
A Side-Channel Analysis Resistant Description
of the AES S-Box�

Elisabeth Oswald1, Stefan Mangard1, Norbert Pramstaller1,
and Vincent Rijmen1,2

1 Institute for Applied Information Processing and Communciations (IAIK),
TU Graz, Inffeldgasse 16a, A–8010 Graz, Austria

2 Cryptomathic A/S Jægerg̊ardsgade 118, DK-8000 Århus C, Denmark
{elisabeth.oswald, stefan.mangard, norbert.pramstaller,

vincent.rijmen}@iaik.tugraz.at

Abstract. So far, efficient algorithmic countermeasures to secure the
AES algorithm against (first-order) differential side-channel attacks have
been very expensive to implement. In this article, we introduce a new
masking countermeasure which is not only secure against first-order
side-channel attacks, but which also leads to relatively small implemen-
tations compared to other masking schemes implemented in dedicated
hardware.

Our approach is based on shifting the computation of the finite field
inversion in the AES S-box down to GF (4). In this field, the inversion is
a linear operation and therefore it is easy to mask.

Summarizing, the new masking scheme combines the concepts of
multiplicative and additive masking in such a way that security against
first-order side-channel attacks is maintained, and that small implemen-
tations in dedicated hardware can be achieved.

Keywords: AES, side-channel analysis, masking schemes.

1 Introduction

Securing small hardware implementations of block ciphers against differential
side-channel attacks [8] has proven to be a challenging task. Hardware coun-
termeasures, which are based on special leakage-resistant logic styles, typically
lead to a significant increase of area and power consumption [14]. Algorithmic
countermeasures also lead to a significant increase of area, if implemented in
hardware. Nevertheless, algorithmic countermeasures can be tailored towards a
particular algorithm, and hence, they can be optimized to a certain extent.

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT
and by the FWF “Investigations of Simple and Differential Power Analysis” project
(P16110).

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 413–423, 2005.
c© International Association for Cryptologic Research 2005



414 E. Oswald et al.

In case of the AES algorithm, several algorithmic countermeasures have been
proposed [2], [6], and [13]. They are all based on masking, i.e., the addition of
a random value (the mask) to the intermediate AES values. However two of
them, [2] and [13], are both susceptible to a certain type of (first-order) differ-
ential side-channel attack, the zero-value attack. The latter one has turned out
to be vulnerable even to standard differential side-channel attacks as well [1].
The countermeasure presented in [6] is not suitable for hardware implementa-
tions. The weakness of these three countermeasures is the way in which they
secure the intermediate values occurring in the AES SubBytes operation. The
SubBytes operation is the non-linear component within AES, which makes it
particularly difficult to mask.

In this article, we propose a secure masking scheme for the AES algorithm,
which is particularly suited for implementation in dedicated hardware. In or-
der to achieve security, we use a combination of additive and multiplicative
masking. The most tricky part when masking AES is to mask its non-linear
operation, which is the finite field inversion (short: inversion) in the S-box, i.e.,
the SubBytes operation. All other operations are linear and can be masked in
a straightforward manner as it is for example shown in [2]. Hence, this article
focuses on the inversion operation in the S-box only.

The masking scheme for the inversion presented in this article is based on
composite field arithmetic, which has already been previously used for efficient
S-box implementations in hardware [15]. However, while in [15] the inversion is
performed in GF (16), we shift the inversion down to GF (4) in this article. The
motivation for this is the fact that the inversion in GF (4) is a linear operation,
which can be masked easily.

Because of that we can build a masking scheme with very nice properties.
The approach presented in this article for example has a much smaller area-time
product than [2]. It also has the advantage of being secure against all first-order
differential side-channel attacks. In addition, it can be implemented in software
as well.

The remainder of this article is organized as follows. In Section 2 we motivate
our research by discussing zero-value attacks on multiplicative masking schemes.
Our analysis shows the need for masking schemes which are secure against zero-
value attacks. Such a new secure scheme is introduced in Section 3. Arguments for
the security of our scheme are provided in Section 4. The efficiency in hardware
compared to other masking schemes is discussed in Section 5. We conclude our
research in Section 6.

2 Discussion of Multiplicative Masking Schemes

The masking schemes proposed in [2] and [13] are susceptible to so-called zero-
value attacks. In this section, we analyze the effectiveness of zero-value attacks
against these masking schemes.

In AES, an AddRoundKey operation is performed prior to the first en-
cryption round and thus, prior to the first time when the inversion needs to be



A Side-Channel Analysis Resistant Description of the AES S-Box 415

computed. If a key byte k equals a data byte d, then the result of AddRound-
Key, which is x = d + k, equals zero. This observation can readily be used in
an attack which is referred to as zero-value attack and was introduced in [6].

Let t denote a power measurement (trace) and let the set of all traces t be
denoted by T . Suppose a number of AES encryptions is executed and their power
consumption is measured. Assume that the input texts are known. For all 256
possible key-bytes k′, we do the following. We define a set M1 which contains
those measurements with k′ = d right before the SubBytes transformation. We
also define a set M2 which contains the measurements with k′ �= d right before
the SubBytes transformation.

M1 = {t ∈ T : k′ = d} (1)
M2 = {t ∈ T : k′ �= d} (2)

If k = k′, then the difference-of-means trace Md = M1 − M2 shows a con-
siderable peak at the point in time when the masked SubBytes operation has
been performed. This is due to the fact that set M1 contains the measurements
in which the 0-value is manipulated in the inversion. If k �= k′, then the defi-
nition of the sets is meaningless. Hence, no difference between the sets can be
observed.

The difficulty in this scenario is that one needs enough traces in M1 to reduce
the variance, i.e. to get rid of noise. In [9] it has been estimated that around 64
times more measurements are needed in a zero-value attack than in a standard
differential side-channel attack. This number indicates that zero-value attacks
still pose a serious practical threat and must be avoided.

3 Combined Masking in Tower Fields

In order to thwart zero-value attacks, we have developed a new scheme which
works with combinations of additive and multiplicative masks. Throughout the
whole cipher, including the SubBytes computation, the data is concealed by
an additive mask.

Before going into the details of our new scheme, we review some necessary
facts about the efficient implementation of SubBytes first.

3.1 Inversion in GF (256)

Our SubBytes design follows the architecture we have proposed in [15] (we
call this approach S-IAIK from now on) . This architecture is based on com-
posite field arithmetic [5], and has very low area requirements. Thus, it is ideally
suited for small hardware implementations. In this approach, each element of
GF (256) is represented as a linear polynomial ahx + al over GF (16).

The inversion of such a polynomial can be computed using operations in
GF (16) only:



416 E. Oswald et al.

(ahx + al)−1 = a′
hx + a′

l (3)
a′

h = ah × d′ (4)
a′

l = (ah + al) × d′ (5)
d = (a2

h × p0) + (ah × al) + a2
l (6)

d′ = d−1 (7)

The element p0 is defined in accordance with the field polynomial which is
used to define the quadratic extension of GF (16), see [15].

In the following subsections we present the mathematical formulae for our
masking scheme.

3.2 Masked Inversion in GF (256)

In our masking scheme for the inversion, which we call Masked SubBytes
IAIK (short: MS-IAIK) from now on, all intermediate values as well as the
input and the output are masked additively. In order to calculate the inversion of
a masked input value, we first map the value as well as the mask to the composite
field representation as defined in [15]. This mapping is a linear operation and
therefore it is easy to mask. After the mapping, the value that needs to be
inverted is represented by (ah + mh)x + (al + ml). Note that both elements in
the composite field representation are masked additively.

Our goal is that all input and output values in the computation of the in-
verse are masked. Hence, we have to modify (3)-(7), by introducing functions
fah

, fal
, fd and fd′ , as follows:

((ah + mh)x + (al + ml))−1 = (a′
h + m′

h)x + (a′
l + m′

l) (8)

a′
h + m′

h = fah
((ah + mh), (d′ + m′

d),mh,m′
h,m′

d)

= ah × d′ + m′
h (9)

a′
l + m′

l = fal
((a′

h + m′
h), (al + ml), (d′ + m′

d),ml,m
′
h,m′

l,m
′
d)

= (ah + al) × d′ + m′
l (10)

d + md = fd((ah + mh), (al + ml), p0,mh,ml,md)

= a2
h × p0 + ah × al + a2

l + md (11)

d′ + m′
d = fd′(d + md,md,m

′
d)

= d−1 + m′
d (12)

The function fah
, fal

, fd and fd′ are functions on GF (16).

3.3 Derivation of the Functions fah
, fal

, fd and fd′

This section shows how to transform (4)-(7) into (9)-(12).

Transforming Equation 4 into Equation 9. Suppose that we calculate (4) with
masked input values, i.e., with ah + mh instead of ah and with d′ + m′

d instead
of d′:



A Side-Channel Analysis Resistant Description of the AES S-Box 417

(ah + mh) × (d′ + m′
d) = ah × d′ + mh × d′ + ah × m′

d + mh × m′
d. (13)

Comparing the result of this calculation to (9) shows that the desired and
masked result, ah ×d′ +m′

h, is only part of the result of (13). All the terms that
occur in addition due to the masks, have to be removed. These terms can be
easily removed by adding the terms (d′ + m′

d) × mh, (ah + mh) × m′
d, mh × m′

d

and m′
h. This is done by the function fah

, which takes five elements of GF (16)
as input, and produces an element of GF (16) as output.

fah
(r, s, t, u, v) = r × s + s × t + r × v + t × v + u (14)

If we choose r = (ah + mh), s = (d′ + m′
d), t = mh, u = m′

h and v = m′
d

and compute fah
((ah + mh), (d′ + m′

d),mh,m′
h,m′

d), we get the desired result
ah × d′ + m′

h (see (9)).
One has to take care when adding correction terms that no intermediate val-

ues are correlated with values, which an attacker can predict. It needs to be
pointed out that the formulae, which we derive in this section, do not lead to a
secure implementation when directly implemented. The secure implementation
of these formulae requires the addition of an independent value to the first in-
termediate value that is computed. This becomes clear from the security proof
given in Section 4.

Another aspect, which we do not treat in this article, is the discussion of the
particular choice of the masks m′

h, m′
l, md and m′

d. In our implementation in
dedicated hardware, see [11] for details, we decided to re-use masks as often as
possible. For example, in our implementation of (9) we set v = m′

d = ml and
u = m′

h = mh. Consequently, in our implementation we calculate the function
fah

as shown in (15).

fah
= (ah + mh) × (d′ + ml)

︸ ︷︷ ︸

dm4

+ (d′ + ml) × mh
︸ ︷︷ ︸

c7

+ (ah + mh) × ml
︸ ︷︷ ︸

c1

+ mh
︸︷︷︸

c6

+mh × ml
︸ ︷︷ ︸

c5

(15)

The term which is labelled as dm4 refers to the masked data. The terms which
are labelled as c1 to c7 in this equation are the so-called correction terms which
are applied by the function fah

. It can be seen in the subsequent paragraphs
that we can re-use several of these correction terms. This significantly reduces
the area required for our implementation.

At first sight our numbering scheme for the masked-data terms and the cor-
rection terms might look erratic. However, the indices of the dmi and cj indicate
when a certain value would be calculated during an implementation. For in-
stance, the masked data is labelled by dm4 in this formula, because it would be
calculated only later. Equations (9)-(12) show, that the result of (12) is needed
for (9) and (10). Therefore, (9) would be calculated later.



418 E. Oswald et al.

The reason why we make a difference in labelling masked-data terms and
correction terms is that it makes it easier to see how many additional operations
are introduced by the masking scheme. All terms labelled by dmi have to be
calculated in the original S-box design (S-IAIK, [15]) as well. However, all
terms labelled by cj are the corrections that we have to apply. Thus, these are
the additional operations, which are introduced by the masking.

In the same style as for (4), we subsequently transform (5) and (6).

Transforming Equation 5 into Equation 10. In order to transform (5) into (10)
we define a function fal

that applies the appropriate correction terms.
The function fal

takes seven elements of GF (16) as input and gives one
element of GF (16) as output.

fal
(r, s, t, u, v, w, x) = r + s × t + t × u + s × x + v + w + u × x (16)

If we choose r = a′
h +m′

h, s = al +ml, t = d′ +m′
d, u = ml, v = m′

h, w = m′
l

and x = m′
d we indeed get (10).

In our implementation, we set u = w (i.e. m′
l = ml) and x = m′

d = mh.
Hence, in our implementation, we calculate fal

as is shown in (17).

fal
= (ah × d′ + mh) + (al + ml) × (d′ + mh)

︸ ︷︷ ︸

dm5

+ (d′ + mh) × ml
︸ ︷︷ ︸

c8

+ (al + ml) × mh
︸ ︷︷ ︸

c2

+ ml
︸︷︷︸

c9

+ mh
︸︷︷︸

c6

+ml × mh
︸ ︷︷ ︸

c5

(17)

As in the previous paragraphs, the terms that are labelled by ci are correction
terms.

Transforming Equation 6 into Equation 11. In order to transform (6) into (11)
we define a function fd that applies the appropriate correction terms (as demon-
strated in the previous paragraphs).

The function takes six elements of GF (16) as inputs and gives an element of
GF (16) as result.

fd(r, s, t, u, v, w) = r2× t+r×s+s2 +r×v+s×u+u2× t+v2 +u×w+u (18)

If we choose r = ah + mh and s = al + ml, t = p0, u = mh, v = ml and
w = md then we get (11).

In our implementation we set w = ml. Consequently, we calculate fd in our
implementation as shown in (19).



A Side-Channel Analysis Resistant Description of the AES S-Box 419

fd = (ah + mh)2 × p0
︸ ︷︷ ︸

dm1

+ (ah + mh) × (al + ml)
︸ ︷︷ ︸

dm2

+ (al + ml)2
︸ ︷︷ ︸

dm3

+ (ah + mh) × ml
︸ ︷︷ ︸

c1

+ (al + ml) × mh
︸ ︷︷ ︸

c2

+

c′3
︷︸︸︷

m2
h ×p0

︸ ︷︷ ︸

c3

+ m2
l

︸︷︷︸

c4

+ mh × ml
︸ ︷︷ ︸

c5

+ mh
︸︷︷︸

c6

(19)

As in the previous paragraphs, the terms that are labelled by cj or c′j are
correction terms.

Transforming Equation 7 into Equation 12. Calculating the inverse in GF (16) can
be reduced to calculating the inverse in GF (4) by representing GF (16) as quadratic
extension of GF (4).

In short, an element of GF (4)×GF (4) is a linear polynomial with coefficients
in GF (4), i.e., a = (ahx + al), with ah and al ∈ GF (4). The same formulae as
given in (17) – (19) can be used to calculate the masked inverse in GF (4)×GF (4).
In GF (4), the inversion operation is equivalent to squaring: x−1 = x2 ∀x ∈
GF (4). Hence, in GF (4) we have that (x + m)−1 = (x + m)2 = x2 + m2; the
inversion operation preserves the masking in this field.

4 Security of Our Masking Scheme

In this section, we show that all the operations discussed in Section 3, are secure.
We follow the security notion that has been introduced in [4] and strengthened
by [3]:

Definition 1. An algorithm is said to be secure if for all adversaries A and all
realizable distributions M1 and M2, M1 equals M2.

This definition is equivalent to the perfect masking condition given in [3] for
standard differential SCA. Counteracting higher-order differential SCA is not
within the scope of this article.

In the following paragraphs we will show that all data-dependent intermediate
values that occur in (17) – (19) fulfill Definition 1. These values are masked data
a+m, masked multiplications (a+ma)×(b+mb), multiplications of masked values
with masks (a + ma)×mb, and masked squarings (a + ma)2 and (a + ma)2 × p.

Definition 1 does imply that regardless of the hypotheses, which an attacker
can make, the distributions, which are derived by using these hypotheses, are
identical. Consequently, we must proof that every operation that is performed
in our masking scheme, leads to an output whose distribution does not depend
(in a statistical sense) on the input.



420 E. Oswald et al.

Our proof is divided into two parts. In the first part, which consists of the
Lemmas 1 to 4, we show that the data-dependent intermediate values are all
secure. In the second part, which consists of Lemma 5, we show that also the
summation of the intermediate results can be done securely.

We re-use the Lemmas 1 and 2 of [3]:

Lemma 1. Let a ∈ GF (2n) be arbitrary. Let m ∈ GF (2n) be uniformly dis-
tributed in GF (2n) and independent of a. Then, a + m is uniformly distributed
regardless of a. Therefore, the distribution of a + m is independent of a.

Lemma 2. Let a, b ∈ GF (2n) be arbitrary. Let ma,mb ∈ GF (2n) be indepen-
dently and uniformly distributed in GF (2n). Then the probability distribution
of (a + ma) × (b + mb) is

Pr((a + ma) × (b + mb) = i) =
{

2n+1−1
22n , if i = 0, i.e., if ma = a or mb = b

2n−1
22n , if i �= 0.

Therefore, the distribution of (a + ma) × (b + mb) is independent of a and b.

These two lemmas cover almost all data-dependent operations in our masking
scheme. The operation (a + ma) × mb is covered by Lemma 3.

Lemma 3. Let a ∈ GF (2n) be arbitrary. Let ma,mb ∈ GF (2n) be indepen-
dently and uniformly distributed in GF (2n). Then the distribution of (a+ma)×
mb is

Pr((a + ma) × mb = i) =
{

2n+1−1
22n if i = 0, i.e., if ma = a or mb = 0

2n−1
22n if i �= 0.

Therefore, the distribution of (a + ma) × mb is independent of a.

Lemma 3 is a special case (b = 0) of Lemma 2. The proof is therefore omitted.
The two remaining operations that occur in our masking scheme, (a + ma)2

and (a + ma)2 × p are covered by Lemma 4.

Lemma 4. Let a ∈ GF (2n) be arbitrary and p ∈ GF (2n) a constant. Let
ma ∈ GF (2n) be independently and uniformly distributed in GF (2n).

Then, the distribution of (a + ma)2 and (a + ma)2 × p is independent of a.

Proof. According to Lemma 1, a + ma is uniformly distributed in GF (2n). This
is straightforward because for an arbitrary but fixed a, a+ma is a permutation of
GF (2n). Hence, (a+ma)2 gives all quadratic residues of GF (2n), regardless of a.
This implies that the distribution of (a+ma)2 is independent of a. Consequently,
also the distribution of (a + ma)2 × p (p is a constant) is independent of a.

The Lemmas 1 to 4 show that all major operations of our masking scheme are
secure. However, more intermediate results occur in the masking scheme because
we add the major operations, and thus, produce implicitly more intermediate
results than are directly visible from the formulae.



A Side-Channel Analysis Resistant Description of the AES S-Box 421

Lemma 5 shows that these intermediate results can be added in a secure way.

Lemma 5. Let ai ∈ GF (2n) be arbitrary and M ∈ GF (2n) be independent of
all ai and uniformly distributed in GF (2n).

Then the distribution of
∑

i ai + M is (pairwise) independent of ai.

Proof. The proof for this lemma follows directly from Lemma 1.

Lemma 5 shows that for secure implementations, the order in which the terms
of a sum are added, is important! In particular, every summation of variables
must start with the addition of an independent mask M .

5 Comparison of Masking Schemes

A high-level comparison of the three masking schemes, S-Akkar, S-Blömer and
MS-IAIK shows that in terms of area, our scheme leads to the smallest imple-
mentation. Table 1 lists the number of high-level operations (multiplication, mul-
tiplication with a constant and square) in GF (16) of each of the three schemes.

Table 1. High-level comparison of masking schemes

Mult MultConst Square

S-Akkar 18 6 4
S-Blömer 12 1 2
MS-IAIK 9 2 2

We have not included a count of the GF (4) operations for S-Blömer and
MS-IAIK because they do not contribute significantly to the area. We have also
not included an XOR count in GF (16) because the number of XORs is highly
dependent on the amount of fresh masks which are available. In the following, we
discuss hardware implementations of S-Akkar and S-Blömer in more detail.

5.1 S-Akkar

S-Akkar makes use of multiplications in finite fields. In particular, 4 multipli-
cations, 1 inversion and 2 XORs in addition to the original inversion have to
be computed. All operations are performed in the finite field with 256 elements.
For a fair comparison, we assume that all multipiers are based on the same,
optimized multipliers which we consider for the implementation of S-IAIK. Be-
cause S-IAIK uses composite field arithmetic, three GF (16) multipliers and one
GF (16) constant-coefficient multiplier had to be combined according to [10] in
order to build a GF (2)[x]/(x8 + x4 + x3 + x + 1) multiplier. Counting only the
largest component of this circuit, which are the GF (16) multipliers, we see that
this implementation requires 4 × 3 = 12 GF (16) multipliers. Hence, the imple-
mentation of S-Akkar is much bigger than an implementation of our masking
scheme.



422 E. Oswald et al.

5.2 S-Blömer

S-Blömer suggests a comparable technique for counteracting (single-order) dif-
ferential side-channel attacks as we do. In this article, an implementation strat-
egy for a dedicated hardware implementation is outlined. In this strategy, the
architecture of the SubBytes operation is based on [12]. In [12], the authors
have used the Itho-Tsujii algorithm [7] for computing the multiplicative inverse
over a finite field. The Itho-Tsujii inversion algorithm leads to the same inversion
formulae as used in [15].

The major difference between [15] and [12] is that in [15], field polynomials
have been chosen that lead to particularly efficient finite field arithmetic. In [12],
other field polynomials have been chosen that lead to a less efficient finite field
arithmetic. Thus, S-Blömer suffers from this drawback.

S-Blömer leads to a larger SubBytes implementation than our proposal
MS-IAIK. This is based on the fact that in S-Blömer high-level operations
such as the finite field multiplication and the finite field squaring are masked.
As a consequence, correction terms are computed more often than necessary.
In particular, correction terms which involve multiplications cannot be re-used.
This, in combination with the less efficient finite field arithmetic, leads to an
increase in area.

S-Blömer requires the computation of three masked multiplications in GF (16).
One masked multiplication requires 4 ordinary GF (16) multiplications. Hence,
S-Blömer requires 12 GF (16) multipliers according to [12].

6 Conclusions

In this article, we have presented a new secure and efficient scheme for masking
the intermediate value of an AES SubBytes implementation. To motivate our
research, we have discussed zero-value attacks on multiplicative masking schemes
first. Zero-value attacks pose a serious practical threat. Therefore we have intro-
duced a new masking scheme which does not succumb to these attacks. We have
given arguments for the security of our scheme. In addition, we have compared
the number of operations needed in our scheme with other masking schemes; our
scheme requires the least amount of operations.

References

1. M.-L. Akkar, R. Bevan, and L. Goubin. Two Power Analysis Attacks against One-
Mask Methods. In Bimal K. Roy and Willi Meier, editors, Fast Software Encryption
– FSE 2004, volume 3017 of Lecture Notes in Computer Science, pages 332-347.
Springer, 2004.

2. Mehdi-Laurent Akkar and Christophe Giraud. An Implementation of DES and
AES, Secure against Some Attacks. In Çetin Kaya Koç, David Naccache, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES
2001, volume 2162 of Lecture Notes in Computer Science, pages 309–318. Springer,
2001.



A Side-Channel Analysis Resistant Description of the AES S-Box 423

3. Johannes Blömer, Jorge Guajardo Merchan, and Volker Krummel. Provably Secure
Masking of AES. Cryptology ePrint Archive (http://eprint.iacr.org/), Report
2004/101, 2004.

4. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, volume 1666 of Lecture Notes in
Computer Science, pages 398–412. Springer, 1999.

5. John Horton Conway. On Numbers and Games. 2nd edition, AK Peters, 2001
6. Jovan D. Golić and Christophe Tymen. Multiplicative Masking and Power Analysis

of AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2002, volume 2535 of
Lecture Notes in Computer Science, pages 198–212. Springer, 2003.

7. Toshiya Itoh and Shigeo Tsujiis. A Fast Algorithm for Computing Multiplica-
tive Inverses in GF (2m) Using Normal Bases. Information and Computation,
78(3):171–177, September 1988.

8. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Michael Wiener, editor, Advances in Cryptology - CRYPTO ’99, volume 1666 of
Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

9. Elisabeth Oswald, Stefan Mangard, and Norbert Pramstaller. Secure and Ef-
ficient Masking of AES – A Mission Impossible? Cryptology ePrint Archive
(http://eprint.iacr.org/), Report 2004/134, 2004.

10. Christof Paar. Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen,
1994.

11. Norbert Pramstaller, Frank K. Gürkaynak, Simon Haene, Hubert Kaeslin, Norbert
Felber, and Wolfgang Fichtner. Towards an AES Crypto-chip Resistant to Differen-
tial Power Analysis. In Proccedings 30th European Solid-State Circuits Conference
- ESSCIRC 2004, Leuven, Belgium, Proceedings - to appear, 2004.

12. Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A Compact
Rijndael Hardware Architecture with S-Box Optimization. In Colin Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, pages 239–254. Springer, 2001.

13. Elena Trichina, Domenico De Seta, and Lucia Germani. Simplified Adaptive Multi-
plicative Masking for AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2002, pages
187–197. Springer, 2003.

14. Kris Tiri and Ingrid Verbauwhede. Securing Encryption Algorithms against DPA at
the Logic Level: Next Generation Smart Card Technology. In Burton S. Kaliski Jr.,
Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2002, pages 125–136. Springer, 2003.

15. Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. An ASIC im-
plementation of the AES SBoxes. In Bart Preneel, editor, Topics in Cryptology -
CT-RSA 2002, volume 2271 of Lecture Notes in Computer Science, pages 67–78.
Springer, 2002.

http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Discussion of Multiplicative Masking Schemes
	Combined Masking in Tower Fields
	Inversion in GF(256)
	Masked Inversion in GF(256)
	Derivation of the Functions fah, fal, fd and fd'

	Security of Our Masking Scheme
	Comparison of Masking Schemes
	S-Akkar
	S-Blömer

	Conclusions

