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Abstract—A signal-agnostic compressed sensing (CS) 

acquisition system is presented that addresses both the energy 

and telemetry bandwidth constraints of wireless sensors. The CS 

system enables continuous data acquisition and compression that 

are suitable for a variety of biophysical signals. A hardware 

efficient realization of the CS sampling demonstrates data 

compression up to 40x on an EEG signal while maintaining low 

perceptual loss in the reconstructed signal. The proposed system 

also simultaneously relaxes the noise and resolution constraints of 

the analog front end (AFE) and ADC by nearly an order of 

magnitude. The CS sampling hardware is implemented in a 90 

nm CMOS process and consumes 1.9 µW at 0.6 V and 20 kS/s. 

I.  INTRODUCTION 

The utility of a wireless sensor is constrained by its limited 

energy source which imposes strict energy requirements on the 

sensor circuits. Fig. 1 shows the energy costs of typical circuit 

blocks used in sensors for medical monitoring. In applications 

such as implantable neural recording arrays, the high energy 

cost to transmit a bit of information and the radio’s limited 

bandwidth necessitate data compression or filtering at the 

sensor to limit energy consumption and data throughput [1].  

As shown in Table I, many bio-signals of interest occur 

infrequently, so transmitting data only when a significant event 

is detected can be effective in reducing data and power [2]. 

Existing integrated data compression strategies for biophysical 

monitoring adopt this approach and rely on known signal 

characteristics in order to detect significant events [1-5]. 

However, the filtered data contains limited information. In 

neural recorders, the data is often limited to just the time and 

amplitude of a neural spike event rather than the signal itself [1, 

3]. Even when the event detection is used to trigger a full signal 

capture [2], the system is susceptible to missing events entirely 

if detection thresholds are not properly set. Meanwhile, feature 

extraction approaches require training, are usually signal 

specific and still do not provide the original signal [4, 5]. All of 

these signal processing strategies exemplify a common goal in 

energy constrained wireless sensors: reduce the number of bits 

transmitted to minimize the average radio power (typically 

dominant) while maintaining the captured signal information.  

In this work, we present the design and implementation of a 

new sensor system architecture based on the theory of 

compressed sensing that more efficiently achieves this goal. 

As results will show, this approach reduces the average radio 

power by exploiting signal sparseness to encode the data at a 

high compression factor. The reconstruction process also 

enables power reduction in the frontend circuitry by relaxing 

the noise and resolution requirements of the AFE and ADC. 

Unlike event detection based data compression, this approach 

enables a faithful reconstruction of the entire original signal 

and is applicable across a variety of signals without knowing 

the signal details a priori. While most of the results and 

examples presented are in the context of medical applications, 

they can be generally applied to other fields as well. The 

following sections will first give background on CS theory 

followed by a discussion of how the proposed system can 

reduce energy consumption in wireless sensors. The remaining 

sections will describe the hardware implementation, measured 

results and conclusions. 

II.  COMPRESSED SENSING BACKGROUND  

CS is an emerging field whose theory leverages known 

signal structure to acquire data at a rate proportional to the 

information rate rather than the Nyquist rate [6]. CS is based 

on several key concepts which will be discussed hereafter: 

signal sparsity, signal reconstruction and incoherent sampling. 

A. Signal Sparsity 

CS theory relies first and foremost on the signal of interest, f, 

having a sparse representation in some basis, Ψ=[ψ1ψ2...ψL] 

such that f=Ψx or: 
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where x is the coefficient vector for f under the basis Ψ. For f 

to be sparse in Ψ, the coefficients, xi, must be mostly zero or 

insignificant such that they can be discarded without any 

perceptual loss. If f has the most compact representation in Ψ, 

then f should be compressible if acquired in some other basis. 

So sparseness also implies compressibility and vice versa. A 

familiar example is a sampled sine wave which has many 

coefficients in time, but requires only one non-zero coefficient 

in the Fourier basis. Fortunately, many of the bio-signals in 

Table I have sparse representations in either the Gabor or 

wavelet domains [7, 8] thus making them suitable for CS. 

B. Signal Recovery From Incomplete Measurements 

CS theory also proposes that rather than acquire the entire 

signal and then compress, it should be possible to capture only 

the useful information to begin with. The challenge then is 

how to recover the signal from what would traditionally seem 

to be an incomplete set of measurements. Again, the 

sparseness of the signal is relied upon to make this possible.  

Consider an M×N measurement matrix, Φ, where y=Φf and f 

TABLE I 

COMMON MEASURED BIO-SIGNALS 

Signal Sampling 

Rate 

Frequency 

of Events 

Event 

Duration 

Duty Cycle 

(%) 

Extracellular APs 30 kHz 10 – 150 /s 1 – 2 ms 2 to 30 

EMG 15 kHz 0 – 10 /s 0.1 – 10 s 0 to 100 

EKG 250 Hz 0 – 4 /s 0.4 – 0.7 s 0 to 100 

EEG, LFP 100 Hz 0 – 1 /s 0.5 – 1 s 0 to 100 

O2, Ph, Temp. 0.1 Hz 0.1 /s N/A Very low 

 
Fig. 1. Energy costs for typical circuits in bio-sensor applications. It is assumed 

the DSP performs some data filtering and the TX power scales with data rate. 



is the N-dimensional signal to recover. When M < N such that 

the system is underdetermined, there are an infinite number of 

feasible solutions for f. However, if the signal to be recovered 

is known to be sparse, then the sparsest solution (most 0’s) out 

of the infinitely possible is often the correct solution. A 

common and practical approach used to determine the sparse 

solution is to solve the convex optimization problem:  
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where Ψ is the N×L basis matrix and x is the coefficient vector 

from (1). The recovered signal is then f̂  = Ψx
* where x* is the 

optimal solution. The l1-norm cost function serves as a proxy 

for sparseness as it heavily penalizes small coefficients so the 

optimization drives them to zero. The problem of minimizing 

the l1-norm in (2) has been shown to be solved efficiently and 

require only a small set of measurements (M<<N) to enable 

perfect recovery [9]. The implication of these results is that an 

N-dimensional signal can be recovered from a lower order 

number of samples, M, provided that the signal is sparse in 

some basis. We rely on this result from CS theory to reduce the 

data that the sensor must transmit. 

C. Incoherent Sampling 

In addition to sparseness, CS also relies on incoherence 

between Φ and Ψ, where coherence measures the largest 

correlation between any row of Φ and column of Ψ. The less 

coherence between Φ and Ψ, the fewer the measurements (M) 

needed to recover the signal [9]. The canonical basis (delta 

functions) and Fourier basis in a discrete Fourier transform is 

an example of a maximally incoherent Φ and Ψ pair.  

In terms of hardware cost and complexity, it is desirable if 

the signal basis, Ψ, does not need to be known a priori in order 

to determine a viable sensing matrix, Φ. Fortunately, random 

sensing matrices with sufficient sample size exhibit low 

coherence with any fixed basis [9]. This means that a random 

sensing matrix can acquire the sufficient measurements needed 

to enable signal reconstruction of any sparse signal without 

knowing a priori what the proper basis Ψ for the signal is. We 

leverage this principle to build an infrastructure for data 

acquisition and compression that is agnostic to the type of 

signals being acquired, provided that they are sparse. 

III.  COMPRESSED SENSING FOR WIRELESS SENSORS 

Fig. 2 shows a block diagram of the proposed system 

annotated with example waveforms of the signal compression 

and reconstruction along with the equivalent mathematical 

function of the CS block. In previous proposed practical 

applications of CS theory, the measurement y=Φf was applied 

prior to digitization either because the dominant consumer of 

power was the sensing mechanism [10] or because the 

sampling frequency of the ADC was the limiting factor [11]. In 

most wireless biomedical sensor applications, the sampling 

frequency is rarely a limitation, as is evident from Table I, 

while the dominant consumer of energy is in the wireless 

telemetry circuits. Thus, the proposed system architecture 

implements the CS sampling on the digitized samples where 

the hardware and power costs benefit from CMOS scaling.  

Fig. 2 illustrates how CS theory is applied to reduce the total 

sensor power. The CS block compresses the N ADC samples, f, 

into M  linear combinations, y, by realizing the matrix-multiply 

operation Φf (fΤΦΤ as shown). Thus, the number of samples 

that need to be transmitted is reduced from N to M. The radio 

power, assuming that it scales with data rate, is then clearly 

reduced by N/M which significantly lowers the average sensor 

power and energy per sample as the radio power is dominant. 

Another nice property regarding the CS framework is that the 

reconstruction algorithm is robust to noise. The intuition 

behind this is that if the noise is additive white Gaussian noise 

or even slightly colored, then it should not be sparse in the 

basis, Ψ, whereas the signal will be. Thus, as results will show, 

the resolution of the sampled data, and hence the ADC, can be 

relaxed without significant detriment to the quality of the 

reconstruction. Since the input referred noise of the AFE 

should be designed to roughly track the input referred 

quantization noise of the ADC [3], lowering the required ADC 

resolution also relaxes the required input referred noise of the 

amplifier and reduces the power in both blocks. 

IV. SYSTEM AND CIRCUIT IMPLEMENTATION 

The proposed CS system reduces energy consumption at the 

sensor node by shifting the system complexity (reconstruction) 

to the receiver which is presumably less energy constrained. 

What is not addressed in previous CS works [10, 11], however, 

is that there must also be an efficient implementation of the CS 

encoding at the sensor in order to fully realize these gains. 

To facilitate an efficient yet flexible hardware realization 

capable of signal-agnostic data capture, the sensing matrix, Φ, 
was chosen to be a random Bernoulli matrix where each entry, 

Φi,n, is +/-1. Since each output, yi, of the CS block is just a 

linear combination of the ADC samples, f, and all the entries in 

Φ are +/-1, the CS transformation can be implemented with an 

accumulator per output where each incoming ADC sample is 

added or subtracted based on the current matrix entry. Thus, 

the number of columns, N, can be programmable by changing 

the number of samples to accumulate over, while the 

maximum number of rows, M, needs to be determined 

beforehand since one accumulator is needed per row. To avoid 

overflow, a 16-bit accumulator was used to provide a sufficient 

range of N values while M was chosen to be 50 to provide 

flexibility in exploring compression factors (N/M). The block 

diagram of the matrix-multiply operation along with the 

accumulator circuits are shown in Fig. 3. At every Nth sample, 

the pseudo-random bit sequence (PRBS) generators are 

re-seeded and the serializer block captures the state of the 

 
Fig. 2. Block diagram of the proposed sensor system architecture showing the equivalent mathematical function of the CS sampling matrix. 



accumulators so that continuous data acquisition can occur 

while previously captured data is either transmitted or stored. 

To enable signal reconstruction, the “random” entries in Φ 

must be such that the rows are uncorrelated. A straightforward 

implementation using a separate PRBS generator per row 

would more than double the area and power of the CS block. 

Instead, the entire random matrix is generated from just two 

independent PRBS generators by XOR’ing the state of one 

PRBS with the current output of the other on a per sample basis. 

Fig. 4 shows the circuit used to generate the matrix entries, Φi,n, 

where i ∈[1,M] and n ∈[1,N]. The seed and sequence length 

of each PRBS is programmable to allow for the creation of 

different matrices. 

We further halve the power cost by recoding the ADC output 

into two’s complement format, so that the output is nominally 

zero, which allows gating of the accumulators on ‘-1’ entries 

instead of performing subtractions. The resulting matrix has 

1/0 entries and is functionally equivalent to its +/-1 counterpart. 

The only drawback is that the accumulators may saturate for a 

smaller N if the input has a large DC component. 

V.  MEASUREMENT RESULTS 

The testchip power, area and testing infrastructure are shown 

in Fig. 5. The testchip, which consists of an 8-bit SAR ADC 

and the CS block, uses a novel charge-sharing DAC scheme 

[12] to reduce the ADC area so that together the ADC and CS 

block consume only 200 x 550 μm in a 90 nm CMOS process. 

For the range of operating frequencies in medical applications, 

the full (M=50) CS block power consumes only 1.9 μW at 0.6 

V and 20 kS/s, and is dominated by leakage. For testing, 

pre-recorded sensor signals were either driven into the ADC 

from an external DAC or passed directly into the CS block 

through an on-chip deserializer. The output of the ADC could 

be observed synchronously with the output of the CS to enable 

comparison between the sampled and reconstructed signals. 

Fig. 6 shows an example of a continuous data acquisition for 

an N:M ratio of 1000:50; the input is continuously compressed 

from 1000 8-bit ADC samples into 50 16-bit accumulator 

outputs netting an effective compression factor of 10. In this 

example, a pre-recorded EEG signal [13] driven by the 

off-chip DAC is sampled, compressed and then reconstructed 

from an over-complete Gabor dictionary in which EEG signals 

have a sparse representation [8]. As Fig. 7 shows, the same 

procedure using different basis can be applied to other signal 

classes with similar results. 

As Fig. 6 also shows, the reconstructed signal faithfully 

represents the key features of the original ADC output but can 

be lossy. The quality of the recovered signal depends on the 

signal sparseness, the compression factor N/M as well as the 

ADC and accumulator resolutions. In order to quantify the 

impact of each parameter as well as the effects of noise, an 

artificial noiseless reference EEG signal (fREF) was created 

from over a half a dozen Gabor frames. The signal-to-noise- 

and-distortion ratio (SNDR) of the reconstructed waveform 

(fREC) is then plotted for various compression factors and 

resolutions where SNDR is defined as:  
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To emulate input from lower resolution converters, bits from 

the ADC could be masked out in hardware. As Fig. 8 shows, 

there is little perceptual difference between the reconstructed 

 
Fig. 3. Block diagram of the CS transformation and accumulator circuits. 

 
Fig. 4. Circuit for generating CS matrix entries. 
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Fig. 5.CS area and power of the testchip and testing setup block diagram. 

 
Fig. 6. Continuous data acquisition of an EEG signal showing the ADC output, 

compressed samples, and reconstructed waveform for N=1000, M=50. 

 
Fig.7. Original and reconstructed signals: a neural signal, EKG and sine waves. 



signal from an 8-bit and 5-bit ADC. The same is true when the 

resolution of the accumulator is reduced to 8-bits by dropping 

the LSBs. Fig. 8 also shows the SNDR of the reconstructed 

waveform from an ideal ADC and from the ADC on the 

testchip. As the SNDR plots show, there is little difference 

between the reconstructed signal from the perfectly linear, 

idealized ADC and the non-linear ADC on the testchip. 

Interestingly, the on-chip ADC actually outperforms the ideal 

ADC at lower resolutions because of its non-uniform 

quantization. Collectively, these results show the robustness of 

the reconstruction process which relaxes the ADC resolution to 

5-bits and allows the accumulator resolution to halve, thus 

improving the effective compression by a factor of two.  

Since the maximum M directly impacts power and area costs, 

it is important to understand the tradeoffs as it scales as well. 

Fig. 9 plots the SNDR of the reconstructed signal over a range 

of N/M for several M. The plots show that compression factors 

at or below 40x enable good signal reconstruction for values of 

M above 20. Thus, the number of accumulators in the sampling 

matrix could be halved for signals with similar sparsity. It 

should be noted that for sparser signals, lower M, or higher 

compression factors (N/M) can be realized. 

Table II demonstrates the impact on power that the proposed 

CS block would have on previous neural recording systems. 

The performance of the AFE, ADC and TX are assumed to be 

the same both with and without CS, only with relaxed 

specifications. The power of the ADCs and the input referred 

noise of the AFE are assumed to scale roughly as 2B, where B is 

the ADC resolution, while AFE power scales roughly as 22B. 

Since the CS block is leakage limited, its power scales linearly 

with area, or M. Even at modest compression factors (10x) and 

for UWB systems where the radio power is not dominant [14], 

adoption of the CS architecture results in significant average 

power savings. The CS based system is even up to 10x lower 

power than wired systems [2, 3] and the energy cost of the CS 

block is comparable to feature extraction processors [4, 5]. 

VI. CONCLUSION 

This work has presented a novel architecture and circuit 

implementation for data acquisition and compression in energy 

constrained wireless sensors. The proposed system enables 

recovery of the full signal while simultaneously compressing 

the amount of transmitted data and relaxing the noise and 

resolution constraints of the AFE and ADC. This circuit 

architecture demonstrates lower energy cost compared to 

existing data compression alternatives and enables continuous 

data capture, compression and transmission without requiring 

any general purpose memory or processing at the sensor. The 

proposed system is also generic enough to capture and 

compress data for any sparse signal, which is a departure from 

traditional compression techniques that are typically 

signal-specific.  
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Fig. 8. SNDR of the original and reconstructed signals vs. ADC resolution and 

accumulator resolution with select accompanying waveforms. 

 
Fig. 9. SNDR of the reconstructed signal vs. compression factor (N/M). 

TABLE II 

AVERAGE SENSOR POWER PER CHANNEL WITH CS DATA COMPRESSION 


