
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information 
Sciences 

20-8-2006 

A shunting inhibitory convolutional neural network for Gender Classification A shunting inhibitory convolutional neural network for Gender Classification 

Fok Hing Chi Tivive 
University of Wollongong, tivive@uow.edu.au 

Abdesselam Bouzerdoum 
University of Wollongong, bouzer@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/infopapers 

 Part of the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Tivive, Fok Hing Chi and Bouzerdoum, Abdesselam: A shunting inhibitory convolutional neural network for 
Gender Classification 2006. 
https://ro.uow.edu.au/infopapers/454 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages


A shunting inhibitory convolutional neural network for Gender Classification A shunting inhibitory convolutional neural network for Gender Classification 

Abstract Abstract 
Demographic features, such as gender, are very important for human recognition and can be used to 
enhance social and biometric applications. In this paper, we propose to use a class of convolutional 
neural networks for gender classification. These networks are built upon the concepts of local receptive 
field processing and weight sharing, which makes them more tolerant to distortions and variations in two 
dimensional shapes. Tested on two separate data sets, the proposed networks achieve better 
classification accuracy than the conventional feedforward multilayer perceptron networks. On the Feret 
benchmark dataset, the proposed convolutional neural networks achieve a classification rate of 97.1%. 

Disciplines Disciplines 
Physical Sciences and Mathematics 

Publication Details Publication Details 
This article was originally published as: Tivive, FHC & Bouzerdoum, A, A Shunting Inhibitory Convolutional 
Neural Network for Gender Classification, 18th International Conference on Pattern Recognition 2006 
(ICPR 2006), 20-24 August 2006, 4, 421-424. Copyright 2006 IEEE. 

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/454 

https://ro.uow.edu.au/infopapers/454


A Shunting Inhibitory Convolutional Neural Network for Gender Classification

Fok Hing Chi Tivive and Abdesselam Bouzerdoum, Senior Member, IEEE
School of Electrical, Computer and Telecommunications Engineering

University of Wollongong
Northfields Avenue, Wollongong, NSW 2522, AUSTRALIA.

Email:[tivive@uow.edu.au], [a.bouzerdoum@ieee.org]

Abstract

Demographic features, such as gender, are very impor-
tant for human recognition and can be used to enhance so-
cial and biometric applications. In this paper, we propose
to use a class of convolutional neural networks for gender
classification. These networks are built upon the concepts of
local receptive field processing and weight sharing, which
makes them more tolerant to distortions and variations in
two dimensional shapes. Tested on two separate data sets,
the proposed networks achieve better classification accu-
racy than the conventional feedforward multilayer percep-
tron networks. On the Feret benchmark dataset, the pro-
posed convolutional neural networks achieve a classifica-
tion rate of 97.1%.

1. Introduction

The gender classification task was initially considered in
psychophysical studies only, in the context of understand-
ing the human visual processing and identifying the key fa-
cial features that distinguish male from female individuals.
More recently, however, it has attracted a great deal of at-
tention from the computer vision community; the disparity
between facial femininity and masculinity is an important
piece of information that can be used to improve the perfor-
mance of other applications, such as face recognition and
intelligent human-computer interfaces.

To the best of our knowledge, the most successful gender
classification technique reported to date was proposed by
Moghaddam and Yang [4] using support vector machines
(SVMs). The authors evaluated their SVM-classifier on
1755 face images of size 21×12 from the FERET database.
The images were first preprocessed for contrast and geomet-
ric shape variations, and then the face region was masked to
remove the hair information. Based on five-fold cross vali-
dation and using 20% of the training set as support vectors,
they obtained a classification rate of 96.6%. Instead of using

a single classifier, Wu et al. [9] employed Adaboost learn-
ing algorithm to select a series of look-up table (LUT) weak
classifiers for gender classification. The training procedure
was performed on a large training set of more than 11,000
face images, and their Adaboost-classifier achieved 88% ac-
curacy with 200 selected LUTs. Golomb et al. [2] used a
two layer neural network, known as SEXNET, to discrimi-
nate between male and female classes and obtained a classi-
fication accuracy of 91.9% based on a database containing
90 images. To alleviate the effect of the “curse of dimen-
sionality”, some researchers have combined pre-processing
techniques with neural network (NN) classifiers. In [7], Sun
et al. used principle component analysis (PCA) to compress
the input space into low dimensional features (i.e, eigen-
vectors), and applied a genetic algorithm (GA) for selecting
a set of eigen-vectors to represent the two classes. Tested
on frontal face images, their hybrid technique achieved a
classification rate of 88.7% on a test set of 400 images. The
methods presented so far have proven that NNs can be used
for the gender classification task. However, most of these
methods include several pre-processing stages, in order to
reduce the dimensionality of the input space and the influ-
ence of some external factors, such as the orientation of the
face pattern and variations in lighting conditions.

In this article, we apply shunting inhibitory convolu-
tional neural networks (SICoNNets) [8] for gender classifi-
cation. In general, convolutional neural networks (CoNNs)
have the ability to perform feature extraction and classifi-
cation within the network structure through learning and
achieve a certain degree of invariance while preserving the
spatial topology of the input data. Moreover, a certain
amount of prior knowledge about the task is incorporated
into the network. This makes SICoNNets more robust to
geometric distortions and other 2-D shape variations. The
remainder of this paper is organized as follows. Section 2
presents the SICoNNet architectures used for gender clas-
sification. The gender database and the evaluation proce-
dure are explained in Section 3. Experimental results are
presented in Section 4, followed by concluding remarks in
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Section 5.

2. Convolutional Neural Network Models

Recently, we developed three generic convolutional
neural network architectures that use a special type of
processing element known as shunting inhibitory neuron
[8]. This kind of neuron has been applied in other NN mod-
els for supervised pattern classification and regression and
has been shown to be more powerful than the sigmoid neu-
ron or perceptron [1]. Here, two CoNN structures are de-
veloped for gender classification, namely the binary- and
toeplitz-connected architectures. Each network consists of
three processing layers: two hidden layers and one output
layer. The input layer is a two-dimensional (2-D) image of
size 32 × 32, acting as the network retina receiving inputs
from the environment. The hidden neurons are organized
into planes called feature maps. The first hidden layer can
have any number of feature maps, but the second layer has
twice as many feature maps as the first one. The feature
maps are sub-sampled by a factor of two; that is, the feature
maps in the first hidden layer are of size 16 × 16 and those
in the second layer are of size 8× 8. Each hidden neuron is
connected locally to a small input region of size 5×5, called
the receptive field. All neurons from the same feature map
receive inputs from different input regions so as to cover
the entire input plane, but share the same set of synaptic
weights (weight sharing); however, different feature maps
in the same hidden layer use different set of weights. The
weight sharing strategy has two advantages: (i) it eases the
curse of dimensionality as each neuron only has to concern
itself with the processing of a limited amount of informa-
tion; (ii) each neuron behaves as a feature detector which
extracts the same elementary visual feature from different
positions in the input plane.

To connect the feature maps of one layer to the next
layer, two partial-connection schemes have been adopted:
the binary- and toeplitz-connection schemes. In the bi-
nary scheme, each feature map is connected to two feature
maps in the succeeding layer, similar to a binary tree. In
the toeplitz scheme, each feature map may have one-to-one
or one-to-many links with feature maps of the preceding
layer; however, the connection pattern between two succes-
sive layers has the form of a toeplitz matrix. For example,
the toeplitz-connections between the two feature maps of
the first hidden layer (L1) and the four feature maps of the
second hidden layer (L2) are shown in Table 1. Suppose the
four feature maps of L2 are labeled 1 to 4 and the two fea-
ture maps of L1 are labeled A and B. Feature maps 1 and 4
form one-to-one connections with feature maps A and B, re-
spectively, whereas feature maps 2 and 3 are both connected
to feature maps A and B. In other words, the connections ap-
pear along the diagonal of the connection matrix in the form

Table 1. Connections between feature maps in L1
and L2 of the toeplitz-connected CoNN.

L2 Feature Map Connections from L1 to L2
1 A
2 B A
3 B A
4 B

of a Toeplitz matrix. Figure 1 presents a schematic diagram
of the toeplitz-connected network with one output neuron.

1st Layer 2nd Layer

3rd Layer

Input Image

32 x 32

16 x 16 8 x 8
Receptive Field

Planes of shunting inhibitory

neurons (feature maps)

Perceptron

(5 x 5)

Figure 1. The network structure of a three-layer
toeplitz-connected CoNN.

The novelty of this CoNN in comparison to earlier con-
volutional models is that the feature map is made up of
shunting inhibitory neurons. The neural activity of a shunt-
ing inhibitory neuron is given by

ZL,k(i, j) =
XL,k(i, j)

aL,k(i, j) + YL,k(i, j)
, (1)

where

XL,k(i, j) = gL

(SL−1∑
m=1

[CL,k ∗ ZL−1,m](2i)(2j) + bL,k(i, j)
)

,

YL,k(i, j) = fL

(SL−1∑
m=1

[DL,k ∗ ZL−1,m](2i)(2j) + dL,k(i, j)
)

,

∀ i, j = 1, ..., FL.

The parameters CL,k and DL,k are the set of weights, bL,k

and dL,k are scalar parameters called the biases of the neu-
ron, aL,k is the passive decay term, gL and fL are the ac-
tivation functions, FL is the size of the feature map at the
Lth layer, and SL−1 is the number of feature maps in the
(L − 1)th layer to which the neuron is connected. All the
neurons in a feature map share the same bias parameters
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and passive decay term. This implies that a feature map
consists of one shunting inhibitory neuron which replicates
itself into a 2-D array.

At the output layer, there is one perceptron or sigmoid
neuron, whose output is used to classify the 2-D input pat-
tern into male or female face. The output neuron receives
inputs from all feature maps of the last hidden layer, i.e., the
output neuron is fully connected to all the neurons in layer
L2. The response of the output neuron is given by

y = h
( SN∑

i=1

wizi + b
)
, (2)

where y is the output signal, h is the output activation func-
tion, wi’s are the connection weights, zi’s are the inputs to
the neuron, SN is the number of inputs to the output neuron,
and b is the bias term.

3. Gender Databases and Evaluation Proce-
dure

The classification performance of the trained CoNNs and
MLPs were evaluated on two face databases based on the
five-fold cross validation. The first database (DB-1) is the
Feret benchmark database [5] with 1152 male and 610 fe-
male of up-right frontal face images. The second database
(DB-2) is the face and skin detection database created by
Phung et al. [6], where 8000 face images (4000 males and
4000 females) were used for training and testing; these face
images are slightly rotated and shifted in position, and sur-
rounded by other background information, as shown in Fig.
2. Before the evaluation of the classification performances
of the different networks, some preliminary experiments
had been conducted, which showed that using face images
folded along the Y-axis (mirrored face images) in the train-
ing and test sets improved the classification performance.
Therefore, all face images are folded along the Y-axis to
double the number of patterns in the training set; during the
testing phase, each face image is evaluated by the trained
network including its mirrored version, and the average of
both network responses is taken as the final classification
score. All the face patterns in the training and test sets were
histogram equalized and the image pixels were scaled to
the range [−1, 1]. The desired outputs corresponding to the
male and female images were labeled 1 and −1, respec-
tively.

4. Experimental Results

To determine an appropriate size of the network for this
classification task, several CoNNs with different number of
feature maps in the hidden layers were trained and tested,

(a)

(b)

Figure 2. Face patterns from the face database [6]:
(a) male patterns and (b) female patterns.

ranging from 2 to 4 feature maps in L1 and 4 to 8 feature
maps in L2. In the first hidden layer, the activation func-
tions gL and fL are the hyperbolic tangent and exponential
functions, respectively. In L2, gL is a logarithmic sigmoid
function, whereas a hyperbolic tangent is used at the output.
During the training and initialization of the CoNNs, the de-
nominator of (1) is constrained to be greater than zero so as
to prevent division by zero. Hence, the passive decay rate,
aL,k, is constrained as follows:

aL,k(i, j) + YL,k(i, j) ≥ ε > 0, (3)

where ε is a small positive constant.
For comparison purposes, several MLPs were also devel-

oped for gender classification, where the number of hidden
neurons in each layer matches the number of feature maps
used in the CoNNs. The input size to the MLPs is the same
as that of the CoNNs, but arranged in a form of column
vector of length 1024. The output layer has one neuron, and
the activation functions used across all layers are the hyper-
bolic tangent function. The trainable weights of the CoNNs
and MLPs are adapted by the Levenberg-Marquardt algo-
rithm, in which the Hessian matrix and the gradient vec-
tor are computed, in terms of the Jacobian matrix, using
the modified backpropagation algorithm proposed by Ha-
gan [3].

Table 2 and 3 present the classification rates of the
binary- and toeplitz-connected networks, respectively, and
Table 4 lists the performances of the MLPs. The number of
weights for each trained network is given in the second col-
umn of the tables, followed by the number of feature maps
(or perceptrons) used in each hidden layer. The correct clas-
sification rates for males (M) and females (F) and the total
classification rate (T. R.) based on the two face databases
are listed in the remaining columns. On the Feret data-
base, the CoNNs achieve classification rates between 95.9%
and 97.1%, whereas the MLPs achieve classification rates
between 95.1% and 95.6%. The highest classification ac-
curacy of 97.1%, achieved by the binary-connected CoNN
BC-03, is greater than that achieved by the state-of-the-art
SVM-based system of Moghaddam and Yang [4], which
achieves a classification rate of 96.6%. On the second data-
base, our CoNNs achieve classification rates in the range
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[87.8%, 88.8%], whereas MLPs achieve classification rates
in the range [82.7%, 83.8%]. These results show that not
only do the CoNNs have the capability to discriminate face
image between a male and a female, but also they are ro-
bust against slight variations and distortions in the input im-
age. Furthermore, MLPs have significantly more weights
than CoNNs. For example, a CoNN with 6 feature maps
has 575 weights, whereas an equivalent MLP, with 2 hidden
units in the first layer and 4 in the second layer, has 2067
weights, which is 3.6 times more weights than the CoNN.
With an additional 3 hidden units, the MLP (MLP-02) has
a significant increase of 1039 weights. This is because each
neuron in the MLP is fully connected with all the neurons
in the previous layer where each connection is a trainable
weight. In contrast, the CoNN encompasses a weight shar-
ing mechanism, which constrains the same set of weights to
be shared across all neurons within the same feature map.

Table 2. Gender classification performance of the
binary-connected networks (BCs) based on Feret and
Phung databases.

Network No. No. Feat. Classification rate (%)
Index weights Maps DB-1 (Feret) DB-2 (Phung)

L1 L2 M F T. A. M F T. R.
BC-01 575 2 4 97.1 94.3 96.1 86.1 90.2 88.1
BC-02 862 3 6 97.1 93.6 95.9 88.4 87.8 88.1
BC-03 1149 4 8 98.6 94.3 97.1 87.0 90.3 88.7

Table 3. Gender classification performance of the
toeplitz-connected networks (TCs) based on Feret and
Phung databases.

Network No. No. Feat. Classification rate (%)
Index weights Maps DB-1 (Feret) DB-2 (Phung)

L1 L2 M F T. A. M F T. R.
TC-01 575 2 4 96.9 94.3 96.0 85.9 89.7 87.8
TC-02 862 3 6 97.1 95.4 96.5 88.7 88.9 88.8
TC-02 1149 4 8 97.6 94.3 96.4 87.0 89.9 88.4

Table 4. Gender classification performance of the
MLPs based on Feret and Phung databases.

Network No. No. Classification rate (%)
Index weights F. maps DB-1 (Feret) DB-2 (Phung)

L1 L2 M F T. A. M F T. R.
MLP-01 2067 2 4 96.6 92.1 95.1 80.5 86.0 82.7
MLP-02 3106 3 6 96.7 92.5 95.2 81.5 86.0 83.8
MLP-03 4149 4 8 96.8 93.4 95.6 81.8 86.0 83.6

5. Conclusion

In this paper, shunting inhibitory convolutional neural
networks are used to solve the gender classification prob-
lem. Two different architectures were developed for gender
classification: the binary- and toeplitz-connected architec-
tures. Experiments were conducted on two datasets: the
Feret and Phung et al. databases. On the Feret database,
the CoNNs perform as well as the state-of-the-art gender
classification systems, such as SVM-based systems, with
much less pre-processing. In fact, the proposed CoNNs
achieve the highest classification rate of 97.1%. In com-
parison to MLPs, the CoNNs have better performance and
fewer trainable parameters. When tested on images from
the Phung database, the CoNNs achieve classification rates
5% higher than MLPs. The superior performance of the
proposed CoNNs over the MLPs demonstrate that CoNNs
are more robust to geometric and photometric distortions.
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