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Abstract. The candidates for the NIST Post-Quantum Cryptography standardization
have undergone extensive studies on efficiency and theoretical security, but research on
their side-channel security is largely lacking. This remains a considerable obstacle for
their real-world deployment, where side-channel security can be a critical requirement.
This work describes a side-channel resistant instance of Saber, one of the lattice-based
candidates, using masking as a countermeasure. Saber proves to be very efficient
to mask due to two specific design choices: power-of-two moduli, and limited noise
sampling of learning with rounding. A major challenge in masking lattice-based cryp-
tosystems is the integration of bit-wise operations with arithmetic masking, requiring
algorithms to securely convert between masked representations. The described design
includes a novel primitive for masked logical shifting on arithmetic shares, as well
as adapts an existing masked binomial sampler for Saber. An implementation is
provided for an ARM Cortex-M4 microcontroller, and its side-channel resistance is
experimentally demonstrated. The masked implementation features a 2.5x overhead
factor, significantly lower than the 5.7x previously reported for a masked variant
of NewHope. Masked key decapsulation requires less than 3,000,000 cycles on the
Cortex-M4 and consumes less than 12kB of dynamic memory, making it suitable for
deployment in embedded platforms. We have made our implementation available at
https://github.com/KULeuven-COSIC/SABER-masking.
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1 Introduction

The security of our current public-key cryptographic infrastructure depends on the in-
tractability of mathematical problems such as large integer factorization or the elliptic-curve
discrete logarithm problem. However, if a large scale quantum computer becomes available,
these mathematical problems can be easily solved using Shor’s [Sho97] algorithm. In
anticipation of this possible disruption, the National Institute of Standards and Technol-
ogy (NIST) started a procedure in 2017 for standardizing post-quantum cryptographic
primitives. These primitives are based on mathematical problems not solvable by quantum
computers, such as computational problems over lattices or codes. After an intense scrutiny
and lengthy deliberation, in which provable and concrete mathematical security have been
the most prominent evaluation criteria, 26 of the original 69 proposals have advanced to
the second round. NIST has already announced that, in the second round, more stress will
be put on implementation aspects. In particular, more importance will be given to efficient
implementations on resource constrained platforms as well as physical security aspects.
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Lattice-based cryptography is one of the most promising families in this process,
sprouting 11 out of 26 round 2 candidates. When looking at lattice-based encryption
schemes, these can be further divided into two main categories: NTRU-based schemes
and Learning With Errors (LWE)-based schemes. The latter category still encompasses
a multitude of schemes such as FrodoKEM [NAB+19], NewHope KEM [PAA+19] and
Kyber [SAB+19], whose security can be reduced to variants of the LWE problem, and
Saber [DKRV19] and Round5 [GZB+19], with security reduction to variants of the Learning
With Rounding (LWR) problem. The security of both problems relies on introducing noise
into a linear equation. However, in LWE-based schemes the noise is explicitly generated
and added to the equation, while the LWR problem introduces noise through rounding of
some least significant bits.

Side-channel attacks [Koc96] are a widely acknowledged threat against implementations
of cryptographic algorithms. These attacks exploit information contained in physically
measurable channels, for instance the instantaneous power consumption of a chip [KJJ99],
in order to extract secret keys processed by an implementation. The field of side-channel
attacks and countermeasures has significantly evolved in the last 20 years, with a strong
focus on protecting existing and standardized cryptographic primitives. The advent of
post-quantum cryptography is, however, bringing new challenges to the field, and therefore
it is gaining attention in the research community.

Reparaz et al. [RRVV15] were first to propose a side-channel resistant implementation
of a Ring-LWE (RLWE) lattice-based cryptosystem. Their method relied on masking
techniques [CJRR99] in combination with a custom masked decoder to achieve first-order
security. A subsequent work by the same authors [RdCR+16] removes the need for
this masked decoder, by exploiting the additively-homomorphic property of the RLWE
encryption. Masking approaches typically increase the cost of an implementation by at
least a factor of 2x in performance metrics such as speed and memory, or area and latency
for a hardware implementation. This is the case because masking duplicates most linear
operations, but requires more complex routines for non-linear operations, such as the
masked decoder. For their first work, Reparaz et al. report an overhead factor of 5.2x in
CPU cycles for a masked decryption on an ARM Cortex-M4.

Where Reparaz et al. successfully masked a Chosen-Plaintext Attack (CPA)-secure
RLWE decryption, real-world applications typically require Chosen-Ciphertext Attack
(CCA) secure primitives, which can be obtained using an appropriate CCA-transform. It
has been shown that the CCA-transform is itself susceptible to side-channel attacks and
should be masked [RRCB20]. Oder et al. [OSPG18] presented a masked implementation
of a complete CCA-secure RLWE key decapsulation similar to NewHope KEM [ADPS16],
reporting a factor 5.7x overhead over an unmasked implementation. Masked software
implementations of the lattice-based signature schemes GLP [GLP12], Dilithium [DKL+18],
and qTESLA [ABB+19] have also received research attention [BBE+18, MGTF19, GR20].

Our contribution. Saber is a Module-LWR (MLWR)-based encryption scheme that is
accepted in the second round of the NIST post-quantum standardization process. Its
most notable features are the choice of power-of-two moduli, contrary to the prime moduli
present in similar lattice-based schemes, and the introduction of noise through rounding
instead of adding explicit error terms. In this paper, we show that these two key properties
make Saber very efficient to mask. We construct a first-order masked implementation of
Saber’s CCA-secure decapsulation algorithm, with an overhead factor of only 2.5x over the
unmasked implementation. Saber’s side-channel secure version can be built with relatively
simple building blocks compared to other NIST candidates, resulting in significantly less
overhead for a side-channel secure design.

In our masked implementation of Saber, we develop a novel primitive to perform
masked logical shifting on arithmetic shares. We subsequently adapt an existing masked
binomial sampler, to take advantage of Saber’s power-of-two moduli. Furthermore, Saber
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avoids excessive noise sampling due to its choice for LWR. We implement and benchmark
our design on an ARM Cortex-M4 microcontroller. An experimental validation of our
implementation follows, using the well-known Test Vector Leakage Assessment (TVLA)
to assess security. We develop critical routines directly in assembly, and thereby confirm
suppression of side-channel leakage even on the Cortex-M4 general-purpose embedded
processor. We integrate and profile our masked CCA-secure decapsulation in the PQM4
[KRSS] post-quantum benchmark suite for the Cortex-M4, showing our close-to-ideal 2.5x
overhead in CPU cycles. This factor can directly be compared to the overhead factor 5.7x
reported by Oder et al., which is the work most closely related to ours, and we show that
it can largely be attributed to the masking-friendly design choices of Saber.

The remainder of this paper is structured as follows. First, we give the general notation
and definitions used throughout this paper, including masking as the implemented side-
channel countermeasure. Thereafter, we give an introduction to Saber, describing both
the baseline CPA-secure public-key encryption scheme as well as the CCA-secure KEM. In
Section 4, we follow up with a description of our side-channel resistant instance of Saber.
First, we give a high-level overview of the masked primitives our implementation requires.
Subsequently, we present our novel primitive for masked logical shifting, and adapt an
existing masked binomial sampler to fit Saber’s parameters. In Section 5, we describe the
implementation of our masked Saber instance on an ARM-Cortex M4 microcontroller. In
Section 6, we experimentally demonstrate the side-channel resistance using TVLA, and in
Section 7 we benchmark our design in the PQM4 suite for relevant performance metrics
and compare to related work. Finally, in Section 8, we conclude our work.

2 Preliminaries

2.1 Notation

We denote with Zq the ring of integers modulo the integer q, where the elements of this
ring are represented with integers in [0, q). We define the polynomial ring Rq(X) =
Zq[X]/(XN + 1) with N = 256 throughout this paper. For a ring R, let Rl1×l2 be the
ring of l1 × l2 matrices over R. Matrices will be written in uppercase bold letters (e.g. AAA),
vectors in lowercase bold (e.g. bbb) and single polynomials without markup (e.g v).

Let ⌊·⌋ be the flooring operation which returns the largest integer smaller than the input
and let ⌊·⌉ be the rounding operation that rounds to the nearest integer, i.e. ⌊x⌉ = ⌊x+0.5⌋.
Let x≪ b denote shifting an integer x with b positions to the left, which corresponds to a
multiplication of x with 2b. Correspondingly, let x≫ b denote shifting an integer x with
b positions to the left, which can be calculated as ⌊x/2b⌋. All these operations can be
applied to (matrices of) polynomial rings by performing them coefficient-wise.

Let x← χ denote sampling x according to a distribution χ. This notation is extended
for (matrices of) polynomials as XXX ← χ(Rl1×l2), where the coefficients of XXX ∈ Rl1×l2

are sampled independently according to the distribution χ. Optionally, one can specify
the seed r to denote pseudorandomly sampling XXX from this seed, which is written as
XXX ← χ(Rl1×l2 ; r). The uniform distribution is denoted as U and the centered binomial
distribution as βµ with parameter µ, which is the binomial distribution with 2µ coins,
where the result is subtracted with µ.

2.2 Cryptographic Definitions

A Public Key Encryption scheme (PKE) consists of three functions KeyGen, Encrypt and
Decrypt, where KeyGen generates a secret key sk and a public key pk, where Encrypt

takes the public key pk and a message m from a message spaceM to construct a ciphertext
ct, and where Decrypt returns a message m′ given the secret key sk and ciphertext ct. We
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say that a PKE is δ-correct if P [Decrypt(sk, ct) 6= m : ct← Encrypt(pk, m)] ≤ δ. We will
bound the security of a PKE using the advantage of an adversary A in the indistinguishability
against chosen-plaintext attacks (IND-CPA) security model as follows:

advind-cpa
PKE (A) =

∣

∣

∣

∣

P

[

b = b∗ :
(pk, sk)← KeyGen(); m0, m1 ← A(pk), m0, m1 ∈M;

b← {0, 1}; cb ← Encrypt(pk, mb); b∗ ← AEncrypt()(pk, cb)

]

−
1

2

∣

∣

∣

∣

.

A Key Encapsulation Mechanism (KEM) consists of three functions KeyGen, Encaps and
Decaps. KeyGen generates a secret key sk and a public key pk, Encaps takes the public
key pk and generates a ct and key K, and Decaps returns a key K ′ from the ciphertext
ct and the secret key sk. Similarly to the PKE case, we will say that a KEM is δ-correct
if P [Decaps(sk, ct) 6= K : (ct, K) ← Encaps(pk)] ≤ δ. We define the advantage of an
adversary against the chosen-ciphertext (IND-CCA) security of a KEM as follows:

advind-cca
KEM (A) =

∣

∣

∣

∣

Pr

[

b′ = b :
(pk, sk)← KeyGen(); b← U({0, 1}); (c, k0)← Encaps(pk);

k1 ← K; b′ ← ADecaps(sk,·),Encaps()(pk, c, kb);

]

−
1

2

∣

∣

∣

∣

.

2.3 Masking

Our side-channel resistant instance of Saber is based on masking [CJRR99], a well-studied
countermeasure to thwart side-channel attacks. First-order masking provides resistance
against attacks exploiting information in the first-order statistical moment. A first-order
masking splits any sensitive variable x in the algorithm into two shares x1 and x2, such
that x = x1 ⊙ x2, and perform all operations in the algorithm on the shares separately.
The operator ⊙ refers to the type of masking. Classical examples include arithmetic
masking (x = x1 + x2) and Boolean masking (x = x1 ⊕ x2). Performing operations in the
masked domain prevents any type of leakage due to the variable x, since it is never directly
manipulated. Instead, the only observable leakage in the side-channel measurements is
due to computations involving either x1 or x2. Since these shares are randomized at each
execution of the algorithm, they contain no exploitable information about x. This is
typically done by setting one share to a randomly sampled mask, for which we reserve
the notation x2 = R, and computing the other share as x1 = A = x − R for arithmetic
masking or as x1 = B = x⊕R for Boolean masking.

3 The Saber Algorithm

In this section we provide a brief and high-level description of the functionality of Saber.
We focus on aspects relevant to developing a side-channel resistant version, and hence we
intentionally omit details about the underlying mathematical background. For detailed
information, we refer the interested reader to the original paper in [DKRV18] and the
latest version described in the NIST round 2 submission document [DKRV19].

3.1 Saber PKE

First, we introduce the public-key encryption variant of Saber, which serves as the
cornerstone for Saber.KEM, the candidate for the NIST post-quantum cryptography process.
The Saber package is based on the Module Learning With Rounding (MLWR) problem,
and its security can be reduced to the security of this problem. MLWR is a variant of
the well known Learning With Errors (LWE) problem [Reg04], which combines a module
structure as introduced by Langlois and Stehlé [LS15] with the introduction of noise
through rounding as proposed by Banerjee et al. [BPR12]. The core element of the MLWR
problem are MLWR samples, which are defined as (AAA,bbb = ⌊AAAsss⌉p), given a public matrix
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Table 1: Parameter settings of Saber.PKE

l N q p T µ
quantum
security

LightSaber.PKE 2 256 213 210 23 5 114
Saber.PKE 3 256 213 210 24 4 185

FireSaber.PKE 4 256 213 210 26 3 257

AAA ← U(Rl×l
q ), secret vector of polynomials sss ← βµ(Rl×1

q ), and a rounding modulus p.
The relevant search MLWR problem states that it is hard to recover the secret sss given a
MLWR sample, while the decision MLWR problem states that it is hard to distinguish a
MLWR sample from a uniformly random sample from the distribution U(Rl×l

q ×Rl×1
q ). It

is assumed that for certain parameter sets, MLWR is hard to solve even in the presence of
large scale quantum computers, and it can be shown that Saber.PKE is at least as secure
as the underlying decisional MLWR problem.

The encryption scheme Saber.PKE consists of three algorithms, described in Figure 1:
Saber.PKE.KeyGen generates a public key pk and private key sk, Saber.PKE.Enc encrypts
a 256-bit message m into a ciphertext c based on the public key pk, and Saber.PKE.Dec

decrypts the ciphertext c using the private key sk. The output message is denoted as m′. It
can be shown that m and m′ are equal with high probability. Saber.PKE has three variants
aimed at a different security level. In order of increasing security they are LightSaber,
Saber and FireSaber, and their parameters can be found in Table 1. In this work we
focus on the medium security version Saber, but all the methods described in this work
can be adapted for LightSaber and FireSaber with trivial modifications.

Saber.PKE.KeyGen()

1. seedAAA ← U({0, 1}256)
2. AAA := U(Rl×l

q ; seedAAA)
3. r := U({0, 1}256)
4. sss := βµ(Rl×1

q ; r)
5.

bbb := ((AAAT sss + hhh) mod q)≫ (ǫq − ǫp) ∈ Rl×1
p

6. return (pk := (seedAAA, bbb), sk := (sss))

Saber.PKE.Enc(pk = (seedAAA, bbb), m ∈ R2; r)

1. AAA := U(Rl×l
q ; seedAAA)

2. if: r is not specified:
3. r := U({0, 1}256)
4. s′s′s′ := βµ(Rl×1

q ; r)
5. bbb′ := ((AAAsss′ + hhh) mod q)≫ (ǫq − ǫp) ∈ Rl×1

p

6. v′ := bbbT (sss′ mod p) ∈ Rp

7.

cm := (v′ +h1−2ǫp−1m mod p)≫ (ǫp−ǫT ) ∈ RT

8. return c := (cm, b′b′b′)
Saber.PKE.Dec(sk = sss, c = (cm, b′b′b′))

1. v := bbb′T (sss mod p) ∈ Rp

2. m′ := ((v − 2ǫp−ǫT cm + h2) mod p)≫ (ǫp − 1) ∈ R2

3. return m′

Figure 1: Saber.PKE

The additions with the constant terms h1, h2 and hhh are needed to center the errors
introduced by rounding around 0, which reduce the failure probability of the protocol.
This is achieved by choosing h1 ∈ Rq with coefficients following 2ǫq−ǫp−1 and h2 ∈ Rq

with coefficients following (2ǫp−2 − 2ǫp−ǫT −1 + 2ǫq−ǫp−1). The vector hhh ∈ Rl×1
q can be

constructed as l polynomials h1.
Practically, the generation of the secret polynomial sss′ according to distribution βµ

using a seed r is realized by first expanding r to a pseudorandom bit-string of length
2µ · l ·N using SHAKE − 128 as eXtendable Output Function (XOF). This bit-string is
then divided into segments (x, y) of 2µ bits. Finally, each element of the secret vector
is calculated by subtracting Hamming weight of last µ bits, HW(y), from the Hamming
Weight of first µ bits, HW(x).
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Saber.KEM.KeyGen()

1. (seedAAA, bbb, sss) = Saber.PKE.KeyGen()
2. pk = (seedAAA, bbb)
3. pkh = F(pk)
4. z = U({0, 1}256)
5. return
(pk := (seedAAA, bbb), sk := (sss, z, pkh))

Saber.KEM.Encaps(pk = (seedAAA, bbb))

1. m← U({0, 1}256)
2. (K̂, r) = G(F(pk), m)
3. c = Saber.PKE.Enc(pk, m; r)
4. K = H(K̂, c)
5. return (c, K)

Saber.KEM.Decaps(sk = (sss, z, pkh), pk = (seedAAA, bbb), c)

1. m′ = Saber.PKE.Dec(sss, c)
2. (K̂′, r′) = G(pkh, m′)
3. c∗ = Saber.PKE.Enc(pk, m′; r′)
4. if: c = c∗

5. return K = H(K̂′, c)
6. else:
7. return K = H(z, c)

Figure 2: Saber.KEM

3.2 Saber KEM

One drawback of the public key variant of Saber is that it is not secure against chosen-
ciphertext attacks. To achieve security against these types of attacks, Saber.PKE can
be compiled into Saber.KEM using a post-quantum variant of the Fujisaki-Okamoto (FO)
transformation [TU16]. The resulting KEM can be found in Figure 2 and consists of a
key generation, an encapsulation and a decapsulation phase. Additionally, it requires
three hash functions that model random oracles: F ,G and H, which are instantiated with
SHA3− 256, SHA3− 512 and SHA3− 256 respectively.

The transformation from chosen-plaintext secure PKE to chosen-ciphertext secure KEM

does not impact the communication cost and preserves the security estimate (which is now
in a stronger attack model). However, it does complicate the decapsulation process, which
on top of decrypting the message also performs a re-encryption step to validate the input
ciphertext. Whenever the input ciphertext does not correspond to the newly generated
ciphertext, a random response is given as described in the decapsulation procedure.

From a side-channel perspective, the decapsulation, Saber.KEM.Decaps, is the most
sensitive operation to protect, the reason being it directly involves the long-term secret key sss.
Consequently, our efforts in this work are devoted to obtain a side-channel resistant version
of the decapsulation algorithm, Saber.Masked.KEM.Decaps. Figure 3 gives an overview of
the arithmetic flow of the decapsulation procedure, where the sensitive operations that
contain information about the secret key sss are indicated in grey.

Two properties of Saber stand out when compared to other lattice-based schemes:
Saber uses power-of-two moduli q, p and T , and is based on the LWR hard problem. The
first property not only implies that modular reductions are essentially free, but also that
some masking operations can be implemented more efficiently. The latter property has
a big positive impact in that only one secret vector sss needs to be sampled securely, in
contrast to LWE-based schemes that also need to sample additional two error vectors.
Avoiding the generation of these two elements is a big advantage, as we will show later
that the sampling of these vectors becomes one of the most costly operations in a masked
implementation.
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Xbbb′

sss

+

hhh2

cm ≪ − ≫ G

pkh

K̂ ′

XOF βµ X

U

seedAAA

X

bbb

+

hhh

+

h1

+ ≫

≫ bbb′
∗

cm∗

=

return H(K̂ ′, c)

yes

return H(z, c)

no

Figure 3: Decapsulation of Saber. In grey the operations that are influenced by the long
term secret sss and thus vulnerable to side-channel attacks.

4 Side-Channel Resistant Saber

In this section, we describe Saber.Masked.KEM.Decaps, the key decapsulation routine
for Saber with built-in resistance against side-channel attacks. In Figure 3, operations
influenced by the long term secret sss are highlighted in grey. These operations are vulnerable
to side-channel attacks, and must be masked. First, we give a high-level overview of these
masked primitives our implementation requires, and we refer to existing solutions. Then,
we develop a new primitive which we call A2A conversion, which serves as the substitute
of the logical shift operation performed on arithmetic shares. Finally, we describe how
a recent masked binomial sampler should be tweaked to fit the Saber algorithm, taking
advantage of Saber’s power-of-two moduli. Figure 4 illustrates the arithmetic flow of
Saber.Masked.KEM.Decaps and serves as a visual representation of our discussion in this
section.

We do not explicitly give a masked implementation of the IND-CPA secure Saber.
Masked.PKE.Dec, even though it is contained in the Saber.Masked.KEM.Decaps implemen-
tation. The reason being that even without side-channel information, the Saber.PKE is
vulnerable to chosen-ciphertext attacks if the secret key is re-used, which was shown by
Fluhrer [Flu16] to be the case for all current LWE-based and LWR-based IND-CPA secure
encryption schemes.

The shift operation on the input cm and the expansion of seedAAA are operations on
values known to the adversary. As they do not depend on the secret sss there is no need to
mask them. A similar reasoning is true for the calculation of the return value. While the
comparison of the input ciphertext with the reconstructed ciphertext does compute on
sensitive values that depend on sss, the output of this comparison is not valuable information
to a side-channel adversary. The reason is that a smart adversary should know whether
the input ciphertext is valid or not: it is clearly not possible to construct a non-valid
ciphertext that still succeeds the comparison, and, as discussed in [DGJ+19], it is hard to
generate a valid ciphertext that fails the comparison check. Another way to look at this is
the fact that there exists an analogous FO transformation to the one used in Saber with
similar practical security bounds [HHK17], with the only difference that the return value
is explicitly set to ⊥ when the comparison check does not return true. From this it is clear
that an adversary that explicitly learns the result of the comparison does not learn any
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Xbbb′

sss1

X

sss2

+

hhh2

cm ≪

−

A2A G

pkh

K̂ ′

XOF βµ

X

X

U

seedAAA

X

X

bbb

+

hhh

+

h1

+

+

A2A

A2A

bbb′
∗1

bbb′
∗2

cm∗1

cm∗2

=

return H(K̂ ′, c)

yes

return H(z, c)

no

Figure 4: Masked decapsulation of Saber. In grey the operations that are influenced by
the long term secret sss and thus vulnerable to side-channel attacks.

sensitive information.

4.1 Masked Primitives

4.1.1 Masked Polynomial Arithmetic

The main workhorse in Saber.PKE.Dec and Saber.PKE.Enc is polynomial arithmetic. Luckily,
polynomial multiplication and addition/subtraction are easy to protect using arithmetic
masking. Given a polynomial x = x1 + x2, the multiplication y = x · c with an unmasked
polynomial c can be split into two independent computations as:

y1 = x1 · c y2 = x2 · c.

Saber.Masked.KEM.Decaps does not require multiplication of two masked polynomials,
which is a significantly more expensive computation. Similarly, addition (resp. subtraction)
can be performed as:

y1 = x1 ± c y2 = x2

or as:
y1 = x1 ± c1 y2 = x2 ± c2,

when the second polynomial is also shared c = c1 + c2. In all cases, the correctness of the
result can be trivially checked by reverting the masking: y = y1 + y2.

4.1.2 Masked Logical Shift

Both Saber.PKE.Dec and Saber.PKE.Enc use coefficient-wise logical shifting of polynomials,
i.e. each polynomial coefficient is shifted separately. Logical shifting is easy to protect
using Boolean masking, but non-trivial for arithmetically masked polynomial coefficients.
For a Boolean masked coefficient, it is easy to see that x = (xh ‖xl) = (Bh ‖Bl)⊕ (Rh ‖Rl)
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Table 2: The carry of Al + Rl is correlated with the unmasked value xl. Sharings Al +
Rl with a carry bit are highlighted in bold.

xl Al + Rl

0 0+0 1+3 2+2 3+1
1 0+1 1+0 2+3 3+2
2 0+2 1+1 2+0 3+3
3 0+3 1+2 2+1 3+0

implies xh = Bh ⊕ Rh, due to the XOR being a bit-wise operator. Logical shifting can
therefore be performed on each share separately. However, given an arithmetic masked
coefficient (xh ‖xl) = (Ah ‖Al) + (Rh ‖Rl), it does not necessarily hold that xh = Ah + Rh.
This is the case because a carry might propagate from the lower masked bits Al + Rl to
the upper masked bits Ah + Rh. Moreover, as illustrated in Table 2 for Al, Rl having
size two bits, the occurrence of a carry in Al + Rl is correlated with xl, and the carry is
therefore itself a sensitive value that must be masked. In Section 4.2, we elaborate on the
most straightforward approach to logical shifting of arithmetic shares, which first converts
to a Boolean masking and subsequently shifts both Boolean shares, a technique known
as Arithmetic to Boolean (A2B) conversion. However, this approach is rather wasteful
for masked logical shifting, since the Boolean masking of the lower bits is computed only
to be discarded in the following operation. Because of this observation we subsequently
develop a novel primitive, which is more efficient in both speed and memory.

4.1.3 Masked G, XOF

In Saber, both the random oracle G and the XOF are instantiated with primitives defined
in the SHA3 standard, SHA3− 512 and SHAKE − 128, specifically. Both are a subset
of the broader cryptographic primitive Keccak, which has previously received attention
for a masked implementation [BDPVA10] using Boolean masking. The Keccak-f [1600]
permutation is relatively easy to mask. The operations θ, ρ, π and ι are linear, i.e. they
can be duplicated for both shares, and only the χ step requires special treatment. In our
implementation we apply the masking scheme of [BDPVA10], which re-uses a linear term
from the state to securely mask the computation of the logical AND that is embedded in χ.

4.1.4 Masked Binomial Sampler

The masked binomial sampler must compute HW(x)− HW(y), where x and y are masked
pseudo-random bit strings supplied by the masked SHAKE − 128. Both the calculation
of the Hamming weight as well as the subtraction are arithmetic operations, whereas the
masked SHAKE−128 of [BDPVA10] outputs Boolean shares. Similarly to masked logical
shifting, binomial sampling algorithms typically employ mask conversion to solve this issue,
i.e they transform from Boolean to Arithmetic (B2A) shares. In Section 4.3, we describe
how a recent masked binomial sampler from [SPOG19] can be adapted to fit Saber.

4.1.5 Masked Comparison

The comparison c = ccc∗ must likewise be protected from the side-channel adversary, since
the unmasked c∗ depends on the secret sss. In [OSPG18], it was proposed to avoid unmasking
the sensitive intermediate ccc∗, using an additional hashing step. Relying on the collision-

resistance of a hashing function H′, H′(c− c∗1)
?
= H′(c∗2) is only true for valid ciphertexts,

in which case the adversary already knows c∗. As discussed at the start of this section, the
inputs to the comparison contain sensitive information, but the outcome of the comparison
does not give any extra information to an adversary. In such a setting the unmasked
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c∗ is sensitive, but, relying on the pre-image resistance of H′, H′(c − c∗1)
?
= H′(c∗2) no

longer contains exploitable information about c∗. Note that a similar argument applies for
the sensitive K̂ ′ = K̂ ′

1 ⊕ K̂ ′
2, which should only be selectively unmasked in case a valid

ciphertext was submitted.
In Saber.KEM.Decaps, the comparison between the input ciphertext c = (cm, bbb′) and

the re-encrypted ciphertext c∗ = (cm∗,bbb
′
∗) is typically implemented as two separate checks,

since cm∗, and bbb′
∗ can be computed largely independently. This is not straightforwardly

possible in Saber.Masked.KEM.Decaps, since the output of the individual comparisons
does contain sensitive additional information for the side-channel adversary. Similarly to
[OSPG18] we instantiate H′ with (unmasked) SHAKE − 128, but use an incremental
state to avoid having to store a masked version of both cm∗, and bbb′

∗ in memory. Using
SHAKE − 128.absorb(bbb′ − bbb′

1∗) and SHAKE − 128.absorb(bbb′
2∗), we must only keep the

two Keccak states in memory, rather than the much larger masked bbb′
∗.

4.2 Masked Logical Shift : A2B and A2A Conversion

A straightforward approach to logical shifting of arithmetic shares, is to first convert
to a Boolean masking and subsequently shift both Boolean shares. This approach is
also adopted in [OSPG18]. Several secure A2B as well as B2A conversion algorithms exist.
These generally come in two flavours, depending on whether the arithmetic shares use
a power-of-two or a prime modulus. The former group have received considerably more
research interest due to their use in symmetric primitives, and they are typically more
efficient and simpler to implement. In this group, Goubin [Gou01] was the first to introduce
first-order secure B2A and A2B conversions. Especially Goubin’s B2A conversion remains
very efficient, whereas the time complexity of Goubin’s A2B method was improved by
Coron et al. [CGTV15]. Another approach to first-order A2B was proposed and developed
in a series of works that use table-based implementations. Table-based A2B algorithms
were first proposed by Coron and Tchulkine [CT03]. A second method was proposed
by Neiße and Pulkus [NP04], which claims resistance against DPA, but introduces a
variable that could facilitate attacks using SPA techniques. Finally, Debraize [Deb12]
corrected a bug in [CT03] and proposes a third method with a time/memory trade-off.
Higher-order secure conversion algorithms have been described and subsequently improved
in [CGV14, Cor17, BCZ18, HT19].

Saber heavily benefits from the added simplicity and extensive research of conversions
with power-of-two moduli, since all its moduli p, q and T are powers of two. In contrast,
algorithms for prime moduli are typically more ad hoc, adapting existing approaches to
fit lattice schemes with prime moduli. Oder et al. [OSPG18] use a power-of-two A2B

conversion in their masked CCA-secure variant of NewHope. Because of NewHope’s prime
modulus q = 12289, they have to include an extra algorithm, TransformPower2, to first
transform the shares to a power of two. Barthe et al. [BBE+18] similarly have to develop
new algorithms for prime conversion in their masking of GLP, but they provide a more
generic solution for arbitrary orders. Finally, Schneider et al. [SPOG19] combine the
previous two algorithms, and at the same time present a new algorithm, B2Aq, which works
for arbitrary moduli as well as arbitrary security orders. However, when instantiated as
a power-of-two conversion, e.g. q = 28, B2Aq only outperforms [BCZ18] and [CGV14] for
more than nine shares.

Whereas the approach to use first A2B conversion and subsequently shift the Boolean
shares is quite straightforward, it is also quite wasteful. The Boolean masking of the lower
bits is computed only to be shifted out in the following operation. In the remainder of this
section, we first describe the Coron-Tchulkine [CT03] table-based A2B algorithm, including
the fix from [Deb12]. Based on this algorithm we subsequently develop a more frugal
approach, that avoids computing the Boolean sharing of the lower bits entirely. Because
this requires minimal algorithmic change from A2B conversion, but leaves the output shares
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in an arithmetic masking, we call this new primitive A2A conversion. Compared to the
classical approach, our novel A2A primitive reduces both the table size and number of
arithmetic instructions.

4.2.1 Table-based A2B Conversion

Table-based A2B conversions use a divide-and-conquer approach to convert the arithmetic
masking x = A + R to a Boolean masking x = B ⊕R. The conversion is first performed
for a smaller mask r, and x = A + r can be converted to x = B ⊕ r by securely computing
B = (A + r) ⊕ r. The intermediate unmasking step (A + r) can be avoided using a
pre-computed table T , such that T [A] = (A + r)⊕ r for a fixed mask r. For a k-bit value
A, the size of T is then 2k entries of k bits. Because this is quickly prohibitive when k
is the size of a full processor word, Coron and Tchulkine [CT03] proposed to iteratively
apply the conversion to smaller k-bit chunks,

(Bn−1 ‖ ...‖Bi ‖ ...‖B0) = ((An−1 ‖ ...‖Ai ‖ ...‖A0)+ (r ‖ ...‖ r ‖ ...‖ r))⊕ (r ‖ ...‖ r ‖ ...‖ r).

This is possible using two tables, G and CA, which are pre-computed as illustrated in
Algorithms 1 and 2, respectively. Table G converts chunk Ai to a Boolean masking
Bi = (Ai + r)⊕ r, whereas table CA contains the carry from the modular addition (Ai + r)
that should be added to chunk Ai+1. As mentioned before, the carry of (Ai+r) is correlated
to the unmasked value xi, which is why the carry is itself masked with an arithmetic mask
γ in table CA. The conversion itself, using tables G and CA is shown in Algorithm 3. Since
(r ‖ ... ‖ r ‖ ... ‖ r) is not a uniformly distributed mask, during the conversion only the least
significant k-bit chunk Al of A is masked with r and unmasked with Rl.

Algorithm 1:

Pre-computation of G [CT03]

input : k

1 r ← U({0, 1}k)

2 for A = 0 to 2k − 1 do

3 G[A] = (A + r)⊕ r

4 end
5 return G, r

Algorithm 2:

Pre-computation of CA [CT03, Deb12]

input : k, r

1 γ ← U({0, 1}e)

2 for A = 0 to 2k − 1 do

3 CA[A] =

{

γ, if A + r < 2k

γ + 1 mod 2e, if A + r ≥ 2k

4 end
5 return CA, γ

4.2.2 Table-based A2A Conversion

We adapt the method from [CT03, Deb12] for logical shifting and call this new primitive
A2A conversion. Algorithm 3 can easily be adapted to this use case. For logical shifting,
we only need to compute the propagation of the carry, but can discard the conversion to a
Boolean share. This requires just table CA, obsoleting table G. The computation of Bi can
likewise be removed, and, because we do not require the mask r on the upper m bits, the
same applies for the final unmasking with r. Our A2A conversion making this adjustment
is shown in Algorithm 4. Its input is an m + (n · k)-bit arithmetic masking of x. Its output
is an m-bit arithmetic masking of x≫ (n · k). Similarly to the original algorithm this is
computed iteratively, in k-bit chunks. For Saber, the logical shifts in Saber.PKE.Dec and
Saber.PKE.Enc are ≫ 9, ≫ 3 and ≫ 6. Since these are all multiples of 3, we use tables
with k = 3 uniformly for the three conversion, and illustrate the other parameters in Table
3. Note that the output of (A, R) ∈ R2

p ≫ (ǫp − 1) is a 1-bit arithmetic masking, which is
equivalent to a 1-bit Boolean masking, as addition modulo 2 is exactly the same as a XOR
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Algorithm 3: A2B conversion of a (n · k)-bit variable [CT03, Deb12]

input : (A, R) such that x = A + R mod 2n·k
,

G, CA, r, γ

output : B such that x = B ⊕R

/* Let A = (Ah ‖Al), R = (Rh ‖Rl) with Al, Rl the k least significant bits.

Ah, Al, Rh, Rl are updated at the same time as A, R. */

1 Γ←
∑n−1

i=1
2i·k · γ mod 2n·k

2 A← A− (r ‖ ... ‖ r ‖ ... ‖ r) mod 2n·k

3 A← A− Γ mod 2n·k

4 for i = 0 to n− 1 do

5 A← A + Rl mod 2(n−i)·k

6 if i < n− 1 then

7 Ah ← Ah + CA[Al] mod 2(n−i−1)·k

8 Bi ← G[Al]⊕Rl

9 A← Ah

10 R← Rh

11 end
12 return B ⊕ (r ‖ ... ‖ r ‖ ... ‖ r)

Table 3: Parameters of the three A2A conversions..

m n k

(A, R) ∈ R2
p ≫ (ǫp − 1) 1 3 3

(A, R) ∈ R2
p ≫ (ǫp − ǫT ) 4 2 3

(A, R) ∈ R2
q ≫ (ǫq − ǫp) 10 1 3

operation. Therefore, the conversion from an arithmetic masking to Boolean masking at
the input of G is implicit.

In the original method from Coron and Tchulkine, the size of γ was set to e = k bits.
It was later noted by Debraize that in this case Ah + C[Al] − γ does not always equal
Ah + 1 when Ah has more than k bits. For this equation to hold for all iterations of the
loop in Algorithm 3, the size of γ must be at least e = (n− 1) · k bits. For the correctness
of our A2A algorithm a similar argument applies, and we require that the size of γ is at
least e = m + ((n− 1) · k) bits. The total table size is then 2k · (m + ((n− 1) · k)) bits.

Debraize proposed a third table-based A2B conversion method [Deb12] (Algorithm
4.4), where carries are protected by a Boolean mask ρ instead of an arithmetic mask γ. It
can be adapted to masked logical shifting similarly to what we described above, but still
requires an extra table to add the Boolean carry to the resulting arithmetic shares, which
is why this approach is less practical. We also note that it is possible to decompose table
CA with an arithmetic mask of the carry into tables CB and CB2A [Deb12] (Algorithm
4.1), that compute the Boolean masked carry of (Al + r) and convert the Boolean masked
carry to an arithmetic masked carry, respectively. These two tables have reduced memory
compared to CA, but require two table look-ups, which can offer a useful time/memory
trade-off for extremely resource-constrained devices.

4.3 Masked Binomial Sampling

Secret vectors in Saber are sampled from a binomial sampler, and as illustrated in Figure 4,
it is an operation that also should be masked. Similarly to masked logical shifting, masked
binomial sampling typically employs mask conversion within the algorithm. A recent
implementation of Schneider et al. [SPOG19] employs their B2Aq conversion to propose two
efficient masked binomial sampling algorithms. The first algorithm is a generalization of
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Algorithm 4: A2A conversion of a m + (n · k)-bit variable

input : (A, R) such that x = A + R mod 2m+n·k
,

CA, r, γ

output : (A, R) such that x≫ (n · k) = A + R mod 2m

/* Let A = (Ah ‖Al), R = (Rh ‖Rl) with Al, Rl the k least significant bits.

Ah, Al, Rh, Rl are updated at the same time as A, R. */

1 Γ←
∑n

i=1
2i·k · γ mod 2m+(n·k)

2 P ←
∑n−1

i=0
2i·k · r /* (0 ‖ ... ‖ r ‖ ... ‖ r) */

3 A← A− P mod 2m+(n·k)

4 A← A− Γ mod 2m+(n·k)

5 for i = 0 to n− 1 do

6 A← A + Rl mod 2m+(n−i)·k

7 Ah ← Ah + CA[Al] mod 2m+(n−i−1)·k

8 A← Ah

9 R← Rh

10 end
11 return A, R

[OSPG18], which converts individual masked bits, whereas the second algorithm employs
bit-slicing. Bit-slicing is known to increase the efficiency of sampling [KRR+18] as it can
generate multiple samples in parallel. Similarly to B2Aq itself, both algorithms are generic,
in the sense that they can be instantiated with an arbitrary B2A algorithm and at arbitrary
security orders. Here, we instantiate the bit-sliced sampler with Goubin’s B2A algorithm
[Gou01], which is currently the most efficient B2A algorithm for first-order security. For
Saber, we additionally require packing and unpacking functions, since the output of the
masked SHAKE − 128 is not naturally in bit-sliced format. All the variables in this

section are in bit-sliced format, and we denote the i-th bit of the j-th share of x as x
(i)
j .

In the bit-sliced binomial sampler, the Hamming weight computation z = HW(x)−HW(y)
is computed by directly adding and subtracting the individual Boolean shared bits of x

and y. This is based on the bit-wise equations of a half adder, (s = z ⊕ x, c = zx), and
subtractor, (s = z⊕y, c = zy), and allows to bit-slice these equations over the full processor
word-width. For Boolean shares, the XOR operator is linear, whereas the logical AND needs
a secure substitute, SecAnd [CGV14]. The resulting z is still in Boolean masked format,
and only one B2A conversion is necessary to ultimately convert it to an arithmetic sharing.
To realize the masked bit-sliced sampler we use the functions SecBitAdd, SecBitSub, and
SecConstAdd, and we describe these functions below.

SecBitAdd takes input Boolean shares x = (xi)1≤i≤n ∈ F2µ such that
⊕

i xi = x. It
produces an output z = (zi)1≤i≤n ∈ F2λ such that

⊕

i zi = HW (x). Algorithm 5 shows
our implementation of SecBitAdd, which is slightly adapted from [SPOG19] to reduce the
number of calls to SecAnd. In [SPOG19], the inner loop iterates from l = 2 to λ, resulting
in a total of µ · ⌈log2(µ + 1)⌉ calls to SecAnd. However, SecBitAdd starts from z = 0,
and during outer loop iteration j, z is therefore upper bounded by j − 1. Secondly, there
can only ever be a carry to bit z(l) when z ≥ 2(l−1) − 1. Joining these two conditions,
the inner loop is only necessary when l ≤ log2(j) + 1. This adaptive loop condition is
easily expressed in standard C as for(l = 2, k = j; k > 1; l + +, k >>= 1), and makes only
∑⌊log

2
(µ)⌋

i=0 µ−2i +1 calls to SecAnd. For Saber, which uses µ = 4, this reduces the number
of calls to SecAnd from 12 to just 4. SecAnd is described in [CGV14]. For first-order
security, SecAnd requires a single random bit, and the amount of needed randomness is
therefore also reduced by our modification.

SecBitSub takes input Boolean shares z = (zi)1≤i≤n ∈ F2λ and y = (yi)1≤i≤n ∈ F2µ

such that
⊕

i zi = z and
⊕

i yi = y. It produces an output z = (zi)1≤i≤n ∈ F2λ such that
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Algorithm 5: SecBitAdd, adapted from [SPOG19]

input : x = (xi)1≤i≤n ∈ F2µ such that
⊕

i
xi = x

output : z = (zi)1≤i≤n ∈ F2λ such that
⊕

i
zi = HW(x), λ = ⌈log2(µ + 1)⌉+ 1

1 s, z← 0
2 for j = 1 to µ do

3 cin ← x
(j)

4 s
(1) ← z

(1) ⊕ cin

5 for l = 2 to ⌊log2(j)⌋+ 1 do

6 cin ← SecAnd(cin, z
(l−1))

7 s
(l) ← z

(l) ⊕ cin

8 end
9 z← s

10 end
11 return z

⊕

i zi = z −HW (y). It is very similar to Algorithm 5, with the exception that a negation
is added at line 6. This negation is necessary because the carry of a half subtractor is
computed as c = zy, requiring to negate the bit z. Since the carry of the subtraction
can always propagate the full length of z, a similar modification as in SecBitAdd is not
possible for SecBitSub and we take the implementation from Algorithm 12 of [SPOG19].

Finally, the SecConstAdd routine adds the constant µ to z, which is necessary to avoid
negative values after SecBitSub and subsequently convert z correctly to an arithmetic
sharing. This added value is later compensated by subtracting µ from the arithmetic
shares. We show SecConstAdd in Algorithm 6, which we have optimized for Saber’s
constant µ = 4. For generic constants values we refer the interested reader to Algorithm
13 of [SPOG19].

Algorithm 6: SecConstAdd, optimized for µ = 4

input : x = (xi)1≤i≤n ∈ F2µ such that
⊕

i
xi = x

output : y = (yi)1≤i≤n ∈ F2λ such that
⊕

i
yi = x + 4

1 y← x

2 y
(3) ← y

(3)
⊕

y
(2)

3 y
(2)
0 ← y

(2)
0

⊕

1
4 return y

At this moment we have described all the components that constitute the bit-sliced
sampler of [SPOG19]. However, for Saber, we still need two additional functions PackMu

and UnpackMu. These functions are necessary to make the input, which is a consecutive
string of µ bits belonging to x[0], µ bits belonging to y[0], µ bits belonging to x[1], µ
bits belonging to y[1] and so forth, suitable for using in the bit-sliced format, as well as
transform the output of the bit-sliced sampler back to the normal format. Intuitively, the
packing functions are necessary to align all the k-th bits, k ∈ [0, µ− 1] of consecutive x[j]
in a single CPU word. Our target platform is an ARM Cortex-M4 device which has 32-bit
word-width, and it can perform 32 single bit Boolean operations in parallel using bit-wise
Boolean operators. Hence, our bit-sliced sampler generates 32 binomial samples at a time.

The PackMu function packs x[0 : 31] with µ-bit entries into an array x
′[0 : µ−1] with 32-

bit words such that x
′[k] contains the k-th bits of all 32 elements of x[0 : 31]. The UnpackMu

does the opposite of PackMu, i.e. it unpacks x
′[0 : µ− 1] back into x[0 : 31], such that x[j]

again contains the µ bits that are associated to a single sample. A visual representation
of the extraction and subsequent packing transformation is shown in Figure. 5. Before
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Figure 5: The PackMu function packs x[0 : 31] with µ-bit entries into an array x
′[0 : µ− 1]

with 32-bit words.

executing PackMu, the bitstring containing x and y is split into both components, after
which the packing procedure of y is identical to the packing procedure of x. Note that
PackMu can be applied to each share independently.

After packing x and y into x
′ and y

′, the algorithms described above can be performed
on full 32-bit words instead of single bits, where the bit operations are replaced with
their bit-wise counterparts. This way, all algorithms generate 32 binomially distributed
coefficients in parallel. If we consider x[0 : 31] as a 32 × 32 bit-matrix, the PackMu

and UnpackMu can be materialized by a bit-matrix transpose operation. There exist
very sophisticated algorithms to do this operation as described in [War13]. However, as
our bit-matrix is very sparse, i.e. we have only µ = 4 columns, we found that a naïve
implementation of bit-matrix transpose performs better in our case. The full bit-sliced
binomial sampler, including PackMu and UnpackMu, is shown in Algorithm 7.

5 Implementation

We have implemented Saber.Masked.KEM.Decaps on two STM32F4 microcontrollers manu-
factured by ST Microelectronics. This embedded processor based on the ARM Cortex-M4
architecture is very popular for realizing IoT applications. For our performance evalu-
ation, we use the STM32F407-DISCOVERY development board, also targeted by the
PQM4 [KRSS] post-quantum crypto library and benchmark suite for the ARM Cortex-M4.
For our side-channel evaluation we use the highly similar STM32F417 chip, mounted
on a custom PCB to facilitate power side-channel measurements. Both chips have a
maximal operating frequency of 168 MHz and feature 1 MB of Flash memory, 192 KB
of SRAM, FPU/DSP instruction extensions, and an internal TRNG. Memory footprint
and speed-optimized implementations of Saber tailored to this architecture have been
documented in two recent works [KMRV18, BMKV20]. For our experiments, we started
with the implementation with the best time-memory trade-off, combining different methods
from both these works. It achieves fast polynomial multiplication by leveraging on the DSP



16 A Side-channel Resistant Implementation of SABER

Algorithm 7: SecBitSlicedSampler

input : x[0 : 31] = (xi[0 : 31])1≤i≤n ∈ F
32
2µ , y[0 : 31] = (yi[0 : 31])1≤i≤n ∈ F

32
2µ such that

⊕

i
xi[j] = x[j],

⊕

i
yi[j] = y[j]

output : A[0 : 31] = (Ai[0 : 31])1≤i≤n ∈ F
32
q such that

∑

i
Ai[j] = HW (x[j])−HW (y[j])

mod q

1 x
′ ← PackMu(x)

2 y
′ ← PackMu(y)

3 z
′ ← SecBitAdd(x′)

4 z
′ ← SecBitSub(z′, y

′)
5 z

′ ← SecConstAdd(z′)
6 z← UnpackMu(z′)
7 for j = 0 to 31 do
8 A[j]← B2A(z[j])
9 A0[j]← A0[j]− µ mod q

10 end
11 return A[0 : 31]

extensions and through a clever combination of Toom-Cook, Karatsuba and low-degree
schoolbook multiplication methods. In both our performance and side-channel evaluation,
we use the same settings as PQM4, i.e. a core system clock of 24 MHz, and a 48 MHz clock
for the TRNG, but we additionally disable the data cache to prevent timing side-channel
leakages. The TRNG supplies 32-bit random numbers every 40 clock cycles, corresponding
to only 20 clock cycles of the core system clock. All masking randomness is sampled
directly from the TRNG. Since the TRNG offers ample throughput, we avoid complex
bookkeeping of random bits. For example, to mask two 13-bit secret key coefficients we use
32 bits of randomness, effectively discarding the redundant 6 bits. This allows us to use
straightforward halfword operations, rather than having to unpack the random bitstrings.

We build on the unprotected Saber reference implementations from [KMRV18], and
[BMKV20] and extend them to realize our protected design. Operations that are dupli-
cated on both shares can easily be implemented by re-using the original functions from
Saber.KEM.Decaps. For non-linear operations combining both shares, new implementations
are necessary. Furthermore, it is a well-known issue that a theoretically secure masking
scheme can still show side-channel leakage [BGG+14]. Microarchitectural effects can easily
violate the independent leakage assumption, and produce leakage due to the unexpected
combination of both shares. Bus transitions, memory or register overwrites, re-use of stack
memory or hidden registers in the ALU are all examples that can cause such leakage.
Consider for example the inner loop of Algorithm 4. Subsequent loads from memory
CA[Al] load the memory bus with either γ or γ + 1. Each of the possible bus transitions
has a different power profile, and directly leaks information correlated to the sensitive
carry. Implementations can be meticulously crafted not to have these issues, using tech-
niques such as assigning different registers to different shares, and clearing the memory
or datapath buses before sensitive transitions. We use this approach for routines that
combine both shares and integrate these techniques directly in hand-crafted assembly. In
our implementation, we use such assembly code for A2A conversion, bit-sliced binomial
sampling and the non-linear Keccak χ function.

Similarly to the Cortex-M4 implementations from [KMRV18, BMKV20], we try to
make the best tradeoff between speed and memory usage wherever possible. Our design is
compatible with many of the just-in-time techniques that reduce dynamic memory usage,
such as polynomial-by-polynomial generation of the public matrix AAA. Another example of
reducing memory usage, is the masked comparison we described in Section 4.1.5. Using
the incremental SHAKE − 128.absorb allows us to allocate just 2 ∗ 200 bytes of stack
memory for its state, rather than 2 ∗ 960 bytes for the masked bbb′

∗.
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Another similarity we share with [KMRV18] is the use of the ARM Cortex-M4’s support
for SIMD instructions to speed up execution. In both A2A and B2A conversion, the USUB16
or UADD16 instructions complement the bitwise operators, allowing us to perform two ǫq

or ǫp-bit conversions in parallel in a 32-bit processor word. B2A conversion benefits most,
since the table lookups of A2A are inherently sequential. To illustrate, by parallelising
B2A in this fashion, the loop in SecBitSlicedSampler, line 7, makes only 16 calls to B2A,
rather than 32.

We refresh our A2A tables before the conversion of each full 256-coefficient polynomial.
The exact table parameters are given in Table 3. The bit-size l of γ in table CA is 7 bits,
7 bits, and 10 bits, for ≫ (ǫt − 1), ≫ (ǫp − ǫT ), and ≫ (ǫq − ǫp), respectively. Because the
overall table size 23 · l is tiny compared to Saber’s total dynamic memory usage, we avoid
table entries of exactly l bits. Rather, we use byte-size tables for l = 7 and halfword-size
tables for l = 10, making packing and unpacking routines unnecessary. Even then, the size
of the largest table with l = 16 only amounts to a total 16 bytes of dynamic memory.

6 Security Evaluation

In this section we experimentally validate the soundness of our first-order secure Saber.
Masked.KEM.Decaps. We first describe our experimental setup and security assessment
methodology, and then provide results that confirm the suppression of side-channel leakage
in the first-order moment. As mentioned in the previous section, we use a custom PCB
target board for our side-channel evaluation, which guarantees a very stable behaviour
of the STMF417 chip. This PCB is stripped of all of the unnecessary components of
the DISCOVERY development board, which would introduce additional noise into the
measurements. The PCB contains a dedicated shunt resistor to monitor side-channel
information through the chip’s instantaneous power consumption. To ensure maximal
stability, the PCB is driven by an external power supply at 3.2 V and clocked by an
external clock at 8 MHz, which is the same speed as the DISCOVERY board’s crystal
oscillator.

We use a Tektronix DPO 70604C digital oscilloscope to collect instantaneous power
measurements during executions of Saber.Masked.KEM.Decaps with a sample rate of 125
MS/s. In between the oscilloscope and the PCB we add a PA 303 SMA pre-amplifier and a
48 MHz low-pass filter to perform analog pre-processing of the collected traces. A central
PC is used to communicate input/output data to the board through a serial USART
connection, as well as to collect and analyze power measurements. In Figure 6 we show
an exemplary measurement obtained with our setup, which captures the inner product
between the input ciphertext part b′b′b′ and the secret key sss. The black signal shows the
quantized voltage over the shunt resistor, which corresponds directly to the instantaneous
power consumption of the chip. We add a yellow trigger signal to partition the power
trace into b′Tb′Tb′T · sss1 and b′Tb′Tb′T · sss2. The six clearly visible patterns in the measurement each
correspond to one polynomial multiplication.

We use the Test Vector Leakage Assessment (TVLA) methodology introduced by
Goodwill et al. [GJJR11] in order to validate the security of our implementation. The
method analyzes two sets of measurements which are defined according to sensitive
information. In our experiments we use a non-specific fix vs. random test. The fix class
contains measurements obtained when the algorithm’s input x1, x2 is a fresh masking of a
fixed value x1 + x2 = xfix, while the random class contains measurements when the input
is randomly generated x1 + x2 = xrand. TVLA uses the Welch’s t-test to detect differences
in the mean power consumption between the two sets. The so-called t-test statistic is
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Figure 6: Power measurement of the masked inner product b′Tb′Tb′T · sss.

computed for every sample in the measurements as:

t =
X1 −X2

√

σ2

1

N1

+
σ2

2

N2

,

where X1 and X2 denote the means of each set, σ2
1 and σ2

2 their respective variances, and
N1, N2 the number of samples in each class. Following [GJJR11], the t-test is repeated
twice, on independently collected data sets. The null-hypothesis is rejected with confidence
greater than 99.999% when the t value exceeds the ±4.5 range for a large number of
measurements, in the same direction and at the same time point for both data sets.
Put differently, t values outside this range indicate that the means of both sets are
distinguishable and, consequently, there exists leakage in the side-channel measurements
of the unmasked value x1 + x2 = x.

6.1 Experimental Results

We start our experiments by testing the security of our hand-crafted assembly routines.
These are the most critical operations, since they are non-linear operations that must
combine both shares to compute their results. In our experiments, we first test our
measurement setup by testing the security of these routines when the TRNG is turned off.
This is equivalent to testing an unprotected implementation, as one of the input shares x2

is set to zero at each execution and therefore x1 = x. Furthermore, when these routines
sample randomness internally, e.g. in SecAnd, this randomness is likewise supplied as 0.

The results of applying the TVLA method with a pool of 10 000 measurements and
masks OFF are shown in Figure 7 (a,b,c) for A2A conversion, bit-sliced binomial sampling,
and the Keccak-f [1600] round permutation, respectively. For A2A conversion and bit-sliced
binomial sampling, we show conversion and sampling of the first 32 polynomial coefficients.
For the bit-sliced sampler, this corresponds to one iteration of the central routine. The
black signal corresponds to the value of the t-statistic at each sample.

In our t-test, we add a yellow trigger signal to single out specific operations. In the A2A
conversion, the yellow trigger is first low for the generation of table CA and subsequently
high for the 32 conversions. Since the table generation is a constant operation that does
not depend on the input, it shows no t-test leakage even with masks OFF. For binomial
sampling, the trigger is first low for PackMu, then high for SecBitAdd, SecBitSub, and
SecConstAdd, low for UnpackMu, and finally high for B2A conversion. From the figure,
PackMu and UnpackMu are applied to each share independently, and it is clear that with
masks OFF only the operation on the share x1 = x shows leakage. Finally, we show the
first three rounds of Keccak-f [1600], and use the yellow trigger to mark the non-linear χ
operation. Again it can be observed that the linear operations show leakage for only one
of the shares.

Next, we test the implementation when the TRNG is turned ON. The results of applying
the TVLA method with a pool of 100 000 measurements are shown in Figure 7 (d,e,f). In



M. Van Beirendonck, J.-P. D’Anvers, A. Karmakar, J. Balasch, and I. Verbauwhede 19

0 20 40 60 80 100

-10

-5

0

5

10
t-

s
ta

ti
s
ti
c

(a) A2A conversion

0 50 100 150 200 250 300

-40

-30

-20

-10

0

10

20

30

40

t-
s
ta

ti
s
ti
c

(b) SecBitSlicedSampler
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(c) Keccak-f [1600]
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(e) SecBitSlicedSampler
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(f) Keccak-f [1600]

Figure 7: T-statistic as a function of time after applying TVLA with a pool of 10 000
measurements and masks OFF (top), and with a pool of 100 000 measurements and masks
ON (bottom).

contrast to the previous experiment, there are no visible peaks during the execution of
the respective routines. Since the masking is enabled, neither A2A conversion, bit-sliced
binomial sampling, or Keccak-f [1600] exhibit first-order leakage. In our experiments
with 100 000 measurements, none of the t-statistic pass the confidence boundary of ±4.5,
such that a second repetition of the t-test is unnecessary. Nonetheless, we verified that
the results are reproducible, and the experiment confirms the soundness of our assembly
subroutines.

We continue our experiments with a validation of the full Saber.Masked.KEM.Decaps.
To allow for more measurements, we set the Saber module parameter l universally to l = 1
in our TVLA experiment. This reduces the vectors of polynomials sss′ and bbb′, as well as the
public matrix AAA to a single polynomial. All operations are largely identical to l = 3, but
there are fewer iterations of the same routines, e.g. the matrix-vector multiplication AAA · sss′

becomes a single polynomial multiplication. This allows us to test the exact same routines
used in Saber.Masked.KEM.Decaps with l = 3, but cut the length of the power traces by
roughly a factor 3. With l = 1 at 125 MS/s, power traces for Saber.Masked.KEM.Decaps

consist of approximately 6,000,000 samples.

In our TVLA experiment for Saber.Masked.KEM.Decaps, we divide between measure-
ments with a fresh masking of the fixed secret key sss1 + sss2 = sssfix, and measurements
with a masking of a random secret key sss1 + sss2 = sssrand, accordingly to the null-hypothesis
that the implementation does not leak the sensitive unmasked sss. The input ciphertext
c = (cm, b′b′b′) is kept as a constant, valid, ciphertext encrypted under sssfix. The results
of applying the TVLA method with a pool of 10 000 measurements and masks OFF are
shown in Figure 8 (top).

We again add the yellow trigger signal, and this time use it to mark the start and end
of the sensitive part of Saber.Masked.KEM.Decaps, i.e. the operations highlighted in grey in
Figure 4. The results of applying the TVLA method with a pool of 100 000 measurements
and masks ON are shown in Figure 8 (middle). Directly after the yellow trigger there
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Figure 8: T-statistic of Saber.Masked.KEM.Decaps as a function of time after applying
TVLA with a pool of 10 000 measurements and masks OFF (top), and with a pool of
100 000 measurements and masks ON (middle, bottom). The t-statistic does not pass the
confidence boundary ±4.5 at the same time instant in both independent tests with masks
ON.

is still a strong indication of leakage, due to the final comparison H′(c− c∗1)
?
= H′(c∗2)

after the hash. As mentioned in Section 4.1.5, the final outcome of this comparison is
unmasked, as it does not give information to an adversary. In our t-test scenario where
c is a ciphertext encrypted under sssfix, the comparison is always true for the fixed set
and always false for the random set of measurements, such that the t-test can clearly
extract the difference from the power traces. After 100 000 measurements, our t-test results
for Saber.Masked.KEM.Decaps with masks ON still show some slight excursions past the
±4.5 confidence boundary. This is sometimes expected for long traces, and therefore,
as per [GJJR11], we conduct a second independent t-test showing that these excursions
are never at the same time instant. Results from this second experiment are shown in
Figure 8 (bottom). Together, these two t-tests confirm that Saber.Masked.KEM.Decaps

suppresses the leakage of the sensitive sss, confirming the soundness of our design.

7 Results and Comparison

To evaluate the performance of Saber.Masked.KEM.Decaps, we integrate it in the PQM4
[KRSS] benchmarking framework for the STM32F407-DISCOVERY. We benchmark for
speed and stack usage, as well as profiling cycles spent in different primitives. We compile
with optimization flag -O3, but add attributes such as noinline to prevent the compiler
optimizations from removing the masking. In PQM4, cycle counts are measured from
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Table 4: CPU cycles and dynamic memory consumption of Saber.KEM.Decaps compared
to different implementations of Saber.Masked.KEM.Decaps.

CPU Cycles Dynamic Memory [bytes]

Saber.KEM.Decaps (A) 1,123,280 (1.00x) 6,320 (1.00x)

Saber.Masked.KEM.Decaps

(B) 2,986,568 (2.66x) 11,656 (1.84x)
(C) 2,824,800 (2.51x) 11,656 (1.84x)
(D) 2,645,279 (2.35x) 11,656 (1.84x)
(E) 2,833,348 (2.52x) 11,656 (1.84x)

the system timer (SysTick) and dynamic memory is measured using stack canaries. For
the dynamic memory consumption, we report the use case where the long-term secret
key is already stored in masked format and is refreshed after every masked decapsulation,
ensuring that the same masked representation is never used twice. Both shares of the
secret are assumed to be stored in non-volatile memory, e.g. EEPROM, and therefore do
not contribute to dynamic memory consumption. Note that this requires 2496 bytes of
non-volatile memory, which is exactly twice the size required by Saber.KEM.Decaps.

To motivate our design choices, in Table 4, we first compare the performance of
Saber.KEM.Decaps with different C implementations of Saber.Masked.KEM.Decaps. In
masked design (B), we implement Saber.Masked.KEM.Decaps with Goubin’s A2B conversion
to perform masked logical shifting, as well as implement the non bit-sliced sampler from
[SPOG19]. In masked design (C), we substitute the five polynomial A2B conversions with
our novel A2A tables, netting a performance improvement of more than 150,000 CPU cycles.
Our most efficient design is (D), where both A2A tables and the SecBitSlicedSampler are
implemented. Our A2A tables, as well as the matrix arrays of SecBitSlicedSampler are
able to reuse stack memory from other functions, such that the memory usage is exactly
11,656 bytes for all the different implementations.

As mentioned in the previous section, microarchitectural effects can easily destroy the
theoretically secure masking. Therefore, in masked design (E), we implement the critical
routines of (D) directly in assembly. We assign different CPU registers to different shares.
Before sensitive transitions, we randomize the load and store memory buses, as well as
applying the same technique for the Rn, Rm, and Rd operand and destination buses of
the ALU. For Keccak.χ, which showed persistent leakage, we make sure that the register
file never contains two values that jointly leak sensitive information. Our hand-crafted
assembly adds 200,000 CPU cycles to masked design (D), and our final implementation
only has overhead factors 2.52x and 1.84x over the unmasked implementation for CPU
cycles and stack usage, respectively. It is masked design (E) that we evaluated in the
previous section, and therefore only these numbers correctly reflect the overhead cost of
the secure Saber.Masked.KEM.Decaps on the ARM-Cortex M4.

Masking has so far received limited attention in post-quantum cryptography, but will
become increasingly important in the continuation of the NIST standardization process.
To improve understanding of the overhead cost of masking, we profile the CPU cycles of
important operations in our masked design (E), and group the results in Table 5. We
compare operations in the masked implementation with the equivalent operations in the
unmasked design, e.g. SecBitSlicedSampler(x, y) is equivalent to z = HW(x) − HW(y),
and categorize the overhead factors accordingly. From this table, it can be seen that the
linear operations, i.e. polynomial arithmetic, have roughly a factor 2x overhead in the
masked design, due to the duplication of every polynomial multiplication. Non-linear
operations, on the other hand, have overhead factors ranging from 7x for A2A conversion
to 23x for binomial sampling. Our design requires 5048 random bytes, and spends roughly
100,000 cycles sampling these from the TRNG. Note that these cycles are interleaved in
the algorithm, which is why we list them separately.
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Table 5: Profiled CPU cycles of Saber.KEM.Decaps compared to Saber.Masked.KEM.Decaps.

Operation CPU cycles
Unmasked Masked

Saber.Masked.KEM.Decaps 1,123,280 2,833,348 ( 2.52x)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Saber.Masked.PKE.Dec 132,836 259,931 ( 1.96x)
∣

∣

∣

∣

Polynomial arithmetic 130,769 239,868 ( 1.83x)
(A, R) ∈ R2

p ≫ (ǫp − 1) 1,832 19,138 (10.45x)
SHA3− 512(pkh, m′) 13,379 123,840 ( 9.26x)
Saber.Masked.PKE.Enc 853,382 2,116,031 ( 2.48x)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Polynomial arithmetic 452,835 938,859 ( 2.07x)

AAA := U(Rl×l
q ; seedAAA) 314,964 314,964 ( 1.00x)

s′s′s′ := βµ(Rl×1
q ; r) 73,543 796,260 (10.83x)

∣

∣

∣

∣

x, y = SHAKE − 128(r) 65,619 615,493 ( 9.38x)
SecBitSlicedSampler(x, y) 7,777 180,619 (23.22x)

(A, R) ∈ Rlx2
q ≫ (ǫq − ǫp) 6,267 43,569 ( 6.95x)

(A, R) ∈ R2
p ≫ (ǫp − ǫT ) 2,091 16,830 ( 8.05x)

H′(c− c∗1)
?
= H′(c∗2) 8,097 184,852 (22.83x)

TRNG (1262 calls) 0 114,842

Table 6: CPU cycles and dynamic memory consumption of Saber.Masked.KEM.Decaps

compared to related work.

Masking Scheme CPU cycles Dynamic Memory [bytes]
Unmasked Masked Masked

Our work 1,123,280 2,833,348 (2.52x) 11,656
Masked RLWE [OSPG18] 4,416,918 25,334,493 (5.74x) 25,696

7.1 Comparison

The work most closely related to ours is that of Oder et al. [OSPG18], presenting a
CCA-secure masked implementation of a Ring-LWE cryptosystem similar to NewHope
KEM [ADPS16]. In Table 6, we make the comparison with our work presented in this
paper, for both CPU cycles and dynamic memory consumption. Oder et al. do not present
the dynamic memory consumption for an unmasked design, such that we only make the
masked comparison for that performance metric. Since [OSPG18] presents a masked
variant of Newhope1024, which has security parameters similar to FireSaber, an absolute
comparison is not directly possible. However, it is still possible to directly compare the
CPU cycles overhead cost in masking, which are 2.52x and 5.74x for our work and the
work of Oder et al., respectively.

The significant performance improvement of Saber.Masked.KEM.Decaps over the work
presented in [OSPG18] can largely be attributed to two key properties of Saber, i.e. the
choice for power-of-two moduli together with LWR as the underlying hard problem. The
former property allows Saber to use simple and efficient power-of-two A2B, A2A, and B2A

conversions. In contrast to the simple A2A routine we employ for logical shifting, Oder et
al. present a complex equivalent procedure, MDecode, to extract the MSB of an arithmetic
sharing with a prime modulus. MDecode requires several calls to A2B conversion, extra
random bits, as well as many additional arithmetic and bit-wise operations.

Secondly, the colossal benefit of LWR in a masked implementation can easily be
extracted from Table 5. LWE-based schemes sample extra error vectors from βµ to
substitute the rounding operation ⌊⌉ used in Saber. If Saber was likewise based on LWE,
the cost of the masked rounding, i.e. the A2A conversions ≫ (ǫq − ǫp) and ≫ (ǫp − ǫT ),
would be replaced with the cost of the masked sampling of four error polynomials from
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βµ. From Table 5, these two A2A conversions take roughly 60,000 CPU cycles, whereas
masked sampling of four error polynomials from βµ would take approximately 1,026,000
CPU cycles. The high cost of masked binomial sampling is further illustrated in [OSPG18]
(Table 2), where roughly 71% of the decapsulation’s CPU cycles are spent in the masked
sampling routine. Note that PQM4 features a very efficient full assembly implementation of
the Keccak permutation, whereas our implementation has only Keccak.χ in assembly. An
efficient masked implementation of Keccak with a lower overhead factor would contribute
significantly to reducing the overhead of both Saber.Masked.KEM.Decaps, as well as masked
binomial sampling in general.

7.2 Discussion

In this paper, we focus on a first-order secure implementation of Saber.Masked.KEM.Decaps.
To protect against higher-order DPA, our implementation must be extended to higher-order
masking. Linear operations that process each share independently can straightforwardly
be extended to higher orders by duplicating the respective operation for extra shares.
Non-linear routines, however, need special treatment to guarantee that they do not leak
sensitive information in higher-order statistical moments. Higher-order secure A2B and B2A

conversion algorithms have been proposed in [CGV14, Cor17, BCZ18, HT19]. Subsequent
work could investigate whether the A2B routines in these works similarly lend themselves
to efficient implementations of masked logical shifting. Higher-order masked polynomial
comparison has been described in [BPO+20]. The masked binomial sampler from [SPOG19]
that we described and adapted can be instantiated for arbitrary security orders. Finally, for
the Keccak permutation, we refer the reader to [BDPVA10] for a discussion on higher-order
masking.

While our implementation can be extended to higher-order DPA, there are other side-
channel attack vectors that must be addressed as well. Attacks relying on SPA techniques
typically exploit variable-time arithmetic operations or control flow. Since we start from a
constant-time implementation of Saber, these attacks are countered in our implementation.
It has also been shown that even a single power trace might be enough for a full key
recovery. These single-trace attacks analyze the power trace horizontally, e.g. using
horizontal DPA on schoolbook polynomial multiplication [ATT+18] or template attacks on
the NTT [PPM17, PP19]. Since the horizontal information in the single trace contains both
the shares, masking typically only hardens the implementation but does not fully prevent
these attacks. Even though previous attacks have focused on schoolbook mulitplication
or the NTT, Saber’s multiplication, using a combination of Toom-Cook, Karatsuba, and
schoolbook, is likely vulnerable to similar attacks as well. A possible countermeasure is to
randomize the order of execution of these vulnerable routines. Randomness should be used
to shuffle the order of operations in Saber’s multiplication or introduce dummy operations.
At the same time, these techniques increase the noise level for higher-order DPA attacks.
Oder et al. [OSPG18] included such hiding countermeasures in the linear operations of
their masked design at only 1.01x overhead in CPU cycles.

8 Conclusions

In this work we presented a side-channel resistant instance of Saber using masking. We
showed that Saber is very efficient to mask, and only features a 2.5x overhead factor
between masked and unmasked key decapsulation in a post-quantum benchmark suite.
Saber’s side-channel secure version can be built with relatively simple building blocks, at an
overhead factor that is significantly less than other candidates of the NIST Post-Quantum
standardization process. This can largely be attributed to two key properties of Saber’s
design: power-of-two moduli and LWR as the underlying hard problem. The former
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property allows Saber to use simple and efficient mask conversion algorithms, and allows to
tightly integrate arithmetic and bit-wise operations on masked variables. We developed a
new masked primitive for Saber that takes advantage of this property, allowing to perform
masked logical shifting directly on arithmetic shares. Saber’s choice for LWR further
contributes to the efficient masking, by replacing the very costly masked noise sampling
with efficient masked logical shifting. We have made our implementation available at
https://github.com/KULeuven-COSIC/SABER-masking.
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