, 1}
and aborts. Otherwise, B picks φ ∈R {0, 1}. Then, if iφ 6= i∗, B outputs a
random guess ω′ ∈R {0, 1} and aborts. Otherwise, B responds the following
simulated group signature of i∗ and j∗.
1. B regards c as δ, which is unknown.
2. B selects T1, T2 ∈R G. Furthermore, B sets T3 = Z and T4 = g3 = gc.

Note that if Z = e(g, g)abc, T3 = e(ga, gb)c = e(gxi∗ , hj∗)δ.
3. B computes the simulated SPK V by using the simulator of the perfect

zero-knowledge-ness.
Phase 2. This is the same as Phase 1.
Output. A outputs its guess φ′ ∈ {0, 1}. If φ = φ′, B outputs ω′ = 1 (implying

Z = (g, g)abc), and otherwise outputs ω′ = 0 (implying Z = (g, g)d).

Now, we evaluate the advantage of the guess of B. Let ω ∈ {0, 1} denote
whether the input Z is e(g, g)d (ω = 0) or e(g, g)abc (ω = 1). Let abort be the
event that B aborts. Then, we have Pr[ω = ω′|abort] = 1/2. On the other hand,
assume that B does not abort. If ω = 0, i.e., Z = e(g, g)d, then the challenged
signature has no information on xi∗ . Thus, Pr[ω′ = 0|abort ∧ ω = 0] = 1/2. If
ω = 1, i.e., Z = e(g, g)abc, then B perfectly simulates the real and thus A guesses
correctly with the advantage ε. Therefore, we obtain Pr[ω′ = 1|abort∧ω = 1] =
1/2 + ε.

Putting everything together, we obtain the advantage of B’s guess, as follows.

|Pr[B(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[B(g, ga, gb, gc, e(g, g)d) = 0|
= |Pr[ω′ = 0|ω = 1] − Pr[ω′ = 0|ω = 0]|
= |(1 − Pr[ω′ = 1|ω = 1]) − Pr[ω′ = 0|ω = 0]|
= |1 − Pr[abort]Pr[ω′ = 1|abort ∧ ω = 1]

− Pr[abort]Pr[ω′ = 1|abort ∧ ω = 1]
− Pr[abort]Pr[ω′ = 0|abort ∧ ω = 0]
− Pr[abort]Pr[ω′ = 0|abort ∧ ω = 0]|

= |1 − Pr[abort](
1
2

+
1
2
) − Pr[abort]((

1
2

+ ε) +
1
2
)|

= Pr[abort]ε.

11

In the rest, we evaluate Pr[abort]. If the guesses of i∗ and j∗ are correct, B
aborts only when the backpatch is failure in the signing query. The probability
that a specific signature causes the failure is at most qH/p, as well as [7]. Thus,
for all signature queries, the probability that B aborts due to the failure of the
backpatch is at most qSqH/p. On the other hand, since A has no information on
i∗ and j∗ and φ ∈R {0, 1}, the probability that B correctly guesses i∗ and j∗ is
at least 1/nT . Thus, Pr[abort] ≥ 1/nT − qSqH/p.

Therefore, the advantage that B’ guesses ω is at least (1/nT − qSqH/p)ε. ut

5.2 Traceability

Theorem 2. The proposed scheme satisfies the traceability in the random oracle
model under the SDH assumption.

The following lemma implies the above theorem.

Lemma 3. Suppose adversary A breaks the traceability of the proposed scheme
with the advantage ε and qH hash queries and qS signature queries. Then, we
can construct B that breaks the (n + 1)-SDH assumption with the advantage
(ε/n − 1/p)/(16qH).

Proof sketch. This is similar to the proof in [7]. Consider the following framework
with A.

Setup. It is given g, w = gγ , and n pairs (Ai, xi). For each i ∈ [1, n], either
si = 1 indicating that an SDH pair (Ai, xi) is known, or si = 0 indicating
that xi is known but Ai is unknown. Furthermore, as usual, choose g̃, hj ∈R

G for all j ∈ [1, T] and compute Bij = hxi
j for all i, j. Then, run A on

gpk = (g, g̃, h1, . . . , hT , w) and grt = (B11, . . . , BnT) .
Hash queries. At any time, A can query the hash function used in SPK.

Respond with random values with consistency.
Signing queries. A queries a signature on message M at member i and interval

j. If si = 1, respond a signature using the secret key (Ai, xi). If si = 0, pick
T1, T2 ∈R G and δ ∈R Z∗

p and compute T3 = e(gxi , hj)δ and T4 = gδ. Fur-
thermore, obtain a simulated SPK V using the simulator of the SPK, which
includes the backpatch of the hash function. Respond (T1, T2, T3, T4, V).

Corruption queries. A requests the secret key at member i. If si = 0, then
abort. Otherwise, respond requested key (Ai, xi).

Output. Finally, A outputs a forged signature σ∗ = (T ∗
1 , T ∗

2 , T ∗
3 , T ∗

4 , V ∗) in-
cluding a secret key A∗. Using all Bij , we can identify the member. If the
identification fails (i.e., the member is outside of all i), output σ. Otherwise,
some i is identified. If si = 0, then output σ. Otherwise (i.e., si = 1), abort.

Then, there are two types of forger on the above framework. Type 1 forger
forges a signature of the member who is different from all i. Type 2 forger forges
a signature of the member i whose corruption is not requested.

12

For q-SDH instance (g, gγ , . . . , gγq

), we can obtain g, w = gγ and q − 1 SDH
pairs (Ai, xi) s.t. e(Ai, g

xiw) = e(g, g), using the technique of [5]. On the other
hand, any SDH pair besides these q − 1 pairs can be transformed a solution of
the q-SDH instance, which means that the q-SDH assumption is broken, using
the same technique. As well as [7], we treat two types of forger differently.

Type 1. Given (n + 1)-SDH instance, obtain n SDH pairs (Ai, xi) with (g, w).
Then, perform the framework with Type 1 forger A (i.e., all si = 1). A finally
outputs a signature with secret key A∗ s.t. A∗ 6= Ai for all i. In this case, the
simulation is perfect, and thus A succeeds with advantage ε.

Type 2. Given n-SDH instance, obtain n−1 SDH pairs (Ai, xi), which distributes
n pairs, and set si = 1. For the unfilled entry at random index i∗, select xi∗ ∈R Z∗

p

(Ai∗ is unknown), and set si∗ = 0. Then, perform the framework with type 2
forger A. In this case, it succeeds only if A never requests the corruption of i∗,
but forges the signature including Ai∗ . As discussed in [7], the value of i∗ is
independent A’s view. Thus, the probability that A outputs the signature of i∗

is at least ε/n.
Now we show how to obtain another SDH pair beyond the given q − 1 SDH

pairs, using the framework with Type 1 or Type2. We can rewind the framework
to obtain two forged signatures on the same message M and the same interval
j, where the commitments in the SPK V are the same but the challenges and
responses are different. As shown in [7], by the forking lemma, the successful
probability is at least (ε′ − 1/p)2/(16qH), where ε′ is the probability that the
framework on each forger succeeds. Thus, using the extractor of the SPK V , we
can obtain a pair (A∗, x∗) s.t. A∗ 6= Ai and x∗ 6= xi for all i with the probability
(ε′ − 1/p)2/(16qH).

Putting everything together, we have shown the following. Using Type 1
forger, we can solve the (n + 1)-SDH instance with (ε − 1/p)2(16/qH). Using
Type 2 forger, we can solve the n-SDH instance with (ε/n − 1/p)2(16/qH). We
can guess the type of forger with the probability 1/2. Therefore, the pessimistic
Type 2 forger proves the theorem. ut

6 Extension

In practice, the revocation tokens Bij ∈ RLj are published at the beginning of
each interval j, where the group manager adds the revocation tokens to a public
directory. Verifiers fetch needed RLj from the directory on demand. Since the
revocation can be performed only at the beginning of each interval, parameter
T should be large. Furthermore, it is general that the list RLj becomes longer
as interval j proceeds. Therefore, all data in the public directory at a proceeded
interval j, i.e., RL1, . . . , RLj becomes very long.

In this section, we propose an extended scheme, where the data size of the
published revocation tokens in the public directory is reduced at the sacrifice of
the signer’s slight cost.

13

At first, modify h1, . . . , hT as follows. Consider a k-ary tree with two levels
for an integer k s.t. T ≤ k2 (see Fig. 1). Although we show only the case of two
levels, the extension to more levels is easy. In the tree, the root node is N0, Nj1

is the j1-th child of N0, and Nj1j2 is the j2-th child of Nj1 , for j1, j2 ∈ [1, k].
Each node Nj1 is assigned to hj1 ∈R G, and each node Nj1j2 is assigned to
hj1j2 ∈R G. In this situation, every interval j ∈ [1, T] can be correspondent to
a pair of two indexes j1 and j2 for j1, j2 ∈ [1, k] such that j = j1k + j2. Then,
the next interval of (j1, j2) is (j1, j2 + 1) unless j2 6= k, and if j2 = k, the next
interval is (j1 + 1, 1). In each interval (j1, j2), the values hj1 and hj1j2 along the
path are used.

N0

N1 N2 Nk

. . .

N11N12

...
N1k N21N22

...
N2k Nk1Nk2

...
Nkk

Fig. 1. A k-ary tree with two levels.

A group signature on message M by member i at interval (j1, j2) is computed
as T1 = Aig̃

α, T2 = gαg̃β , T3 = e(gxi , hj1)
δ, T4 = gδ, T ′

3 = e(gxi , hj1j2)
δ′

, and
T ′

4 = gδ′
for α, β, δ, δ′ ∈R Z∗

p , together with the following SPK V .

V = SPK{(α, β, δ, δ′, xi, Ai) : T1 = Aig̃
α ∧ T2 = gαg̃β

∧ T3 = e(gxi , hj1)
δ ∧ T4 = gδ

∧ T ′
3 = e(gxi , hj1j2)

δ′
∧ T ′

4 = gδ′

∧ e(Ai, wgxi) = e(g, g)}(M).

The difference between the basic scheme and this extended scheme is the parts
T3, T4, T

′
3, T

′
4 and V . On the other hand, revocation token Bi(j1,j2) for member

i at interval (j1, j2) is a pair (Bij1 = hxi
j1

, Bij1j2 = hxi
j1j2

). Then, for Bij1j2 , by
checking T ′

3 = e(T ′
4, Bij1j2), it can be detected whether a group signature was

made by member i at interval (j1, j2). On the other hand, for Bij1 , by checking
T3 = e(T4, Bij1), group signatures of i at intervals (j1, ∗) can be detected, where
∗ means any value of [1, k]. Namely, one level of tokens (the upper level, tokens
of the form Bij1) allows to revoke an user during k ≈

√
T time intervals at once.

Consider how to publish the revocation tokens as follows. Assume that mem-
ber i is revoked at interval (j∗1 , j∗2). Then, if j∗2 6= 1, the manager publishes
Bij∗

1 j∗
2

= hxi

j∗
1 j∗

2
in the public directory. Afterward, at each interval (j∗1 , j2) s.t.

j∗2 < j2 ≤ k, the manager similarly publishes Bij∗
1 j2 . After that, at every inter-

val (j1, 1) s.t. j∗1 < j1 ≤ k, the manager publishes Bij1 = hxi
j1

. Note that the

14

manager does not publish Bij1j2 any longer. If j∗2 = 1, Bij1 is only published at
every interval (j1, 1) for j∗1 ≤ j1 ≤ k.

In the extended scheme, the manager has only to publish revocation tokens
per k ≈

√
T intervals, except for the initial overhead (i.e., the publication of

Bij∗
1 j2). Thus, the total size of revocation tokens in public directory is suffi-

ciently reduced. On the other hand, the signer has to compute T ′
3, T

′
4 and the

corresponding SPK additionally. The communication overhead is 1531 bits and
the computational overhead is 6 exponentiations (plus 1 bilinear map computa-
tions that can be pre-computed). The security of the extended scheme can be
easily proved in the similar way to the basic one.

7 Concluding Remarks

Based on the bilinear maps, we have proposed a VLR group signature scheme
with the backward unlinkability, and extended it to a scheme where the published
revocation tokens are reduced.

In the proposed scheme, after a revocation, the revoked member remains ex-
cluded forever. However, it is easily extended to the scheme where the member is
excluded only for specific intervals. This property is useful in some applications.

An open problem is to construct a shorter VLR group signature scheme with
the backward unlinkability. Our group signature includes an elements of G′,
which is longer than elements of G. It is better to construct a signature from
only elements of G.

Acknowledgments

We would like to thank the anonymous reviewers for helpful comments.

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, “A practical and provably
secure coalition-resistant group signature scheme,” Advances in Cryptology —
CRYPTO 2000, LNCS 1880, pp.255–270, Springer–Verlag, 2000.

2. G. Ateniese, D. Song, and G. Tsudik, “Quasi-efficient revocation of group sig-
natures,” Proc. 6th Financial Cryptography Conference (FC 2002), LNCS 2357,
pp.183–197, Springer–Verlag, 2003.

3. M. Bellare, D. Micciancio, and B. Warinschi, “Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general as-
sumptions,” Advances in Cryptology — EUROCRYPT 2003, LNCS 2656, pp.614–
629, Springer–Verlag, 2003.

4. D. Boneh and X. Boyen, “Efficient selective-ID secure identity-based encryption
without random oracles,” Advances in Cryptology — EUROCRYPT 2004, LNCS
3027, pp.223–238, Springer–Verlag, 2004.

5. D. Boneh and X. Boyen, “Short signatures without random oracles,” Advances in
Cryptology — EUROCRYPT 2004, LNCS 3027, pp.56–73, Springer–Verlag, 2004.

15

6. D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” Advances in
Cryptology — CRYPTO 2004, LNCS 3152, pp.41–55, Springer–Verlag, 2004.

7. D. Boneh and H. Shacham, “Group signatures with verifier-local revocation,” Proc.
11th ACM Conference on Computer and Communications Security (ACM-CCS
’04), pp.168–177, 2004.

8. J. Camenisch and M. Stadler, “Efficient group signature schemes for large groups,”
Advances in Cryptology — CRYPTO ’97, LNCS 1294, pp.410–424, Springer–
Verlag, 1997.

9. J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application to effi-
cient revocation of anonymous credentials,” Advances in Cryptology — CRYPTO
2002, LNCS 2442, pp.61–76, Springer–Verlag, 2002.

10. D. Chaum and E. van Heijst, “Group signatures,” Advances in Cryptology —
EUROCRYPT ’91, LNCS 547, pp.241–246, Springer–Verlag, 1991.

11. D. Chaum, J.H. Evertse, and J. van de Graaf, “An improved protocol for demon-
strating possession of discrete logarithms and some generalizations,” Advances in
Cryptology — EUROCRYPT ’87, LNCS 304, pp.127–141, Springer–Verlag, 1988.

12. D. Chaum and T.P. Pedersen, “Wallet databases with observers,” Advances in
Cryptology — CRYPTO ’92, LNCS 740, pp.89–105, Springer–Verlag, 1993.

13. A. Kiayias, Y. Tsiounis, and M. Yung, “Traceable signatures,” Advances in Cryp-
tology — EUROCRYPT 2004, LNCS 3027, pp.571–589, Springer–Verlag, 2004.

14. L. Nguyen and R. Safavi-Naini, “A trapdoor-free and efficient group signature
scheme from bilinear pairings,” Advances in Cryptology — ASIACRYPT 2004,
Springer–Verlag, 2004.

15. D.X. Song, “Practical forward secure group signature schemes,” Proc. 8th ACM
Conference on Computer and Communications Security (ACM-CCS ’01), pp.225–
234, 2001.

16. G. Tsudik and S. Xu, “Accumulating composites and improved group signing,”
Advances in Cryptology — ASIACRYPT 2003, LNCS 2894, pp.269–286, Springer–
Verlag, 2003.

16

