
A Sign Language Recognition System Using Hidden
Markov Model and Context Sensitive Search

Rung-Huei Liang Ming Ouhyoung
Communication and Multimedia Lab.,

 Dep. of Computer Science and Information Engineering,
 National Taiwan University, Taipei, R.O.C.

email: ming@csie.ntu.edu.tw

Abstract
Hand gesture is one of the most natural and expressive ways for the hearing impaired.
However, because of the complexity of dynamic gestures, most researches are focused
either on static gestures, postures, or a small set of dynamic gestures. As real-time
recognition of a large set of dynamic gestures is considered, some efficient algorithms
and models are needed. To solve this problem in Taiwanese Sign Language, a statistic
based context sensitive model is presented and both gestures and postures can be
successfully recognized. A gesture is decomposed as a sequence of postures and the
postures can be quickly recognized using hidden Markov model. With the probabilit y
resulted from hidden Markov model and the probabilit y of each gesture in a lexicon,
a gesture can be easily recognized in a linguistic way in real-time.

Keyword: Gesture recognition, sign language, gesture interface, virtual reality.

1. Introduction

1.1 Gesture and Posture

Gestures are usually understood as hand and body movement which can pass
information from one to another. Since we are interested in hand gesture and so the
term “gesture” is always referred to hand gesture in this paper. To be consistent with
previous researches[1], gestures are defined as dynamic hand gestures and postures as
static hand gestures. We call postures those not time varying and a gesture a sequence
of postures over a short time span.

1.2 Methods of Gesture Recognition

According to the analysis of Watson[2], there are four methods used for gesture
recognition: neural network, template-matching, statistical classification, and time-
space curves spline matching models. Without time variance, neural network and
template matching are suitable for posture matching. However, template-matching is
strictly limited to fixed patterns and is very inflexible. VPL™'s posture recognizer[3]
and our previous alphabet recognizer[4] are of template-matching. In our previous
system, to solve the ambiguity in the alphabet set of the American Sign Language, five
tact switches, served as contact-points are sewn on DataGlove™ to provide the
abduction information and real-time continuous posture recognition can be achieved.
Both Fels' Glove Talk[5] and Beale's system[6] use neural networks. These systems
need thousands of labeled examples and output few kinds of recognized symbols, for

梁容輝
Text Box
Proc. of ACM VRST'96 (ACM International Symposium on Virtual Reality and Software Technology), pp. 59-66, July, Hong Kong, 1996

examples, five symbols, a, e, i, o, and u from the American Sign Language in Beale's
system. Watson[2] also discussed pros and cons of neural networks in gesture
recognition. In short, retraining is necessary if inserting or deleting one gesture and
training often costs much in neural networks. Large amount of processing power is
needed, and above all, the structure and results of network are usually not
systematically generated, including learning strategy, learning rate, topology, and
activation function. Bubine's stroke recognizer[7] is of statistical classification and we
classify it to be 2D oriented strokes. Time-space curves spline matching models are
still too expensive for real-time applications.

The above systems are all posture recognizers. About gestures, Väänänen[1]
proposed the GIVEN concept to recognize postures and gestures using neural
networks. GIVEN employs several networks to take time dependency into account.
Five time steps of an input stream is suggested. As the sampling rate of input device
and the time of gesticulation are considered, hundreds of time steps are very often in
one gesture duration. Thus, if one neural network need thousands of labeled examples,
the complexity of real gesture is enormous. The critical problem, how to determine the
starting and ending point in an input stream of a gesture is not considered by GIVEN
and is taken into account by Watson[8]. Discontinuities in a input stream is defined and
sequences of discontinuities are processed by template matching. Several pose-based
gestures can be recognized and interpreted into artificial reality commands.

1.3 Gesture Recognition with Hidden Markov Model

Inspired by our previous work[4] on American Sign Language (alphabet set only),
since full set sign language understanding is our goal, new approaches are proposed.
We define that the time-varying parameter (TVP) in a stream of data is the parameter
which changes its value along time axis. A discontinuity occurs when the number of
TVPs of a stream of gesture input is under a threshold. A posture recognition takes
place if and only if a discontinuity is detected. Then hidden Markov models (HMMs)
are employed for posture recognition. Every known posture has a distribution in angles
for each joint of finger; since eleven inputs are received from DataGlove™ plus a 3D
tracker, eleven distributions are constructed for each posture. For example, in
Taiwanese Sign Language (TSL), there are 50 fundamental postures; thus 50×11
distributions are established during learning phase. A frame of input data is send to 50
HMMs and the posture with the maximal evaluation resulted from its corresponding
HMM is the winner. HMM is briefly explained in section 4, and posture recognition is
described in section 5.

Gesture recognition is based on looking up the vocabularies composed of several
possible paths of sequences of postures. The final solution is resulted from dynamic
programming. Since the evaluations of these competing vocabularies are simple
lookups from a lexicon, the processing time of dynamic programming is greatly
reduced. The whole recognition procedure is shown in section 3, and details are given
in section 6 and 7.

2. Taiwanese Sign Language
We choose a specific sign language for our study, and our goal is to study the full

set. The Taiwanese Sign Language (TSL) includes 50 fundamental postures and is
shown in Figure 1. Even though this sign language is not fully compatible to
international standard, the experiences gained from studying TSL will also

contribute to the study of other sign languages, such as ASL (American Sign
Language). A gesture in TSL consists of one or more postures sequentially moved or
posed to some position or direction. For example, in figure 2, "Father" in TSL is
gesticulated as making the posture numbered one in Figure 1, which means one, to the
cheek and then making posture numbered twenty-six in Figure 1, which means
"male".

Each gesture can be thought as a vocabulary in a lexicon, and a sentence is a
sequence of gestures. Moreover, There are two styles of sequences of gesture in TSL:
natural sign language and grammatical sign language. Natural style is mostly used by
the disabled, especially the older generations. Its order of sequence of vocabularies is
different from that of Chinese. The grammatical style is taught in the elementary school
and is consistent with the order of word sequence of Chinese. Because of the
consistency and regularity, we tentatively only take grammatical style into account in
our research.

0 10 20 3
0

40

1 11 21 31 41

2 12 22 32 42

3 13 23 3
3

43

4 14 24 3
4

44

5 15 25 3
5

45

6 16 26 36 46

7 17 27 37 47

8 18 28 38 48

9 19 29 39 49

Figure 1 50 fundamental postures in TSL.

3. System Overview
The proposed system architecture is shown in Figure 3 and is similar to that in

speech recognition [9][10][11] because of the similarity between gesture and speech
recognition.

This posture-based continuous gesture recognition system consists of three major
function units, i.e., posture analysis, gesture-level match, and sentence-level match.
Posture analysis is ill ustrated in Figure 4 and is described later. After posture analysis,
the results are decoded into several candidate postures. The gesture composition
composes several possible gestures according to lexicon. Every one of these possible
gestures may contain one or more postures, that is, each candidate posture may be
combined with those candidate postures in the previous one or more frames. Gesture-
level match evaluates these gestures according to the probabili ties of associated
postures, and their corresponding probabili ties in this language. The above process is
defined here as the gesture model and can produce some recognized gestures with
their corresponding probabili ties. In Figure 3, the two arrows between gesture-level
and sentence-level matches indicate the necessary backward and forward processes of
dynamic programming. Sentence-level match takes responsibili ty of higher level match,
from the view of language model. The relationship of several adjacent gestures is

Figure 2 "Father" in TSL.

gesture-level

match
sentence-level

match
posture
analysis

gesture
composition

lexicon grammar semantics

recognized
sentence

gesture
input

candidate
postures

gesture
model

language
model

Figure 3 Block diagram of posture-based continuous gesture recognition.

explained from storage grammar. An N-gram strategy estimates the probabili ty of
specific N adjacent gestures, while bi-gram only considers two adjacent gestures and is
adopted in this paper. The probabili ty looked up in storage grammar is combined with
the probabili ty in gesture-level match, and the sentence-level match will generate a
sentence with the highest probabili ty and output it according to semantics.

Posture analysis comprises three major modules: input module, vector
quantization, and HMM estimation. The input module receives a stream of gesture
input, and if a discontinuity happens, the input module forwards a frame of raw data,
adjusted by calibration file, to vector quantization. The discontinuity detection is done
by time-varying parameter (TVP) detection, and whenever the number of TVPs of the
hand motion begins to reduce to below a threshold, the motion is thought to be quasi-
stationary, and its corresponding frame of data is taken to be recognized. It is
reasonable to stay for a while to make a posture, and no matter how short the duration
of stationary state is, the TVP detection always works because the motion of a
sophisticated sign language user is still far below the sampling rate of the input device,
which is usually above 10 Hz in our system. Because of the characteristics of a gesture,
this method solves the end point detection in a stream of data, also a nontrivial
problem in speech recognition.

To estimate the probabili ty of a frame of data, vector quantization is needed
because the density function we built in HMM estimation is discrete. Ideally, the data
distribution in angles of a specific hand joint for a particular posture can be presented
as Figure 5(a), and 0⇔-90⇔ is the range of the angle a joint bends. However, this
continuous function is not trivial to obtain. A discrete density function, Figure 5(b), is
both convenient to implement and efficient to estimate. Each hidden Markov model of
50 postures reports the probabili ty for the specific input flame respectively, by simply
multiplying ten probabili ties inside each HMM together. Finally the system selects
several candidate postures according to the probabili ties estimated above.

vector

quantization
HMM

estimation
input
module

HMM
lookup

candidate
postures

gesture
input

TVP
detection calibration

Figure 4 Block diagram of posture analysis. 3 major modules are included: input module,
vector quantization, and hidden Markov model (HMM) estimation.

4. Hidden Markov Model
Hidden Markov model (HMM) is a well-known and widely used statistical

method. The basic theory of hidden Markov models was implemented for speech-
processing applications in 1970s[9]. Similar to speech, the underlying assumption of a
statistical model, the hidden Markov model, is that gesture signal can be well
characterized as a parametric random process, and that the parameters of the
stochastic process can be determined in a precise, well-defined manner.

Consider a system that may be in one of N distinct states at any time indexed by
{1, 2,…, N} . We denote the time instants as t = 1, 2,…, T, and the actual state at time
t as qt. Assume that the current state is just correlated to the preceding state, that is,
the first order Markov chain,

P[qt = j|qt-1 = i, qt-2 = k,...] = P[qt = j|qt-1 = i] . (4.1)

Then, the state transition probabili ties ai j is defined as

ai j = P[qt = j|qt-1 = i] , 1≤ i, j ≤ N (4.2)

with the following properties

ai j ≥ 0 ∀ j, i (4.3.a)

ij
j

N

a
=
∑

1

 = 1 ∀ i (4.3.b)

Furthermore, the joint probabili ty of observation sequence O and a state sequence q
can be written as

P(O, q| λ) = P(O|q, λ)P(q|λ), (4.4)

where λ is the given hidden Markov model.
The probabili ty of observation O (given the model λ) is obtained by summing this

joint probabili ty over all possible state sequences q, resulting

P(x)

x900

P(x)

x900

(a) (b)

Figure 5 (a) Continuous density function and (b) discrete density function.

P(O|λ) =
all q
∑ P(O|q, λ)P(q|λ) (4.5)

 =
q1 , ,...,q qT2

∑ πq1bq1(o1)aq1q2bq2(o2)...aqT-1qTbqT(oT).

(4.6)

Equation (4.6) can be interpreted as the following. q1 is the initial state with probabili ty
πq1 , and o1 is the generated observation with probabili ty bq1(o1) . Time changes from
time step 1 to 2 and a transition is made from state q1 to q2 with probabili ty aq1q2 , and
o2 is generated. This process continues in the same manner until time T.

To find the best state sequence, q = (q1q2...qT), for the given observation
sequence O = (o1o2...oT), consider the following quantity

δt(i) = max P[q1q2...qt-1, qt = i, o1o2...ot|λ] . (4.7)
 q1,q2,...,qt-1

δt(i) is the best score (highest probabili ty) along a single path, at time t, which accounts
for the first t observations and ends in state i. By induction,

δt+1(j) = [max δt(i)ai j] ∃ bj(ot+1), (4.8)
 i

and the goal is to find a single path which can result

P* = max [δT(i)] . (4.9)
 1 [i [N

This can be solved by the Viterbi algorithm which is used in speech recognition[9].

5. Posture Recognition
The approach of posture recognition is to assume a simple probabili stic model of

posture input data. The model of each specific posture P produces an observation Y
with probabili ty P(P,Y). The goal is to decode the posture data with the observation so
that the decoded posture has the maximum a posteriori (MAP) probabili ty, that is,

$P ∋ P($P|Y) = max P(P|Y) (5.1)
 P

Equation (5.1) can be written as

P(P|Y) = P(Y|P)P(P)/P(Y) (5.2)

Since P(Y) is independent of P, Equation (5.1) is equivalent to

$P = arg max P(Y|P)P(P). (5.3)
 P

The first term in Equation (5.3), P(Y|P) estimates the probabili ty of a observation

conditioned on a specific posture, and is called the acoustic model in speech
recognition [9]. The second term in (5.3), P(P), is called the language model since it
describes the probabili ty associated with P in the specific set of sign language.

Figure 6 shows a hidden Markov model for a posture. Each state represents an
evaluation of an observation data reported from DataGlove™, and a total of 10 data of
joints are send to estimate P(Y|P). Since these 10 data can be thought mutually
independent, the type of HMM we use here is simply a left-right model with all state
transition probabili ties being 1, i.e., a1,2 = a2,3 = … = a9,10 = 1. As a example in TSL,
there are 50 fundamental postures, and therefore, 50 hidden Markov models are built
in training phase to evaluate their corresponding P(Y|P).

6. Gesture Recognition with Lexicon
Since a gesture is a sequence of postures with maximal length 3 in TSL, HMM of

a gesture can be represented as Figure 7. Each state among S2, S3, and S4 represents an
evaluation of a posture.

Given an observation sequence O = (o1o2...oT), our goal is to find a single best
state sequence, q = (q1q2...qT). Consider ending frame e, as ill ustrated in Figure 8.
Each frame may be recognized as several posture candidates in posture recognition
phase and are composed into some gestures according to the gesture lexicon. Then a
typical dynamic programming is employed to evaluated 3 conditions in Figure 8.

To solve this dynamic programming problem, we first let Solution(e) represent
the best solution ending at frame e. We assume that g1 is the gesture in Figure 8(a), g2

in Figure 8(b), and g3 in Figure 8(c); gl1 is the last gesture in Solution(e-1), gl2 is the
last gesture in Solution(e-2), and gl3 is the last gesture in Solution(e-3). The probabili ty
of the best solution ending at frame e can be written as

S2S1 S10

Figure 6 HMM representation of a posture.

S5S1 S2 S3 S4

B

E

E

E

Figure 7 HMM representation of a gesture. B means beginning and E, ending.

P(Solution(e)) = max(P(Solution(e-1))agl1g1P(g1),
 P(Solution(e-2))agl2g2P(g2),
 P(Solution(e-3))agl3g3P(g3)) (6.1)

where ai j is the probabili ty that gesture i and gesture j are adjacent and is called
grammar model. P(g1) is the probabili ty of gesture g1 in the specific sign language
system and is called the language model. To emphasize the importance of the influence
of ai j, Solution(k) ending at frame k keeps 3 candidates with best scores. Besides, for
each candidate solution, the data structure Solution(k) records one gesture, as the last
gesture ending at frame k, and an index to the previous ending frame number.
Therefore, the single path of a solution can be easily obtained by a backward
procedure. Thus each argument in max in Equation (6.1) generates 3 possible solutions
to compete, and also g1, g2, and g3 may be composed of different candidate postures.

To show the feasibili ty of real-time recognition, a brief complexity analysis is
given below. As the worst case is considered, g1 may be 3 different gestures composed
from 3 different postures and all of these gestures are valid in the lexicon, and in the
same way, g2 may be 9 different gestures and g3 27 different gestures. Combined with
the structure Solution, the total number of competing solutions is (3%3 + 3%9 +
3%27) = 117 in the worst case. That is, whenever a discontinuity occurs, at most
117%2 multiplications (one between P(Solution(k))ai j and another between ai jP(g) in
(6.1)) and 116 comparisons (to find 3 maximal values) are needed. Roughly estimating,
whenever a posture recognition happens, 117%3 float-point computations are needed
for dynamic programming of gesture recognition.

Taking a 1.0 Mega FLOP CPU as an example, assume a very experienced sign
language user can make 5 postures per second, which is very difficult, the average
duration of a posture is 0.2 seconds. Thus, in this time duration, the CPU can perform
1M % 0.2 = 200K floating-point computations, which is about 300 to 400 times of
117%3 multiplications, as the required computation power. As analyzed above, the
solution time of the dynamic programming used here is very short comparing to the
duration of making a posture, and the real-time requirement is therefore met.

 ee

(a)

(b)

(c)

Figure 8 Possible gestures ending at frame e, with gesture of
length 1 ending at e (a), length 2 (b), and length 3 (c).

In figure 9, a possible sequence of postures (posture index: 1, 31, 1, 19, 1, 26)
ending at frame 6 is input to our system, and the goal is to find suitable sequence of
gestures and to generate its corresponding semantics. When posture 26 arrives,
gesture (1, 26), which means “father” , is one of the possible vocabularies in figure 8(b),
and the solution Solution(6) = Solution(4)|(1, 26) may be the winner among 117
possible solutions since most of the gestures composed by candidate postures are
invalid in the lexicon. Therefore Solution(6) records gesture (1, 26) as its last gesture
in that sentence of length 6, and an index to frame 4. Because Solution(4) has been
processed in the same manner, (1, 19) may be the last gesture of the sentence of length
4, and its corresponding index 2 refers to the previous optimal solution frame number.
Also by the adjustment of ai j in Equation (6.1), the dynamic programming algorithm
generates an optimal path based on bi-gram strategy described in the next section.

7. Grammar Model
The goal of the grammar model is to provide an estimate of the probabili ty of a

gesture sequence G. Assume G is a sequence of gestures,

G = g1g2...gK , (7.1)

then the probabili ty of G can be written as

P(G) = P(g1g2...gK) = P(g1)P(g2|g1)P(g3|g1g2)...
P(gN|g1g2...gK-1). (7.2)

However, it is not likely to estimate P(gj|g1g2...gj-1) for all gestures and all sequence
lengths in a language. Therefore, an N-gram model is convenient to approximate
P(gj|g1g2...gj-1) as

P(gj|g1g2...gj-1) ≈ P(gj|gj-N+1...gj-1) (7.3)

Even N-gram probabili ties are difficult to estimate, thus if N = 2, Equation (7.2) can
be approximated as

P(G) = P(g1)P(g2|g1) P(g3|g2)... P(gk|gk-1), (7.4)

and this is called bi-gram and is much easier to implement and more efficient to
estimate.

8. Results
To demonstrate our system capabili ty, lesson one of the Taiwanese Sign

1 31 1 19 1 26

 he | is | my | father

Figure 9 An input stream of postures and its semantics in TSL.

Language (TSL) textbook for elementary school is implemented as our first step. It
contains 71 most frequently used vocabularies in TSL and 30 sample sentences. By
trial and error, we divide 0⇔-90⇔ into 5 quantization steps with equal quantization size
in posture recognition. The discrete density function is simply obtained by counting the
frequency in each quantization step over the total number of training samples of the
corresponding posture.

HMMs used in posture recognition can report three candidates for each posture
group (Figure 10). Whenever a discontinuity is detected, by means of time-varying
parameter (TVP) detection, 9 multiplications are needed for each HMM of posture,
and 50 comparisons are performed, and thus 9 % 50 + 50 = 500 computations are
needed; according to the analysis in Section 6, i.e., using a 1M FLOP computer, the
above computations take 500/ 1M = 0.5 m seconds. This is also verified to meet the
real-time requirement by our TSL posture recognition module.

Gesture-level match and sentence-level match always keep three solutions with
highest scores ending at each frame. As estimated in Section 6, the dynamic
programming needs 117 % 3 = 351 floating-point computations in the worst case, and
usually far smaller than this quantity because the number of valid vocabularies among
these 117 possible conditions is usually under 50. One thing to notice is that the time
needed for dynamic programming is shorter than that of posture recognition, and the
total computation time of gesture recognition is 1 m seconds at most. We have verified
the above estimation in our prototype TSL recognition system.

 The experience we learned here is that we can spend a little more computation
time on dynamic programming instead of investing in improving the posture
recognition rate; because the ambiguity resulted from a faster posture recognizer can
be easily solved by dynamic programming in our system, being implemented on a
Pentium100 PC.

The table lookup time which is not yet discussed may take the biggest part of the
whole recognition time; since the lexicon, the grammar, and the semantics files are
small enough to load into memory, this issue is not considered in this paper tentatively.
When the number of vocabularies grows up, this has to be addressed.

Furthermore, to recognize gestures more precisely, the postures of both hands
should be considered, that is, there should be two sets of input devices to capture the
postures of both left hand and right hand; while in this paper, we only take the postures
of right hand as ill ustration. Although processing the motion of two hands may double
the posture recognition time we analyzed above, the solution time for dynamic
programming is the same, and thus the total computation time takes 1.5 m seconds at
most. The information reported from attached 3D tracker can also help to solve the

1 25 26 2 31
 1: 1.0000000
32: 0.0076246
10: 0.0024320

25: 1.00000000
23: 0.05861891
 6: 0.05381770

26: 1.00000000
35: 0.01308350
6: 0.00918933

 2: 1.00000000
39: 0.02032957
 42: 0.00646599

31: 1.00000000
 4: 0.78576466
 5: 0.08633067

Figure 10 Five examples of recognized postures. For each posture, three most possible posture
candidates and the probabiliti es related to the highest score are li sted. In the fifth
column, the probabiliti es of posture 31 and posture 4 are nearly the same (see Figure 1
for posture 4), and this ambiguity can be solved by the context sensiti ve search.

ambiguity of gestures, since the former are of the same sequence of postures but
different in motion trajectory.

9. Conclusions
The model proposed in this paper is suitable for the problem of sign language

recognition. Based on the assumption that a discontinuity occurs whenever a posture is
performed, the time-varying parameters (TVP) detection can solve the ending point
problem of postures, and is proved to be feasible in our implementation. Moreover,
posture recognition with hidden Markov models (HMM) is also superior in several
aspects. First, it is always statistically correct; unlike neural network, innocent of the
procedure and results as described in Section 1, each HMM estimates based on the
statistical facts. Second, it is easy to insert a new class of posture or to delete an
existing class of posture and also new training for a specific posture is simply to
accumulate new samples into its density function. This advantage is hard to achieve by
other methods. Finally, because of the efficiency in time and space, it is very easy to
deal with large gesture “vocabularies” , while VPL™‘s posture recognizer tends to
overlap when the classes of postures are over 15[2].

Our prototype TSL recognition system can recognize dynamic gestures in real-
time; and the experience of developing posture and gesture models can be applied to
other sign languages, and may help to interpret a large set of virtual reality commands.

Reference
[1] Kaisa Väänänen, Klaus Böhm, “Gesture Driven Interaction as a Human Factor in

Virtual Environments - An Approach with Neural Networks,” pp. 93-106, Virtual
Reality System, Academic Press, 1993.

[2] Richard Watson, “A Survey of Gesture Recognition Techniques,” Technical
Report TCD-CS-93-11, Trinity College, Dublin 2, 1993.

[3] Tomas G. Zimmerman, Jaron Lanier, "A Hand Gesture Interface Device," pp. 189-
192, ACM SIGCHI/GI, 1987.

[4] Rung-Huei Liang, Ming Ouhyoung, "A Real-time Continuous Alphabetic Sign
Language to Speech Conversion VR System," Computer Graphics Forum, pp.
C67-C77, Vol. 14, No. 3, 1995. (also in EUROGRAPHICS‘95, Holland).
http://www.cmlab.csie.ntu.edu.tw/~f1506028.

[5] S. Sidney Fels, Geoffrey E. Hinton, "Building Adaptive Interfaces with Neural
Networks: The Glove-talk Pilot Study," pp. 683-688, Human-Computer
Interaction-INTERACT 90, Elservier Science Publisher B.V., North-Holland, 1990.

[6] R. Beale, A. Edwards, "Recognising Postures and Gestures Using Neural
Networks," Neural Networks and Pattern Recognition in Human Computer
Interaction, E. Holland, 1992.

[7] Dean Rubine, "The Automatic Recognition of Gestures," Ph. D thesis, Carnegie
Mellon University, December 1991.

[8] Richard Watson, Paul O'Neill , "Gesture Recognition for Manipulation in Artificial
Realities," Proc. of the 6th International Conference on Human-Computer
Interaction, Pacifico Yokahama, Yokahama, Japan, July 1995.

[9] Lawrence Rabiner, Biing-Hwang Juang, Fundamentals of Speech Recognition, pp.
321-389, pp. 434-481, Prentice-Hall International, Inc., 1993.

[10]H. M. Wang, L. S. Lee, “Mandarin Syllable Recognition in Continuous Speech
Under Limited Training Data with Sub-syllabic Acoustic Modeling,” Computer
Processing of Chinese and Oriented Language, Vol. 8, pp. 1-6, December 1994.

[11]L. S. Lee, et al, “Golden Mandarin (III)- A User Adaptive Prosodic-segment-
based Mandarin Dictation Machine for Chinese Language with Very Large
Vocabulary,” ICASSP, 1995.

