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Abstract

Inferring large-scale covariance matrices from sparse genomic data is an ubiquitous
problem in bioinformatics. Clearly, the widely used standard covariance and correlation
estimators are ill-suited for this purpose. As statistically efficient and computationally fast
alternative we propose a novel shrinkage covariance estimator that exploits the Ledoit-Wolf
(2003) lemma for analytic calculation of the optimal shrinkage intensity.

Subsequently, we apply this improved covariance estimator (which has guaranteed mini-
mum mean squared error, is well-conditioned, and is always positive definite even for small
sample sizes) to the problem of inferring large-scale gene association networks. We show
that it performs very favorably compared to competing approaches both in simulations as
well as in application to real expression data.
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1. Introduction

Estimation of large-scale covariance matrices is a common though often implicit

task in functional genomics and transcriptome analysis:

• For instance, consider the clustering of genes using data from a microarray

experiment (e.g. Eisen et al., 1998). In order to construct a hierarchical tree

describing the functional grouping of genes an estimate of the similarities

between all pairs of expression profiles is needed. This is typically based on

a distance measure related to the empirical correlation. Thus, if p genes are

being analyzed (with p perhaps in the order of 1,000 to 10,000), a covariance

matrix of size p × p has to be calculated.

• Another example is the construction of so-called relevance networks (Butte

et al., 2000). These visually represent the marginal (in)dependence structure

among the p genes. The networks are built by drawing edges between those

pairs of genes whose absolute pairwise correlation coefficients exceed a pre-

specified threshold (say, 0.8).

• Related to gene relevance networks (though conceptually quite different) are

gene association networks. These are graphical models that have recently

been suggested as a means of displaying the conditional dependencies among

the considered genes (e.g., Toh and Horimoto, 2002; Dobra et al., 2004;

Schäfer and Strimmer, 2005a). An essential input to inferring such a network

is the p × p covariance matrix.

• Furthermore, the covariance matrix evidently plays an important role in the

classification of genes.

• In addition, there are numerous bioinformatics algorithms that rely on the

pairwise correlation coefficient as part of an (often rather adhoc) optimality

score.

Thus, a common key problem in all of these examples is as follows: How should

one obtain an accurate and reliable estimate of the population covariance matrix

Σ if presented with a data set that describes a large number of variables but only

contains comparatively few samples (n ≪ p)?

In the vast majority of analysis problems in bioinformatics (specifically exclud-

ing classification) the simple solution is to rely either on the maximum likelihood

estimate SML or on the related unbiased empirical covariance matrix S = n
n−1

SML,
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with entries defined as

si j =
1

n − 1

n∑

k=1

(xki − x̄i)(xk j − x̄ j), (1)

where x̄i =
1
n

∑n
k=1 xki and xki is the k-th observation of the variable Xi. However,

unfortunately both S and SML exhibit serious defects in the “small n, large p” data

setting commonly encountered in functional genomics. Specifically, in this case the

empirical covariance matrix can not anymore be considered a good approximation

of the true covariance matrix (this is true also for moderately sized data with n ≈ p).

For illustration consider Fig. 1 where the sample covariance estimator S is com-

pared with an alternative estimator S⋆ developed in Section 2 of this paper and

summarized in Tab. 1. This figure shows the sorted eigenvalues of the estimated

matrices in comparison with the true eigenvalues for fixed p = 100 and various ra-

tios
p

n
. It is evident by inspection that for small n the eigenvalues of S differ greatly

from the true eigenvalues of Σ. In addition, for n smaller than p (bottom row in

Fig. 1) S looses its full rank as a growing number of eigenvalues become zero. This

has several undesirable consequences. First, S is not positive definite any more,

and second, it can not be inverted as it becomes singular. For comparison contrast

the poor performance of S with that of S⋆ (fat green line in Fig. 1). This improved

estimator exhibits none of the defects of S, in particular it is more accurate, well

conditioned, and always positive definite. Nevertheless, S⋆ can be computed in only

about twice the time required to calculate S.

With this paper we pursue three aims. First, we argue against the blind use of the

empirical covariance matrix S in data situations where it is not appropriate – not-

ing that this affects many current application areas in bioinformatics. Second, we

describe a route to obtain improved estimates of the covariance matrix via shrink-

age combined with analytic determination of the shrinkage intensity according to

the Ledoit-Wolf theorem (Ledoit and Wolf, 2003). Third, we show that this new

regularized estimator greatly enhances inferences of gene association networks.

The remainder of the paper is organized as follows. In the next section we provide

an overview over shrinkage, the Ledoit-Wolf lemma and its application to shrinkage

of covariance matrices. We discuss several potentially useful lower-dimensional

targets (cf. Tab. 2), with special focus on the “diagonal, unequal variance” model.

In the second part of the paper, we review methodology for inferring large-scale

genetic networks (relevance and association networks). We conduct computer sim-

ulations to show that using S⋆ in genetic network model selection is highly advan-

tageous in terms of power and other performance criteria. Finally, we illustrate the

described approach by analyzing a real gene expression data set from E. coli.
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Figure 1: Ordered eigenvalues of the sample covariance matrix S (thin black line) and

that of an alternative estimator S⋆ (fat green line, for definition see Tab. 1), calculated from

simulated data with underlying p-variate normal distribution, for p = 100 and various ratios

p/n. The true eigenvalues are indicated by a thin black dashed line.
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“Small n, Large p” Covariance and Correlation Estimators S⋆ and R⋆:

s⋆i j =


sii if i = j

r⋆
i j

√
siis j j if i , j

and

r⋆i j =


1 if i = j

ri j min(1,max(0, 1 − λ̂⋆)) if i , j

with

λ̂⋆ =

∑
i, j V̂ar(ri j)∑

i, j r2
i j

Table 1: Small sample shrinkage estimators of the unrestricted covariance and correlation

matrix suggested in this paper (Section 2.4). The coefficients sii and ri j denote the empirical

variance (unbiased) and correlation, respectively. For details of the computation of V̂ar(ri j)

see Appendix A. Further variants of these estimators are discussed in Section 2.4.
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2. Shrinkage estimation of covariance matrices in

a “small n, large p” setting

2.1. Strategies for obtaining a more efficient covariance

estimator

It has long been known that the two widely-employed estimators of the covariance

matrix, i.e. the unbiased (S) and the related maximum likelihood (SML) estimator,

are both statistically inefficient. In a nutshell, this can be explained as a consequence

of the so-called “Stein phenomenon” discovered by Stein (1956) in the context of

estimating the mean vector of a multivariate normal distribution. Stein demon-

strated that in high-dimensional inference problems it is often possible to improve

(sometimes dramatically!) upon the maximum likelihood estimator. This result is

at first counterintuitive, as maximum likelihood can be proven to be asymptotically

optimal, and as such it seems not unreasonable to expect that these favorable proper-

ties of maximum likelihood also extend to the case of finite data. However, further

insight into the Stein effect is provided by Efron (1982) who points out that one

needs to distinguish between two different aspects of maximum likelihood infer-

ence. First, maximum likelihood as a means of summarizing the observed data and

producing a maximum likelihood summary (MLS). Second, maximum likelihood as

a procedure to obtain a maximum likelihood estimate (MLE). The conclusion is that

maximum likelihood is unassailable as a data summarizer but that it has some clear

defects as an estimating procedure.

This applies directly to the estimation of covariance matrices: SML constitutes the

best estimator in terms of actual fit to the data but for medium to small data sizes

it is far from being the optimal estimator for recovering the population covariance

– as is well illustrated by Fig. 1. Fortunately, the Stein theorem also demonstrates

that it is possible to construct a procedure for improved covariance estimation. In

addition to increased efficiency and accuracy, it is desirable for such a method to

exhibit the following characteristics not found in S and SML:

1. The estimate should always be positive definite, i.e. all eigenvalues should be

distinct from zero.

2. The estimated covariance matrix should be well-conditioned.

The positive-definiteness requirement is an intrinsic property of the true covariance

matrix that is satisfied as long as the considered random variables have non-zero

variance. If a matrix is well-conditioned, i.e. if the ratio of its maximum and min-

imum singular value is not too large, it has full-rank and can be easily inverted.
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Thus, by producing a well-conditioned covariance estimate one automatically also

obtains an equally well-conditioned estimate of the inverse covariance – a quan-

tity of crucial importance, e.g., in interval estimation, classification, and graphical

models.

A (naive) strategy to obtain a positive definite estimator of the covariance runs

as follows: Take the sample covariance S and apply, e.g., the algorithm by Higham

(1988). This will adjust all eigenvalues to be larger than some prespecified threshold

ǫ and thus guarantee positive definiteness. However, the resulting matrix will not

be well conditioned.

Another more general procedure to obtain an improved covariance estimator is

variance reduction. Consider the well-known bias-variance decomposition of the

mean squared error (MSE) for the sample covariance, i.e.

MSE(S) = Bias(S)2
+ Var(S). (2)

As Bias(S) = 0 by construction, the only way to decrease the overall accuracy

of S is by reducing its variance. A simple non-parametric approach to variance

reduction is offered, e.g., by bootstrap aggregation (“bagging”) of the empirical co-

variance matrix. This can be done by explicitly approximating the expectation E(S)

via the bootstrap. In previous work (Schäfer and Strimmer, 2005a) we have resorted

to this strategy to produce improved estimates of the correlation matrix and its in-

verse. However, especially for the very large dimensions commonly encountered in

genomics problems (often with p > 1, 000) this approach is computationally by far

too demanding.

Instead, in this paper we investigate “shrinking” or more general “biased esti-

mation” (e.g., Hoerl and Kennard, 1970a,b; Efron, 1975; Efron and Morris, 1975,

1977) as a means of variance reduction of S. In particular, we consider a recent

analytic result from Ledoit and Wolf (2003) that allows to construct an improved

covariance estimator that is not only suitable for small sample size n and large num-

bers of variables p but at the same time is also completely inexpensive to compute.

2.2. Shrinkage estimation and the lemma of Ledoit-Wolf

In this section we briefly review the general principles behind shrinkage estimation

and discuss an analytic approach by Ledoit and Wolf (2003) for determining the

optimal shrinkage level. We note that the theory outlined here is not restricted to

covariance estimation but applies generally to large-dimensional estimation prob-

lems.

Let Ψ = (ψ1, . . . , ψp) denote the parameters of the unrestricted high-dimensional

model of interest, and Θ = (θi) the matching parameters of a lower dimensional
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restricted submodel. For instance, Ψ could be the mean vector of a p-dimensional

multivariate normal, and Θ the vector of a corresponding constrained submodel

where the means are all assumed to be equal (i.e. θ1 = θ2 = · · · = θp). By fitting

each of the two different models to the observed data associated estimates U = Ψ̂

and T = Θ̂ are obtained. Clearly, the unconstrained estimate U will exhibit a

comparatively high variance due to the larger number of parameters that need to

be fitted, whereas its low-dimensional counterpart T will have lower variance but

potentially also considerable bias as an estimator of the true Ψ.

Instead of choosing between one of these two extremes, the linear shrinkage

approach suggests to combine both estimators in a weighted average

U⋆
= λT + (1 − λ)U, (3)

where λ ∈ [0, 1] denotes the shrinkage intensity. Note that for λ = 1 the shrinkage

estimate equals the shrinkage target T whereas for λ = 0 the unrestricted estimate

U is recovered. The key advantage of this construction is that it offers a systematic

way to obtain a regularized estimate U⋆ that outperforms the individual estimators

U and T both in terms of accuracy and and statistical efficiency.

A key question in this procedure is how to select an optimal value for the shrink-

age parameter. In some instances, it may suffice to fix the intensity λ at some given

value, or to make it depend on the sample size according to a simple function. Often

more appropriate, however, is to choose the parameter λ in a data-driven fashion by

explicitly minimizing a risk function

R(λ) = E(L(λ)) = E(

p∑

i=1

(u⋆i − ψi)
2), (4)

here for example the mean squared error (MSE).

One common but also computationally very intensive approach to estimate the

minimizing λ is by using cross-validation - for an example see Friedman (1989)

where shrinkage is applied in the context of regularized classification. Another

widely applied route to inferring λ views the shrinkage problem in an empirical

Bayes context. In this case the quantity E(T) is interpreted as prior mean and λ as

a hyper-parameter that may be estimated from the data by optimizing the marginal

likelihood (e.g., Morris, 1983; Greenland, 2000).

It is less well known that the optimal regularization parameter λ may often also

be determined analytically. Specifically, Ledoit and Wolf (2003) recently derived

a simple theorem for choosing λ that guarantees minimal MSE without the need

of having to specify any underlying distributions, and without requiring computa-

tionally expensive procedures such as MCMC, the bootstrap, or cross-validation.
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This lemma is obtained in a straightforward fashion. Assuming that the first two

moments of the distributions of U and T exist, the squared error loss risk function

from Eq. 4 may be expanded as follows:

R(λ) =

p∑

i=1

Var
(
u⋆i
)
+
[
E(u⋆i ) − ψi

]2

=

p∑

i=1

Var (λti + (1 − λ)ui) +
[
E(λti + (1 − λ)ui) − ψi

]2

=

p∑

i=1

λ2 Var(ti) + (1 − λ)2 Var(ui) + 2λ(1 − λ) Cov(ui, ti)

+ [λE(ti − ui) + Bias(ui)]
2 .

(5)

Analytically minimizing this function with respect to λ gives, after some tedious

algebraic calculations, the following expression for the optimal value

λ⋆ =

∑p

i=1
Var(ui) − Cov(ti, ui) − Bias(ui) E(ti − ui)∑p

i=1
E[(ti − ui)2]

, (6)

for which minimum MSE R(λ⋆) is achieved. It can be shown that λ⋆ always exists

and that it is unique. If U is an unbiased estimator ofΨwith E(U) = Ψ this equation

reduces to

λ⋆ =

∑p

i=1
Var(ui) − Cov(ti, ui)∑p

i=1
E[(ti − ui)2]

, (7)

which is – apart from some further algebraic simplification – the expression given

in Ledoit and Wolf (2003).

Closer inspection of Eq. 6 yields a number of insights into how the optimal

shrinkage intensity is chosen:

• First, the smaller the variance of the high-dimensional estimate U, the smaller

becomes λ⋆. Therefore, with increasing sample size the influence of the target

T diminishes.

• Second, λ⋆ also depends on the correlation between estimation error of U and

of T. If both are positively correlated then the weight put on the shrinkage

target decreases. Hence, the inclusion of the second term in the numerator of

Eq. 6 adjusts for the fact that the two estimators U and T are both inferred

from the same data set. It also takes into account that the “prior” information

associated with T is not independent of the given data.
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• Third, with increasing mean squared difference between U and T (in the de-

nominator of Eq. 6) the weight λ⋆ also decreases. Note that this automatically

protects the shrinkage estimate U⋆ against a misspecified target T.

• Fourth, if the unconstrained estimator is biased, and the bias points already

towards the target, the shrinkage intensity is correspondingly reduced.

Furthermore, it is noteworthy that variables that by design are kept identical in

the constrained and unconstrained estimators (i.e. ti = ui for some i) play no role

in determining the intensity λ⋆, as their contributions to the various terms in Eq. 6

cancel out.

This can be generalized further by allowing multiple targets, each with its own

different optimal shrinkage intensity. This is especially appropriate if there exists a

natural grouping of parameters in the investigated high-dimensional model. In this

case one simply computes the individual targets and applies Eq. 6 to each group of

variables separately. As one referee suggests, it may be helpful to cluster variables

according to their variances Var(ui) – typically the predominant term to determine

the shrinkage level λ⋆.

Finally, it is important to consider the transformation properties of the shrink-

age procedure. From Eq. 6 it is clear that λ⋆ is invariant against translations. For

instance, the underlying data may be centered without affecting the estimation of

the optimal shrinkage intensity. However, λ⋆ is not generally invariant against scale

transformations. This dependence on the absolute scales of the considered variables

is a general property that shrinkage shares with other approaches to biased estima-

tion, such as ridge regression and partial least squares (e.g. Hastie et al., 2001).

2.3. Estimation of the optimal shrinkage intensity

For practical application of Eq. 6 one needs to obtain an estimate λ̂⋆ of the opti-

mal shrinkage intensity. In their paper Ledoit and Wolf (2003) emphasize that the

parameters of Eq. 6 should be estimated consistently. However, this is only a very

weak requirement, as consistency is an asymptotic property and a basic require-

ment of any sensible estimator. Furthermore, we are interested in small sample

inference. Thus, instead we suggest to compute λ̂⋆ by replacing all expectations,

variances, and covariances in Eq. 6 by their unbiased sample counterparts. This

leads to

λ̂⋆ =

∑p

i=1
V̂ar(ui) − Ĉov(ti, ui) − B̂ias(ui) (ti − ui)∑p

i=1
(ti − ui)2

. (8)

In finite samples λ̂⋆ may exceed the value one, and in some cases it may even be-

come negative. In order to avoid overshrinkage or negative shrinkage we truncate
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the estimated intensity correspondingly, using λ̂⋆⋆ = max(0,min(1, λ̂⋆)) when con-

structing the shrinkage estimator of Eq. 3.

It is also worth noting that Eq. 8 is valid regardless of the sample size n at hand.

In particular, n may be substantially smaller than p, a fact we will exploit in our

suggested approach to inferring gene association networks.

2.4. Shrinkage estimation of the covariance matrix

Estimation of the unrestricted covariance matrix requires the determination of (p2
+

p)/2 free parameters, and thus constitutes a high-dimensional inference problem.

Consequently, application of shrinkage offers a promising approach to obtain im-

proved estimates.

Daniels and Kass (2001) provide a fairly extensive review of empirical Bayes

shrinkage estimators proposed in recent years. Unfortunately, most of the suggested

estimators appear to suffer from at least one of the following drawbacks, which

renders them unsuitable for the analysis of genomic data:

1. Typically, the application is restricted to data with p < n, in order to en-

sure that the empirical covariance S can be inverted. However, most current

genomic data sets contain vastly more features than samples (p ≫ n).

2. Many of the suggested estimators are computationally expensive (e.g. those

based on MCMC sampling), or assume specific underlying distributions.

These difficulties are elegantly avoided by resorting to the (almost) distribution-free

Ledoit-Wolf approach to shrinkage.

In a matrix setting the equivalent to the squared error loss function is the squared

Frobenius norm. Thus,

L(λ) = ||S⋆ − Σ||2F
= ||λT + (1 − λ)S − Σ||2F

=

p∑

i=1

p∑

j=1

(
λti j + (1 − λ)si j − σi j

)2 (9)

is a natural quadratic measure of distance between the true (Σ) and inferred covari-

ance matrix (S⋆). In this formula the unconstrained unbiased empirical covariance

matrix S replaces the unconstrained estimate U of Eq. 3.

Selecting a suitable estimated covariance target T = (ti j) requires some dili-

gence. In general, the choice of a target should be guided by the presumed lower-

dimensional structure in the data set as this determines the increase of efficiency
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Target A: “diagonal, unit variance” Target B: “diagonal, common variance”

0 estimated parameters 1 estimated parameter: v

ti j =


1 if i = j

0 if i , j
ti j =


v = avg(sii) if i = j

0 if i , j

λ̂⋆ =
∑

i, j V̂ar(si j)+
∑

i V̂ar(sii)∑
i, j s2

i j
+
∑

i(sii−1)2 λ̂⋆ =
∑

i, j V̂ar(si j)+
∑

i V̂ar(sii)∑
i, j s2

i j
+
∑

i(sii−v)2

Target C: “common (co)variance” Target D: “diagonal, unequal variance”

2 estimated parameters: v, c p estimated parameters: sii

ti j =


v = avg(sii) if i = j

c = avg(si j) if i , j
ti j =


sii if i = j

0 if i , j

λ̂⋆ =
∑

i, j V̂ar(si j)+
∑

i V̂ar(sii)∑
i, j(si j−c)2+

∑
i(sii−v)2 λ̂⋆ =

∑
i, j V̂ar(si j)∑

i, j s2
i j

Target E: “perfect positive correlation” Target F: “constant correlation”

p estimated parameters: sii p + 1 estimated parameters: sii, r̄

ti j =


sii if i = j
√

siis j j if i , j
ti j =


sii if i = j

r̄
√

siis j j if i , j

fi j =
1
2
{
√

s j j

sii
Ĉov(sii, si j) +

√
sii

s j j
Ĉov(s j j, si j)}

λ̂⋆ =
∑

i, j V̂ar(si j)− fi j∑
i, j(si j−

√
sii s j j)2 λ̂⋆ =

∑
i, j V̂ar(si j)−r̄ fi j∑

i, j(si j−r̄
√

sii s j j)2

Table 2: Six commonly used shrinkage targets for the covariance matrix and associated

estimators of the optimal shrinkage intensity – see main text for discussion. Abbreviations:

v, average of sample variances; c, average of sample covariances; r̄, average of sample

correlations.
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over that of the empirical covariance. However, it is also a remarkable consequence

of Eq. 6 that in fact any target will lead to a reduction in MSE, albeit only a mi-

nor one in case of a strongly misspecified target (then S⋆ will simply reduce to the

unconstrained estimate S).

Six commonly used covariance targets are compiled in Tab. 2, along with a brief

description, the dimension of the target, and the resulting estimate λ̂⋆. In order to

compute the optimal shrinkage intensity it is necessary to estimate the variances

of the individual entries of S – see Appendix A for the technical details. Note

that the resulting shrinkage estimators S⋆ all exhibit the same order of algorithmic

complexity as the standard estimate S.

Probably the most commonly employed shrinking targets are the identity matrix

and its scalar multiple. These are denoted in Tab. 2 “diagonal, unit variance” (target

A) and “diagonal, common variance” (target B). A further extension is provided by

the two parameter covariance model that in addition to the common variance (as

in target B) also maintains a common covariance (“common (co)variance”, tar-

get C). The three targets share several properties. First, they are all extremely

low-dimensional (0 to 2 free parameters), thus they impose a rather strong struc-

ture which in turn requires only little data to fit. Second, the resulting estimators

shrink all components of the empirical covariance matrix, i.e. both diagonal and

off-diagonal entries. In the literature it is easy to find examples where one of the

above targets is employed – albeit not in combination with analytic estimation of

the shrinkage level. For instance, the unit diagonal target A is typically used in

ridge regression and the related Tikhonov regularization (e.g. Hastie et al., 2001).

The target B is utilized, e.g., by Friedman (1989) who estimates λ by means of

cross-validation, by Leung and Chan (1998) who use a fixed λ = 2
n+2

, by Dobra

et al. (2004) as a parameter in an inverse Wishart prior for the covariance matrix,

and finally also by Ledoit and Wolf (2004b). The two-parameter target C appears

not to be widely used.

Another class of covariance targets is given by the “diagonal, unequal variance”

model (target D), the “perfect positive correlation” model (target E) and the “con-

stant correlation” model (target F) of Tab. 2. A shared feature of these three targets

is that they are comparatively parameter-rich, and that they only lead to shrinkage of

the off-diagonal elements of S. The last two shrinkage targets were introduced with

the purpose of modeling stock returns. These tend – on average – to be strongly

positively correlated (Ledoit and Wolf, 2003, 2004a).

In this paper, we focus on the shrinkage target D for the estimation of covariance

and correlation matrices arising in genomics problems. This “diagonal, unequal

variance” model represents a compromise between the low-dimensional targets A,

B, and C and the correlation models E and F. Like the simpler targets A and B

it shrinks the off-diagonal entries to zero. However, unlike shrinkage targets A
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and B, target D leaves diagonal entries intact, i.e. it does not shrink the variances.

Thus, this model assumes that the parameters of the covariance matrix fall into two

classes, and both are treated differently in the shrinkage process.

This clear separation also suggests that for shrinking purposes it may be useful

to parameterize the covariance matrix in terms of variances and correlations (rather

than variances and covariances) so that s⋆
i j
= r⋆

i j

√
siis j j. In this formulation, shrink-

age is applied to the correlations rather than the covariances. This has two distinct

advantages. First, the off-diagonal elements determining the shrinkage intensity are

all on the same scale. Second, the (partial) correlations derived from the resulting

covariance estimator S⋆ are independent of scale and location transformations of

the underlying data matrix, just as is the case for those computed from S.

It is this form of target D that we propose for estimating correlation and covari-

ance matrices. For reference, the corresponding formulae are collected in Tab. 1.

Note the remarkably simple expression for the shrinkage intensity

λ̂⋆ =

∑
i, j V̂ar(ri j)∑

i, j r2
i j

(10)

– see also Tab. 2 (Target D). For technical details such as the calculation of V̂ar(ri j)

we refer to Appendix A. In this formula a concern may be the use of the empirical

correlation coefficients ri j – after all, these are the ones that we aim to improve.

Thus, it seems we face a circularity problem, namely that for an accurate estimate

of the shrinkage intensity reliable estimates of correlation are needed, and vice

versa. However, it is a remarkable feature of target D that it completely resolves

this “chicken-egg” issue: regardless whether standard or shrinkage estimates of

correlation are substituted into Eq. 10 the resulting λ̂⋆ remains all the same.

Using the target D has another important advantage: the resulting shrinkage co-

variance estimate will automatically be positive definite. The target D itself is al-

ways positive definite, and the convex combination of a positive definite matrix (T)

with another matrix that is positive semidefinite (S) always yields a positive definite

matrix. Note that this is also true for targets A and B but not for the targets C, E,

and F (consider as counterexample the target E with all variances set equal to one).

Further variants of the proposed estimator (Tab. 1) are easily constructed. One

possible extension is to shrink the diagonal elements as well, using a different in-

tensity for variances and correlations. Shrinking the variances to a common mean

is standard practice in in genomic case-control studies (e.g. Cui et al., 2005). It is

particular helpful if there are so few samples that the gene-specific variances are

difficult to obtain. In such as case, however, it may make no sense at all to consider

estimating the full covariance matrix.
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3. Inference of gene networks from small sample

genomic data

3.1. Methodological background

We consider here two simple approaches for modeling net-like dependency struc-

tures in genome expression data, both of which require as input an estimated large-

scale covariance matrix. The first and conceptually simpler model is that of a “gene

relevance network”. This was introduced by Butte et al. (2000) and is built in the

following simple fashion. First, the p × p correlation matrix P = (ρi j) is inferred

from the data. Second, for estimated correlation coefficients exceeding a prespec-

ified threshold (say r > 0.8) an edge is drawn between the two respective genes.

Thus, relevance networks represent the marginal (in)dependence structure among

the p genes. In statistical terminology this type of network model is also known as

“covariance graph”.

Despite the popularity of relevance networks (which stems from the relative ease

of construction) there are many problems connected with their proper interpretation.

For instance, the cut-off value that determines the “significant” edges is typically

chosen in a rather arbitrary fashion – often simply a large value is selected with

the vague aim to exclude “spurious” edges. However, this misses the statistical in-

terpretation of the marginal correlation which takes account of both direct as well

as indirect associations. As a direct consequence, in a reasonably well-connected

genetic network most genes will by construction be correlated with each other (e.g.

see the analysis of the E. coli data below). Thus, in this case even a large observed

degree of correlation will provide only weak evidence for the direct dependency

of any two considered genes. Instead, the absence of correlation (i.e. r ≈ 0) will

be a strong measure of their independence. Therefore, even ignoring the difficul-

ties of obtaining accurate measures of correlation from small sample data, gene

relevance networks are suitable tools not for elucidating the dependence network

among genes but rather for uncovering independence.

In contrast, with the class of graphical Gaussian models (GGMs), also called “co-

variance selection” or “concentration graph” models, a simple statistical approach

exists that allows to detect direct dependence between genes. This “gene associa-

tion network” approach is based on investigating the estimated partial correlations

r̃ for all pairs of considered genes. The traditionally developed theory of GGMs

(e.g. Whittaker, 1990) is only applicable for n ≫ p. However, with the increasing

interest in “small n, large p” inference a number of refinements to the GGM the-

ory have recently been proposed that allow its application also to genomic data –

see Schäfer and Strimmer (2005a,b) for a discussion and a comprehensive list of
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references. In essence, in a small sample setting both the estimation of the partial

correlations as well as the subsequent model selection need to be suitably modified.

In the following we discuss several such approaches, including one based on the

suggested covariance shrinkage estimator.

3.2. Small sample GGM selection using false discovery rate

multiple testing

Standard graphical modeling theory (e.g. Whittaker, 1990) shows that the matrix of

partial correlations P̃ = (ρ̃i j) is related to the inverse of the covariance matrix Σ.

This relationship leads to the straightforward estimator

r̃i j = ˆ̃ρi j = −ω̂i j/
√
ω̂iiω̂ j j, (11)

where

Ω̂ = (ω̂i j) = Σ̂
−1. (12)

We note that in the last equation, it is absolutely crucial that the covariance is es-

timated accurately, and that Σ̂ is well-conditioned – otherwise the above formulae

will result in a rather poor estimate of partial correlation (cf. Schäfer and Strimmer,

2005a). Here, we adopt the shrinkage estimator S⋆ developed in the first part of this

paper (Tab. 1). As we show below this leads to (sometimes dramatic) improvement

in accuracy over alternative procedures. In this context it is also interesting to note

that the difficulty of obtaining reliable estimates of P̃ has led some researchers to

instead consider partial correlations of limited order (e.g., de la Fuente et al., 2004;

Wille et al., 2004; Magwene and Kim, 2004). However, using partial correlations

of first or second order as a measure of dependence amounts to employing a net-

work model that is much more similar to relevance than to association networks,

and hence also inherits their interpretation difficulties.

The second critical part of inferring GGMs is model selection. In Schäfer and

Strimmer (2005a) we have suggested a simple yet quite effective search heuristic

based on large-scale multiple testing of edges. This approach is based on two ratio-

nales. First, it exploits the fact that genetic networks are typically sparse, i.e. that

most of the p(p − 1)/2 partial correlation coefficients ρ̃ vanish. In turn, this allows

to estimate the null distribution from the data, and thus to decide which edges are

present or absent. Second, GGM search by multiple testing implicitly assumes that

for all cliques (i.e. fully connected subset of nodes) of size three and more the

underlying joint distribution is well approximated by the product of the bivariate

densities associated with the respective undirected edges (Cox and Reid, 2004).

Specifically, in the approach of Schäfer and Strimmer (2005a) the distribution of
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the observed partial correlations r̃ across edges is taken as the mixture

f (r̃) = η0 f0(r̃; κ) + (1 − η0) fA(r̃) , (13)

where f0 is the null distribution, η0 is the (unknown) proportion of “null edges”,

and fA the distribution of observed partial correlations assigned to actually existing

edges. The null density f0 is given in Hotelling (1953) as

f0(r̃; κ) = (1 − r̃2)(κ−3)/2
Γ( κ

2
)

π
1
2Γ( κ−1

2
)

= |r̃|Be(r̃2;
1

2
,
κ − 1

2
) ,

(14)

where Be(x; a, b) is the Beta distribution and κ is the degree of freedom, equal to

the reciprocal variance of the null r̃. Fitting this mixture density allows κ, η0 and

even fA to be determined – for an algorithm to infer the latter see Efron (2004,

2005b). Subsequently, it is straightforward to compute the edge-specific “local

false discovery rate” (fdr) via

Prob(null edge|r̃) = fdr(r̃) =
η̂0 f0(r̃; κ̂)

f̂ (r̃)
, (15)

i.e. the posterior probability that an edge is null given r̃. Finally, an edge is consid-

ered “present” or “significant” if its local fdr is smaller than 0.2 (Efron, 2005b).

Closely related to the empirical Bayes local “fdr” statistic is the frequentist “Fdr”

(also called q-value) approach advocated by Storey (2002), and the Benjamini and

Hochberg (1995) “FDR” rule. In our original GGM model selection proposal

(Schäfer and Strimmer, 2005a) we have relied on the FDR method to identify edges

in the network. However, we now suggest to employ the local fdr, as this fits more

naturally with the mixture model setup, and because it takes account of the depen-

dencies among the estimated partial correlation coefficients (Efron, 2005a).

3.3. Small sample GGM selection using lasso regression

Partial correlations may not only be estimated by inversion of the covariance or

correlation matrix (Eq. 11 and Eq. 12). An alternative route is offered by regressing

each gene i ∈ {1, . . . , p} in turn against the remaining set of p − 1 variables. The

partial correlations are then simply

r̃i j = sign(β̂
( j)

i
)

√
β̂

( j)

i
β̂

(i)

j
, (16)
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where β̂
(i)

j
denotes the estimated regression coefficient of predictor variable X j for

the response Xi. Note that while in general β̂
( j)

i
, β̂

(i)

j
the signs of these two regres-

sion coefficients are identical.

This opens the way for obtaining small sample estimates of partial correlation and

GGM inference by means of regularized regression. This avenue is pursued, e.g., by

Dobra et al. (2004) who employ Bayesian variable selection. Another possibility to

determine the regression coefficients is by penalized regression, for instance ridge

regression (Hoerl and Kennard, 1970a,b) or the the lasso (Tibshirani, 1996). The

latter approach has the distinct advantage that it will set many of the regression

coefficients (and hence also partial correlations) exactly equal to zero. Thus, for

covariance selection no additional testing is required, and an edge is recovered in

the GGM network if both β̂
( j)

i
and β̂

(i)

j
differ from zero.

GGM inference using the lasso is investigated in Meinshausen and Bühlmann

(2005) where it is suggested to choose the lasso penalty λi for regression against

variable Xi according to

λ̂i = 2

√
sML

ii

n
Φ
−1(1 − α

2p2
), (17)

where Φ(z) is the cumulative distribution function of the standard normal, α is

a constant (set to 0.05 in our computations below) that controls the probability of

falsely connecting two distinct connectivity components (Meinshausen and Bühlmann,

2005), and sML
ii is the maximum-likelihood estimate of the variance of Xi. Note that

this adaptive choice of penalty ensures that for small sample variance λ̂i vanishes

and hence in this case no penalization takes place.

3.4. Performance for synthetic data

In an extensive simulation study we compared the shrinkage and lasso approach

to GGM selection in terms of accuracy, power, and positive predictive accuracy.

In addition to those two methods we also investigated two further estimators of

partial correlation denoted Π̂1 and Π̂2. These are discussed in Schäfer and Strimmer

(2005a). Π̂1 employs the pseudoinverse instead of the matrix inverse in Eq. 12, thus

for n > p it reduces to the classical estimate of partial correlation. Π̂2 uses the

bootstrap to obtain a variance-reduced positive definite estimate of the correlation

matrix. Note that in our previous study we found that Π̂2 exhibited the overall best

performance.

Specifically, the simulation setup was as follows:

1. We controlled parameters of interest such as the number of features p, the
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fraction of non-zero edges ηA = 1− η0 and the sample size n of the simulated

data. Specifically, we fixed at p = 100 and ηA = 0.04, and varied n =

10, 20, . . . , 200.

2. We generated R = 200 random networks (i.e. partial correlation matrices)

and simulated data of size n from the corresponding multivariate normal dis-

tribution.

3. From each of the R data sets we estimated the partial correlation coefficients

with the four methods “shrinkage”, “lasso”, Π̂1, and Π̂2. The number of

bootstrap replications required for Π̂2 was set to B = 500.

4. Subsequently, we computed the mean squared error by comparison with the

known true values.

5. Similarly, we dtermined the average number of edges detected as significant,

the power, and the “positive predictive value” (PPV), i.e. the fraction of cor-

rect edges among all significant edges. The PPV is sometimes also called the

“true discovery rate” (TDR). Note that it is only defined if there is at least one

significant edge. The fdr cut-off was set to 0.2 as suggested in Efron (2005b).

In order to simulate random “true” partial correlation matrices we relied on an

algorithm producing diagonally dominant matrices – see Schäfer and Strimmer

(2005a) for details. This method allows to generate positive definite random corre-

lation matrices of arbitrary size p×p with an a priori fixed proportion ηA of non-null

entries. Unfortunately, further structural and distributional properties are not eas-

ily specified – see for instance Hirschberger et al. (2004). This would be desirable

as the present simulation algorithm produces networks with edges that represent

mostly weak links. Note that this renders their inference disproportionally hard.

In Fig. 2 we compare the accuracy of the four investigated estimators of par-

tial correlation. Both the shrinkage and the lasso GGM estimator outperform the

two others regardless of sample size. The previously recommended estimator Π̂2 is

nearly as accurate for small sample size, however, it is much more computer expen-

sive than the shrinkage estimator. The peak at n = 100 associated with the estimator

Π̂
1 is a dimension resonance effect due to the use of the pseudoinverse (recall that

p = 100) – see Schäfer and Strimmer (2005a) for a discussion and references.

Fig. 3a and Fig. 3b summarize the results with regard to GGM selection. Fig. 3a

shows the number of edges that were detected as significant using each of the four

methods. For ηA = 0.04 and p = 100 there exist exactly 198 edges in any of the

simulated networks. The number of edges detected as significant for the shrinkage

estimator remains well below this threshold, however in comparison with Π̂1 and
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Figure 2: Mean squared error of the four investigated small-sample estimators of partial

correlation ( “shrinkage”, “lasso”, Π̂1, and Π̂2) in dependence of the sample size for p =

100 genes. Note that the curves for “shrinkage” and “lasso” completely overlap.

Π̂
2 it typically finds the largest number of edges. In contrast, for simulated data the

lasso GGM network approach recovers even for small sample size many more edges

than are actually present. This indicates that the choice of penalization according to

Eq. 17 may still be too permissive. The large number of significant edges for Π̂2 for

very small sample sizes is a systematic bias related to the improper fit of the null

model (Eq. 14).

Fig. 3b illustrates the corresponding power (i.e. the proportion of correctly iden-

tified edges) and PPV. The latter quantity is of key practical importance as it is an

estimate of the proportion of true edges among the list of edges returned as sig-

nificant by the algorithm. For the shrinkage estimator the PPV is constant across

the whole range of samples sizes and close to the desired level near 1 − Fdr ≈ 0.9

(Efron, 2005b). The lasso GGM estimator exhibits a very low PPV of about 0.2

only. The other two estimators reach the appropriate level of PPV, but only for

n > p. In terms of power the shrinkage and the lasso GGM approach outperform

the other two investigated estimators Π̂1 and Π̂2 which exhibit reasonable power

only for n > p. The power of the lasso regression approach is distinctly higher than

that of the shrinkage estimator. However, this is due to the fact that the former lib-

erally includes many edges in the resulting network without controlling the rate of

false positives. In our simulations the shrinkage estimator has non-zero power only
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Figure 3: Performance of methods for GGM network inference: (a) Average number of

edges detected as significant. Note that there are 198 true edges in the simulated network

(horizontal dashed line). (b) Power and positive predictive value (PPV) for reconstructing

the GGM network topology. Gaps in the curves for the PPV indicate situations in which the

PPV could not be computed (no significant edges).
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from n ≥ 30 (for p = 100). As discussed above this is very likely a consequence

of our simulation setup which produces partial correlation networks that are hard

to infer. Thus, it is deciding to note the high PPV of this estimator: this indicates

that if there is a significant edge then the probability is very high that it actually

corresponds to a true edge.

3.5. Analysis of expression profiles from an E. coli

experiment

For illustration we now apply the above methods for inferring gene networks to a

real data set from a microarray experiment conducted at the Institute of Applied

Microbiology, University of Agricultural Sciences of Vienna (Schmidt-Heck et al.,

2004). This was set up to measure the stress response of the microorganism Es-

cherichia coli during expression of a recombinant protein. The resulting data moni-

tors all 4,289 protein coding genes of E. coli 8, 15, 22, 45, 68, 90, 150, and 180 min-

utes after induction of the recombinant protein SOD (human superoxide dismutase).

In a comparison with pooled samples before induction 102 genes were identified by

Schmidt-Heck et al. (2004) as differentially expressed in one or more samples after

induction. In the following we try to establish the gene network among these 102

preselected genes.

A first impression of the dependency structure can be obtained by investigat-

ing the estimated correlation coefficients. For the shrinkage approach we obtain

λ̂⋆ = 0.18. The resulting correlation matrix has full rank (102) with condition

number equal to 386.6. In contrast, the standard correlation matrix has rank 8 only

and is ill-conditioned (infinite condition number). Thus, already for calculating the

correlation coefficients the benefits of using the shrinkage estimator are apparent.

Fig. 4a shows the distribution of the estimated correlation coefficients, most of

which differ from zero. This is indicates that essentially all genes are are either

directly or indirectly associated with each other. Thus, constructing a traditional

relevance network (Butte et al., 2000) will – at least for this data – not lead to

uncovering of the dependency structure. This is compared with the corresponding

partial correlation matrix. Fig. 4b shows the distribution of the Fisher-transformed

coefficients (cf. Hotelling, 1953). The contrast with the previous figure is apparent,

as the distribution of partial correlations is unimodal and centered around zero. This

means that most partial correlations vanish, that the number of direct interactions is

small, and hence that the resulting gene association network is sparse.

Fig. 5 shows the corresponding gene association and relevance networks. The

shrinkage GGM network is depicted in Fig. 5a and was derived by fitting the mix-

ture distribution defined in Eq. 13 to the estimated partial correlations with a cut-off

21Schäfer and Strimmer: Large-Scale Covariance Matrix Estimation

Produced by The Berkeley Electronic Press, 2005



−1.0 −0.5 0.0 0.5 1.0

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

shrunken sample correlation

coefficients

F
re

q
u

e
n

c
y

(a)

estimated partial correlation coefficients

F
re

q
u

e
n

c
y

−0.10 −0.05 0.00 0.05 0.10

0
1

0
0

2
0

0
3

0
0

4
0

0

(b)

Figure 4: (a) Histogram of the estimated shrunken correlation coefficients computed for

all 102 × 101/2 = 5, 151 pairs of genes. (b) Distribution of estimated partial correlation

coefficients (green line) after Fisher’s normalizing z-transformation (atanh) was applied for

normalization purposes. Also shown are the fitted null distribution (dashed blue line) and

the alternative distribution (pink) as inferred by the locfdr algorithm (Efron, 2004, 2005b).

The black squares indicate the 0.2 local fdr cut-off values for the partial correlations.

fdr < 0.2. The network comprises 116 significant edges which amount to about 2%

of the 5,151 possible edges for 102 genes. This shows that for real data – in sharp

contrast to our comparable simulations – the shrinkage estimator is powerful for

small sample size.

Several aspects of the inferred network are interesting. First, we recover the

“hub” connectivity structure for the gene sucA. This gene is involved in the citric

acid cycle. The existence of these hubs is a well-known property of biomolecular

networks (e.g. Barabási and Oltvai, 2004). It is a strength of the present method that

these nodes can be identified without any particular additional effort. Second, the

edges connecting the genes lacA, lacZ and lacY are the strongest in the network,

with the largest absolute values of partial correlation, and correspondingly also with

the smallest local fdr values. Interestingly, these are exactly the genes on which the

experiment was based: lacA, lacY and lacZ are induced by IPTG (isopropyl-beta-D-

thiogalactopyranoside) dosage and initiate recombinant protein synthesis (Schmidt-

Heck et al., 2004).
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(c) Relevance network

Figure 5: Gene networks inferred from the E. coli data by (a) the shrinkage GGM ap-

proach presented in this paper (Tab. 1), (b) the lasso GGM approach by Meinshausen and

Bühlmann (2005), and (c) the relevance network with abs(r) > 0.8. Black and grey edges

indicate positive and negative (partial) correlation, respectively.
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For comparison, the lasso GGM network is shown in Fig. 5b. It was computed

from the standardized E. coli data and contains 100 edges. Closer inspection of

this network reveals an interesting structural bias introduced by the lasso regression

for GGM inference. As can clearly be seen in Fig. 5b the lasso limits the number

of edges going in and out of a node. The reason for this is that the lasso imposes

sparsity on the regression coefficients per node so that in each regression only a

few non-zero coefficients exist. As a consequence, the degree distribution of the

E. coli lasso GGM network has an implicit upper bound. Thus, the lasso prevents

the identification of hubs and also excludes power-law-type connectivity patterns.

Note that in contrast in the shrinkage GGM approach sparsity is imposed on the

network level rather than locally at node level.

Finally, Fig. 5c shows the relevance network obtained by applying the conven-

tional 0.8 cut-off on the absolute values of the shrunken correlation coefficients.

The resulting network contains 58 edges and bears no resemblance to the GGM

networks. As is clear from inspecting Fig. 4a there are many more genes that are

strongly correlated, so from this network the direct dependencies among genes can-

not be deduced. Instead, we argue here that correlations should rather be employed

for detecting independence among genes. The corresponding null hypothesis is that

the two gene are dependent. Fur this purpose the mixture model of Eq. 13 is still

applicable, except that the roles of f0 and fA are interchanged. Thus any edge with

fdr > 0.8 (defined as in Eq. 15!) would be considered significant.

As a last comment we remark that in our analysis we have plainly ignored the

fact that the E. coli data derive from a time series experiment. This appears not

to be too harmful for the GGM selection process – at least part of the longitudinal

correlation will be accounted for by empirically fitting the null distribution (see also

Efron (2005a)).

4. Discussion and summary

In this paper we draw attention to the problem of the widespread and largely uncrit-

ical use of the standard covariance estimator in the analysis of functional genomics

data. As a quick glance in any recent issue of a journal such as Bioinformatics

or BMC Bioinformatics will reveal, the empirical correlation and covariance esti-

mators are often rather blindly applied by bioinformaticians to large-scale problems

with many variables and few sample points although it is well known that in this set-

ting the standard estimators are not appropriate and may perform extremely poorly.

Here, we strongly advise to refrain from using the empirical covariance in the anal-

ysis of high-dimensional data such as from microarray or proteomics experiments.

We emphasize that alternatives are readily available in the form of shrinkage
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estimators (e.g. Greenland, 2000). Shrinkage formalizes the idea of “borrowing

strength across variables” and has proved beneficial in the problem of differential

expression (e.g., Smyth, 2004; Cui et al., 2005) and classification of transcriptome

data (e.g., Tibshirani et al., 2002; Zhu and Hastie, 2004). In this paper we par-

ticularly highlight the shrinkage approach of Ledoit and Wolf (2003) that allows

fitting of all necessary tuning parameters in a simple analytical fashion. While

this method appears to be little known we anticipate that it will be helpful in many

“small n, large p” inference problems.

In Section 2 of this paper we present a novel shrinkage estimator for the covari-

ance and correlation matrix (Tab. 1) with guaranteed minimum MSE and positive

definiteness that is not only perfectly applicable to “small n, large p” data but can

also be computed in time comparable to that of the conventional estimator. By use

of the theorem of Ledoit and Wolf (2003) to estimate the optimal shrinkage intensity

there is no need to specify any further parameters. Consequently, computationally

expensive procedures such as cross-validation are completely avoided. As an added

bonus, the proposed estimator is also distribution-free and demands only modest

assumptions with regard to the existence of higher moments.

As a specific bioinformatical application we employ this covariance shrinkage

estimator in the search for net-like genetic interactions. In Section 3 we show that

this leads to large overall gains in the accuracy and in the power to recover the true

network structure compared with a precursor approach described in Schäfer and

Strimmer (2005a). In addition, our algorithm also outperforms the lasso approach

to regularized GGM inference in terms of positive predictive accuracy. Further-

more, network inference by using the shrinkage covariance estimator (Section 2)

combined with the heuristic model selection of Section 3 takes only a few minutes

even on a slow computer – thus we offer it as a fast alternative to exhaustive GGM

search procedures, such as the MCMC method of Dobra et al. (2004).

Further possible uses of the proposed shrinkage covariance estimator in bioinfor-

matics include classification of gene expression profiles. For instance, the SCRDA

(“shrunken centroids regularized discriminant analysis”) approach (Guo et al., 2004)

employs regularized covariance and correlation matrices similar to the one de-

scribed in Section 2. Hence, it should be straightforward to apply SCRDA also

in conjunction with our proposed shrinkage covariance estimator.

We end with a note that “small n, large p” covariance estimation problems have

recently arisen also in computational econometrics. Specifically, the inference and

modeling of large financial networks (Mantegna and Stanley, 2000; Boginski et al.,

2005) requires methods akin to those for gene relevance and association networks.
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A. Estimation of the variance and covariance of

the components of the S and R matrix

In order to compute the optimal estimated shrinkage intensity λ̂⋆ (Eq. 8) for the

various structured covariance targets listed in Tab. 2, it is necessary to obtain unbi-

ased estimates of the variance and the covariance of individual entries in the matrix

S = (si j).

Let xki be the k-th observation of the variable Xi and x̄i =
1
n

∑n
k=1 xki its empirical

mean. Now set wki j = (xki − x̄i)(xk j − x̄ j) and w̄i j =
1
n

∑n
k=1 wki j. Then the unbiased

empirical covariance equals

Ĉov(xi, x j) = si j =
n

n − 1
w̄i j

and, correspondingly, the variance is

V̂ar(xi) = sii =
n

n − 1
w̄ii.

The empirical unbiased variances and covariances of the individual entries of S are

computed in a similar fashion.

V̂ar(si j) =
n2

(n − 1)2
V̂ar(w̄i j) =

n

(n − 1)2
V̂ar(wi j) =

n

(n − 1)3

n∑

k=1

(wki j − w̄i j)
2.

Similarly,

Ĉov(si j, slm) =
n

(n − 1)3

n∑

k=1

(wki j − w̄i j)(wklm − w̄lm).

Moments of higher order than V̂ar(si j), in particular variances and covariances of

averages of si j, are neglected in estimating the optimal λ̂⋆ in Tab. 2.

The variance Var(ri j) of the empirical correlation coefficients can be estimated in

a similar fashion: simply apply the above formulae to the standardized data matrix.

We note that this procedure treats the estimated variances as constants and hence

introduces a slight but generally negligible error. The same assumption also justifies

to ignore the bias of the empirical correlation coefficients in Eq. 10.
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B. Available computer software

The shrinkage estimator of the covariance matrix described in this paper is im-

plemented in the R package “corpcor”. This package also contains functions for

computing (partial) correlations. The analysis and visualisation of the gene ex-

pression data was performed using the “GeneTS” R package. Both packages are

distributed under the GNU General Public License and are available for down-

load from the CRAN archive at http://cran.r-project.org. “GeneTS” is

also available from Bioconductor (http://www.bioconductor.org) and from

http://www.statistik.lmu.de/~strimmer/software/genets/.
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