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Abstract-Time-frequency distributions (TFD’s), which in- 
dicate the energy content of a signal as a function of both time 
and frequency, are powerful tools for time-varying signal anal- 
ysis. The lack of a single distribution that is “best” for all ap- 
plications has resulted in a proliferation of TFD’s, each cor- 
responding to a different, fixed mapping from signals to the 
time-frequency plane. A major drawback of all fixed mappings 
is that, for each mapping, the resulting time-frequency repre- 
sentation is satisfactory only for a limited class of signals. In 
this paper, we introduce a new TFD that adapts to each signal 
and so offers good performance for a large class of signals. The 
design of the signal-dependent TFD is formulated in Cohen’s 
class as an optimization problem and results in a special linear 
program. Given a signal to be analyzed, the solution to the lin- 
ear program yields the optimal kernel and, hence, the optimal 
time-frequency mapping for that signal. A fast algorithm has 
been developed for solving the linear program, allowing the 
computation of the signal-dependent TFD with a time complex- 
ity on the same order as a fixed-kernel distribution. Besides this 
computational efficiency, an attractive feature of the optimi- 
zation-based approach is the ease with which the formulation 
can be customized to incorporate application-specific knowl- 
edge into the design process. 

I .  INTRODUCTION 

IME-frequency distributions (TFD’s) are two-dimen- T sional functions that indicate the joint time-frequency 
energy content of a signal. They have been utilized to 
study a wide range of signals, including speech, music, 
and other acoustical signals, biological signals, radar and 

sonar signals, and geophysical signals. Most TFD’s of 
current interest are members of Cohen’s bilinear (qua- 
dratic) class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ l]-[3]. Examples include traditional favor- 

ites such as the Wigner distribution and the spectrogram 
(the squared magnitude of the short-time Fourier trans- 

form), as well as more recent introductions like the Choi- 
Williams distribution [4] and the cone-kernel distribution 
[5 ] .  Each distribution in Cohen’s class can be interpreted 
as the two-dimensional Fourier transform of a weighted 
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version of the symmetric ambiguity function (AF) of the 
signal to be analyzed. That is, if P( t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  is a bilinear TFD, 
then 

m 

p ( t ,  0) = s”_ j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ( 0 ,  7)w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 ) e - ’ + J T W  de zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd7 
- m  

(1) 

where 

The weighting function (P (0,  7) is called the kernel of the 
distribution. The properties of a particular bilinear TFD 
are completely determined by its kernel function, via (1). 

Since the AF is a bilinear function of the signal, it ex- 
hibits cross-components 161, which, if allowed to pass into 
the TFD, can reduce autocomponent resolution, obscure 
the true signal features, and make interpretation of the 
distribution difficult. Therefore, the kernel is often se- 
lected to weight the AF such that the autocomponents, 

which are centered at the origin of the (0, 7) ambiguity 
plane, are passed, while the cross-components, which are 
located away from the origin, are suppressed [7], [8]. That 
is, in order to suppress cross-components, @ (e ,  7) should 
be the frequency response of a two-dimensional low-pass 
filter. When a low-pass kernel is employed, there is a 
tradeoff between cross-component suppression and auto- 
component concentration: generally, as the passband re- 

gion of the kernel is made smaller, the amount of cross- 

component suppression increases, but at the expense of 
autocomponent concentration. 

For a given class of signals, we say that a TFD offers 
good performance if, for each signal in the class, it 
achieves a high degree of both cross-component suppres- 
sion and autocomponent concentration, and provides an 
accurate representation of the time-frequency content of 
the signal. An important theoretical and practical goal of 
time-frequency analysis is to define a TFD that attains 

good performance for a large class of different signals. 
Traditionally, TFD’s have used fixed kernels, with 

fixed passband and stopband regions. However, specifi- 

cation of a fixed kernel limits the class of signals for which 
the corresponding time-frequency representation per- 
forms well. That is, given any fixed kernel, it is always 
possible to find signals with either significant cross-com- 
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ponent energy in the passband zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the kernel or significant 
autocomponent energy in the stopband of the kernel.’ By 
studying the shape of a kernel, we can predict both the 
class of signals for which the corresponding TFD per- 
forms well and the class of signals for which the TFD 

performs poorly. 
To illustrate the limitations of fixed-kernel TFD’s, con- 

sider two example signals. The first is the sum of two 
short Gaussian pulses: 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.25 and To = 5 .  The second is the sum of two 
linear-FM, “chirp” signals: 

s2 ( t )  = e-a (J  + 7-01’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+JN + To)’ -PI(!  + 7-01 

(4) 

with a = 0.004, c = 0.025, To = 3.5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwI = 1.72, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w2 = 1.42. Both signals are sampled once per second for 
computational purposes. Signal si ( t )  is shown in Fig. l(a); 
the real part of s2( t )  is shown in Fig. l(b). The AF’s of 

these signals are given in Figs. l(c) and (d). Note the 
locations of the auto-components and cross-components. 

The Wigner distribution has a kernel that performs no 
filtering of the AF, 

+ e - U “  - To)’ + J < ( J  - To)’ -Jwz(J - El) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 W ( B ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7) = 1 (5 )  

so both auto-components and cross-components are passed 
into the TFD without attenuation. Wigner distributions of 
the example signals are shown in Fig. 2; although the au- 
tocomponents are highly concentrated, the cross-compo- 

nents are large. 
The Choi-Williams distribution has an exponential ker- 

nel 
? ,  

+‘cw(e, 7) = e - ( ’ - T - / m )  (6) 
that is large along both the 6 and 7 axes (see Fig. 3(a)). 
It performs well for signals whose AF autocomponents lie 
along these axes. This is the case with, for example, the 

pulse signal of Fig. l(a). In the Choi-Williams distribu- 
tion of this signal (shown in Fig. 3(b)), the cross-com- 
ponents are suppressed at the expense of some smearing 
and shouldering of the autocomponents. The Choi-Wil- 
liams distribution performs poorly, however, for signals 
whose AF autocomponents do not lie along the 0 and 7 
axes. For example, signals with substantial frequency 

modulation are poorly represented (see Fig. 3(c)), be- 
cause the kernel severely truncates the autocomponents of 

such signals. 
The kernel generating the cone-kernel distribution is 

given by 

CO? otherwise 

(7) 

‘We note that the same limitation exists for the class of fixed-kernel, 

bilinear time-scale distributions, which includes the squared magnitude of 
the continuous wavelet transform 191. 

t 
(a) 

1 auto-components 7 1 auto-components I I 

cross-compone;lts I cross-components 1 L .  , . ! ,  . J 
0 0 0 0 

(C)  ( 4  

Fig. I ,  Example signals for the TFD’s of Figs. 2-5. (a) The signal given 
in (3).  consisting of two short Gaussian pulses. (b) The real part of the 
signal given in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), consisting of two parallel Gaussian chirps. (c) Equal- 
energy contour plot of the magnitude of the ambiguity function (AF) of the 

pulse signal. (d) The AF of the chirp signal. 

(a) (b) 

Fig. 2. Wigner distributions of (a) the pulse and (b) the chirp signals of 
Fig. I .  The Wigner kernel is +,+,(B. 7 )  = I ,  so the distribution is simply 
the two-dimensional Fourier transform of the AF. Note the large cross- 
components that appear midway between the autocomponents. 

and is shown in Fig. 4(a). The time-frequency represen- 
tation of the cone-kernel distribution is excellent for pulse- 
like signals whose AF autocomponents lie near the 0 axis 

(see Fig. 4(b)), but poor for some chirp signals, as evi- 
denced by Fig. 4(c). 

The spectrogram kernel is related to the AF of the anal- 
ysis window w( t )  by [ lo]  

Results are excellent for signal components that resemble 
the window [ 7 ] ,  but all mismatched components are dis- 
torted. Fig. 5 shows the spectrogram kernel and spectro- 
grams computed using a Gaussian window of length sim- 
ilar to the effective length of the signal components of 
si ( t ) .  If the analysis window of the spectrogram, and 
hence the kernel, is matched to one of the signal compo- 
nents, the matched-$iter spectrogram results. As Fig. 5(b) 

shows, the matched-filter technique can yield excellent 
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(b) (c) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  (a) Equal-energy contour plot of the Choi-Williams kernel for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU = I O .  (b) Choi-Williams distribution of the pulse 
signal of Fig. I(a). Since the AF autocomponents of this signal lie along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtJ axis and the cross-components lie off the 0 axis 
(see Fig. I(c)). the autocomponents are passed and the cross-components are suppressed in the TFD. (c) Choi-Williams distri- 
bution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the chirp signal of Fig. I(b). The AF autocomponents line up with neither the 0 nor the 7 axis (see Fig. I(d)) and so 
are truncated. 

(b) (C) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. (a) The cone kernel for a = 2, CY = 0.036. and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 8. (b) Cone-kernel distribution of the pulse signal of Fig. I(a). 
Since the AF autocomponents line up with the 0 axis. an excellent representation results. (c) Cone-kernel distribution of the 
chirp signal of Fig. I @ ) .  Since the AF autocomponents do not lie near the axes, the representation is poor. 

results. However, the technique works for only one type 
of signal component and, in addition, requires a priori 
knowledge of the form of the component. Mismatch be- 

tween the window and other signal components can result 
in severe distortion of the representation, as in Fig. 5(c). 

Although the two example signals differ only in their 

orientation in time-frequency (compare Figs. 2(a) and 
(b)), none of the aforementioned TFD’s perform ade- 
quately for both. This is indicative of a fundamental lim- 
itation of TFD’s employing fixed kernels: 

Ajixed kernel results in good performance only for cer- 

tain conjigurations of AF autocomponents and cross-com- 
ponents, and thus only for a limited class of signals. 

Since the locations of the autocomponents and cross- 
components depend on the signal to be analyzed, we ex- 

pect to obtain good performance for a broad class of sig- 
nals only by using a signal-dependent kernel. A signal- 
dependent kernel provides a good time-frequency repre- 
sentation by adjusting its shape in order to pass autocom- 
ponents and suppress cross-components, regardless of 
their location and orientation. 

Signal-dependent kernels have been proposed by sev- 
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(b)  (c) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  (a) The kernel generating the spectrogram (the squared magnitude of the short-time Fourier transform) when the analysis 
window is matched to the signal components of Fig. ](a). (b) (Matched-filter) spectrogram of the pulse signal of Fig. I(a). (c) 
Spectrogram of the chirp signal of Fig. I(b) computed using the same window. 

era1 authors. The adaptive spectrogram representation for 

speech signals developed by Glinski adapts the window 
based on a segmentation (provided by the user) of the sig- 
nal into pitch periods zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1 11. Nuttall designs a kernel com- 
posed of Gaussian components based on information that 
the user provides after viewing the Wigner distribution 
[ 121. Jones and Boashash adapt the modulation rate of a 

fixed window to match an estimate of the signal’s instan- 
taneous frequency [ 131. In [ 141, Cohen designs a signal- 
dependent kernel that totally concentrates the distribution 

of a constant amplitude monocomponent signal along its 
instantaneous frequency. Kadambe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. utilize an adap- 
tive filtering technique coupled with AR modeling and 
clustering to design kernels [ 151. Optimal smoothing ker- 
nels are considered by Andrieux et a l . ,  but only for simple 
signals of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs( t )  = e’”(‘), and only for the restric- 
tive class of Gaussian kernels [16]. Jones and Parks de- 
velop a technique using Gaussian kernels whose shape and 
orientation vary with time and frequency to maximize a 

local measure of signal-energy concentration [ 171, [ 181. 
It often works well but is computationally expensive. An 
approach similar to that in [ 131 is adopted by Mihovilovic 
and Bracewell, who derive an iterative algorithm for es- 
timating the aspect ratio and orientation angle of a time- 
varying Gaussian kernel [19]. Recently, Loughlin et al. 
[20] have devised a technique for selecting a nonbilinear 
distribution from the positive class [21] that resembles a 
spectrogram, yet satisfies the marginal distributions. 

These efforts constitute the present state-of-the-art of 
signal-dependent time-frequency analysis. While merito- 
rious for demonstrating the potential of signal depen- 

dency, most of these approaches suffer from one or more 
substantial drawbacks: each either requires human inter- 
vention, is ad hoc, excessively restricts the class of allow- 
able kernels, or is computationally expensive. 

We propose a new procedure for selecting a signal-de- 

pendent kernel. Given a signal, the method automatically 

designs a kernel that is optimal with respect to a set of 
performance criteria that attempt to capture, mathemati- 
cally, the kernel properties that lead to good performance. 
Since we consider a large class of kernels, good perfor- 
mance is expected for a wide range of signals. Moreover, 

the computational complexity of the procedure is on the 
same order as fixed-kernel techniques. 

This paper is organized as follows. In the next section, 
we present an optimization-based design procedure for a 
signal-dependent kernel. Section I11 concerns the solution 
of the design problem; we will see that the optimization 
formulation results in a linear program with a simple so- 
lution. Examples that demonstrate the effectiveness of the 
signal-dependent approach are given in Section IV. In 
Section V we propose extensions to the optimization for- 

mulation to incorporate application-specific knowledge 
about the signal being analyzed. A discussion and conclu- 

sion are offered in the final section. A companion paper 
[22] focuses on a fast algorithm to solve the linear pro- 
gram that defines the optimal kernel. 

11. OPTIMAL KERNEL DESIGN 

To find the bilinear TFD that provides the “best” time- 
frequency representation for a given signal, we formulate 
the signal-dependent kernel design procedure as an opti- 
mization problem [23]. The problem formulation requires 
a class of two-dimensional kernel functions from which 
the optimal kernel is chosen, and a performance index that 
measures the quality of the time-frequency representation 
with respect to criteria deemed important by the designer. 
The kernel maximizing the value of the performance in- 
dex is selected as the optimal kernel for the signal. 

The class of kernels will be specified by a set of con- 

__ 
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straints, and must be large enough to allow for good per- 
formance for all signals of interest in a given application. 
Constraints applied in current fixed-kernel distributions 
include, for example, constraints that force the kernel to 
suppress cross-components [7], satisfy the time and fre- 
quency marginal distributions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], preserve the time or 

frequency support of the signal [5], or satisfy Moyal’s 
formula [2]. The performance measure must be chosen to 
yield a tractable optimization problem that can be solved 

efficiently. An example of a useful performance index is 
a measure of the signal-energy concentration of the dis- 
tribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[17], [18]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAContinuous- Time Optimizarion Formulation 

The optimization formulation we propose for bilinear 
TFD kernel design relies on the AF of the signal and the 
characterization of the TFD indicated by (1). We propose 
optimality criteria based on the AF for three reasons. 
First, the multiplicative operation of the kernel on the AF 

is conceptually and mathematically simple, which simpli- 
fies the construction of a quality measure. Second, as dis- 

cussed in  the Introduction, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAF serves to separate the 
autocomponents and cross-components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. Third, the AF 
leads to efficient computation of the signal-dependent 
TFD, via ( I ) .  We will refer to the TFD obtained using 
the optimal, signal-dependent kernel as the optimal-ker- 
ne1 (OK) distribution Popr(t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ) .  

Given a signal and its AF, A ( 0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT), we define the op- 
timal kernel as the real, nonnegative function’ 9,,,(0, 7) 
that solves the following optimization problem [23] : 

max i:m ( A ( 0 ,  7 ) 9 ( 0 ,  7)12 d0 d7 (9) 

m 

- m  

subject to 

‘p(0, 0) = 1 (10) 

9.0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 )  is radially nonincreasing (1 1) 
. r m  

The radially nonincreasing constraint (1  1)  can be ex- 
pressed explicitly as 

+O-l, $1 1 @@2, $) v rl < r29 v II/ (13) 

where @ ( r ,  $) is the kernel function represented in polar 
coordinates ( r  and $ correspond to radius and angle, re- 
spectively). 

The constraints (lo)-( 12) and performance measure (9) 
are formulated so that the optimal kernel passes autocom- 
ponents and suppresses cross-components. The con- 

straints force the optimal kernel to be a low-pass filter of 

‘Since the signal-dependent kernel optimization is defined only in terms 
of the squared magnitude o f  the kernel. l@c)p,(O, r)I2, an additional con- 
straint on the phase of the kernel is necessary to ensure a unique solution 
to the problem. Here, we assume that the phase is zero, implying that the 
optimal kernel is a real, nonnegative function. 

fixed volume a .  As discussed in the Introduction, low- 
pass kernels are desirable, because AF autocomponents 
are centered at the origin of the (0, 7 )  plane, while cross- 
components tend to lie away from the origin. 

The constraints do not dictate the exact shape of the 

passband of the kernel; the shape i s  determined by max- 
imizing the performance measure. Clearly, without the 
monotonicity constraint (1 l),  the optimal kernel would be 

large, wherever ( A  (0, 7)12 is large, regardless of whether 
the peaks correspond to autocomponents or cross-com- 
ponents. However, assuming that the autocomponents and 

cross-components are somewhat separated in the (e ,  7) 
plane, the monotonicity constraint imposes a penalty on 
kernels whose passbands extend over cross-components. 
These kernels must waste precious kernel volume over 
regions between the autocomponents and cross-compo- 
nents, where / A  (0, 7)I2-and thus also the J A  (0, 7) % (0,  
7) 1’ contribution to the performance measure-is small. 
Hence, the optimization formulation favors kernels that 
pass the components concentrated at the origin-precisely 

the autocomponents. 
By the same reasoning, we infer that the performance 

of this kernel design technique deteriorates for signals 

whose AF autocomponents and cross-components overlap 
considerably. However, for this class of signals all cur- 
rent methods of time-frequency analysis fail without a 
fortuitous conjunction of autocomponents and kernel 

passband. 
Note that the performance measure and constraints are 

radially symmetric and, hence, insensitive to the orien- 
tation angle of the signal components in the (e, T) plane. 
Furthermore, it is straightforward to show that the for- 
mulation is insensitive to the time scale of the signal. 

The goal of the optimization problem (9)-( 12) is strictly 

to find the kernel that optimally passes autocomponents 
and suppresses cross-components. Other constraints that 
encourage additional kernel properties are considered in 
Section V.  Conceptually, the computation of the OK TFD 
involves first finding the AF of the signal and then solving 
the optimization problem (9)-( 12) for the optimal kernel. 
The OK TFD Popt(tr U) is then computed using (1). 

B. Selecting the Kernel Volume Parumeter cy 

By controlling the volume under the optimal kernel, the 
parameter a controls the tradeoff between cross-compo- 
nent suppression and smearing of the autocomponents. If 
a is too small, the resulting TFD will be smeared exces- 
sively. If cy is too large, extra kernel volume will be avail- 
able to extend over the cross-components and little cross- 
component suppression will result. While the exact kernel 
volume is application-dependent, we offer some guide- 
lines for its choice in this section. 

Our approach is to first determine the value of a such 
that the optimal kernel passes a given amount of energy 

from the AF into the OK distribution for a “concen- 
trated” signal. Then, bounds on energy transfer will sug- 
gest bounds on a ,  The signal most concentrated in (0,  T) 
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space is the Gaussian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[24] 

1 
(14) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - e- ( r2 /4 )  

4% 
which has an AF with circular equal-energy contours’ 

(15) ~ ( 8 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7) = e-(l /4)(82 + r z )  

Letting j- represent the fraction of energy passed from the 
AF into the TFD by the optimal kernel, we have (using 
Parseval’s formula for Fourier transform pairs) 

The optimal kernel for this Gaussian signal takes on the 
value 1 on a circular disk and 0 elsewhere in the ( e ,  7) 
plane. Computing both the kernel volume, using (12), and 
the energy transfer measure, using (16), in terms of the 
radius of the disk yields the relationship between a and j- 
for this signal 

a = -In (1 - j-). (17) 

Small values of a will result in excessive smoothing of 
the OK distribution. Since there appears to be little benefit 
gained from smoothing more than the spectrogram [25], 
the optimal kernel volume that transfers the same amount 
of energy in the OK TFD as a spectrogram kernel is a 

reasonable lower bound for a. It is straightforward to 
show, using (16) ,  that the maximum possible energy 
transfer for a spectrogram is j- = 1 /2 .  Using this value 
in (17) yields a lower bound for the optimal kernel volume 

CY I 0.69. (18) 

To minimize autocomponent distortion due to smear- 
ing, we must maximize the energy transferred by the op- 
timal kernel. However, as j- is increased, a point of di- 
minishing returns is reached: for large j-, increasing t 
further requires an exponential increase in kernel volume, 
making it more likely that significant cross-component 

energy will be passed into the OK TFD. Upon examina- 
tion of ( 1  7), a reasonable upper bound for the kernel vol- 
ume (the “knee point” in the j- versus a curve) is 

a I 3.0. (19) 

Note that these bounds should be used only as a guide 
to prevent oversmoothing and undersmoothing of the OK 
distribution. The actual value selected for CY will depend 
on the amount of smoothing required for a specific appli- 
cation. In some applications, the signal cross-components 
are located far out in the ( e ,  7) plane, and values of a 
considerably larger than 3.0 can still result in adequate 
cross-component suppression. 

111. OPTIMAL KERNEL SOLUTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Discrete- Time Optimization Formulation 

In practice, TFD’s are computed at discrete time and 
frequency locations, so we reformulate the kernel opti- 
mization problem by discretizing (9)-( 12) on a rectangu- 
lar grid of samples. With suitably dense sampling, the 
discrete optimal kernel converges weakly to the continu- 
ous-time optimal kernel. Performing the discretization, we 
define the optimal discrete kernel to be the real, non- 
negative function +:pt(m, n )  that solves 

( M / 2 )  - I (NI21 - I 

max C ( ~ ~ { ( m ,  n)*d(m, n)12 (20) 
+,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAttl = - ( M / 2 )  ti = - ( N / 2 )  

subject to 

+pd(0, 0) = 1 (21) 

+‘d(m, n)  is radially nonincreasing (22) 

( M / 2 )  - I ( N / 2 )  - I 

A & C  c I@&, n)12 I a, a 2 0 
2T m = - ( M / 2 )  n = - ( N / 2 )  

(23) 

where Ad(m,  n )  and ‘P , (m,  n )  represent the discrete AF 
and kernel, respectively. 

Conceptually, the M X N discrete AF A,(m, n )  is ob- 
tained by sampling the continuous-time AF on a rectan- 
gular grid 

Ad (m, n, A (0, 7) 10 = &NI. r = ATfi 

M M 
2 2 

_ -  < m S - - l ,  

Discrete kernels are defined similarly. Sampling of the 
continuous-time AF on too coarse of a grid (A, or A, too 
large) could result in a loss of important signal informa- 
tion. Appropriate values for the sampling parameters to 
ensure that this does not occur are derived in [26], [27] 
based on the assumption that no information is lost if the 

continuous-time AF (as an arbitrary two-dimensional 
function) can be exactly reconstructed from its samples 
A ,  ( m ,  n)  . To summarize the results, suppose that L sam- 
ples of a discrete-time signal are obtained by sampling a 
continuous-time signal that is bandlimited to I / 4 T  Hz 

~pd(k) = s(k7),  k = 0 ,  1, * * , L - 1 .  (25) 

Then, the critical values of the sampling parameters are 

Discretizing (2 )  using these parameters yields a formula 
for the direct calculation of the discrete AF 

L -  1 

’More general Gaussian signals corresponding to AF’s with noncircular &(m, n )  = T S* ( k  - n )  s ( k  + n)  eJ(2*/wmk (27) 
contours lead to a more complicated analysis, but identical results. k = O  
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which can be efficiently implemented using a series of 
L-point fast Fourier transforms (FFT’s). 

In discretizing (9)-(12) on a rectangular grid of sam- 
ples, we have ignored the fact that the kernel nonincreas- 
ing constraint (1 1 )  implicitly assumes a polar coordinate 
representation of the kernel, whose exact analog can be 
implemented only on a polar grid of samples. An alternate 

discretization would see (9)-( 12) discretized on a polar 
grid. However, computation of the AF and OK distribu- 
tion would then require the execution of either a polar 

Fourier transform, for which no fast algorithm currently 
exists, or costly interpolation from a rectangular grid. 
Therefore, we abide by our original discretization and ap- 
proximate the polar grid required by the nonincreasing 
constraint by a set of paths on the rectangular grid. Fig. 
6 illustrates a tree structure [28] that approximates the ra- 

dial dependencies of the kernel for the upper half-plane 

of a 32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 32 rectangular grid. The discretized kernel non- 
increasing constraint is implemented using a set of con- 
straints of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ d ( W  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) 5 +‘d[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( m ,  n>l (28) 

where p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m, n )  represents the first sample point encoun- 
tered when moving along the branch of the tree from sam- 

ple (m, n )  towards the origin. The branches of the tree are 
constructed to minimize the deviation between the branch 
that connects a sample to the origin and the radial line 
through that sample. This deviation is small, so as the 
sampling density is increased, the tree converges to a set 
of truly radial lines. Further details regarding the con- 
struction of the tree are given in the Appendix. 

Since the performance measure (20) and constraints 
(21)-(23) are linear in l + c / 1 2 ,  the optimal kernel can be 

found by applying linear programming [29] to solve for 
the MN unknowns +‘d(m, n) .  (Since is assumed to be 
real and nonnegative, knowing is equivalent to 
knowing +<,.) This suggests a simple procedure for deter- 
mining samples of the OK distribution. First, the discrete 
AF of the signal to be analyzed is computed. Next, the 
linear program is solved for the optimal kernel, which is 
then multiplied by the AF. The two-dimensional FFT of 
the product is the discrete OK distribution. 

B. Fast Algorithm 
A solution for the optimal kernel using standard linear 

programming methods may be simple, but it is also com- 

putationally expensive. Use of the standard simplex al- 
gorithm would result in the optimal kernel solution dom- 
inating the total cost of computing the OK distribution. 
However, by exploiting the simple structure of this par- 
ticular linear program, we have developed an extremely 
efficient procedure to construct the optimal kernel, de- 
scribed in a companion article [22]. For an L X L discrete 
AF and kernel, the algorithm solves the linear program in  
O(L2 log L) operations. Therefore, the total cost to com- 
pute the OK TFD is also O(L2 log L), assuming that an L 
X L two-dimensional FFT is employed to produce the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(0,O) m 

Fig. 6. Minimum-junction tree for the upper half-plane of a 32 X 32 
rectangular sampling grid. The kernel nonincreasing constraint (22) is im- 

plemented by forcing the kernel to be nonincreasing along the approxi- 
mately radial branches of the tree. Construction details for this tree are 
given in  Appendix A. 

distribution from the AF-kernel product. This is the same 
order of computation as required to compute fixed-kernel 
TFD’s such as the Wigner distribution, spectrogram, etc. 

Note that since the magnitude of the AF is symmetric 

IA</(m, n)I2 = 1 A d - W  - ) I 2  (29) 

the optimal kernel is also symmetric, and thus only needs 
to be computed at sample points in the upper half of the 
ambiguity plane. This reduces the number of variables in 
the linear program by approximately a factor of two. Ker- 

nel samples in the lower half-plane can be obtained using 
a symmetry relation similar to (29). 

IV. EXAMPLES 

In order to compare the performance of the signal-de- 
pendent TFD with the fixed-kernel TFD’s described in 

the Introduction, the optimal kernels and OK TFD’s were 
computed for the same pulse and chirp signals given by 
(3) and (4). Sixty-four samples of each signal were ana- 
lyzed using a kernel volume of CY = l .2  and a minimum- 
junction tree similar to that in Fig. 6 for the nonincreasing 
constraint. Also, as discussed in  Section V-A, Gaussian 

tapering with smoothness factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU = 1.5 was applied to 
each optimal kernel prior to computing the OK TFD. The 
optimal kernels and TFD’s are shown in Figs. 7 and 8. 
The cross-components visible in the fixed-kernel TFD’s 
of Figs. 2-5 are virtually eliminated, yet the autocom- 
ponents remain quite concentrated. For monocomponent 
signals, the resulting OK TFD very closely resembles the 
Wigner distribution, even for fairly modest kernel vol- 
umes. 

Low-pass kernels have proven useful for reducing the 
high noise sensitivity of the bilinear TFD’s [30]. To in- 
vestigate the performance of the design procedure under 
noisy conditions, we corrupted the chirp signal with ad- 
ditive, white Gaussian noise. The signal-to-noise ratio, 
measured as the ratio of the total signal power to the total 
noise power, was 0 dB. The real part of the noisy signal 
is shown in Fig. 9(a); Figs. 9(b), (c)-(e) illustrate the 
Wigner, Choi-Williams, and cone-kernel distributions, 
and the matched-filter spectrogram. The optimal kernel 
was computed using the same parameters as above and 
was found to be identical to that shown in Fig. 8(a). The 
cross-component and noise suppression of the OK distri- 
bution, shown in Fig. 9(f), are excellent, indicating that 

the signal-dependent kernel design procedure is robust in 
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(C) 

Fig. 7. Optimal kernel and OK TFD for the pulse signal of Fig. I(a).  (a) 

Optimal kernel of volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = I . 2 .  Note the close match to the AF auto- 
components of Fig. I(c). (b) Optimal kernel tapered using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU = 1.5 (see 

Section V-A for a discussion of kernel tapering). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( c )  TFD computed using 
the tapered optimal kernel. 

( c )  

Fig. 8. Optimal kernel and OK TFD for the chirp signal of Fig. I (b) .  (a)  
Optimal kernel of volume a = I .2. Note the close match to the AF auto- 
components of Fig. l(d).  (b) Optimal kernel tapered using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU = 1.5. ( c )  
TFD computed using the tapered optimal kernel. 

the presence of significant additive noise. When compar- 
ing the OK distribution with the matched-filter spectro- 
gram, remember that the optimal kernel is computed 
“blind,” using no a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori information regarding the sig- 

nal, whereas the matched filter spectrogram requires ac- 
curate estimates of the signal parameters (chirp rate, for 
example). This suggests that the OK TFD may prove use- 
ful for the automatic detection of signals in noise. 

Fig. 10 illustrates the analysis of 2.5 ms of an echolo- 
cation pulse emitted by the large brown bat, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEptesicus 
fuscus. The signal was sampled every 7 ps, yielding ap- 
proximately 350 data samples. While the Wigner distri- 

Fig. 9. Time-frequency distributions of the chirp signal of Fig. I(b) cor- 
rupted by additive white Gaussian noise. The SNR, measured as the ratio 
of the total signal power to the total noise power, is 0 dB. (a) Real part of 
the time signal. (b )  Wigner distribution. ( c )  Choi-Williams distribution (U 
= 5).  (d) Cone-kernel distribution (a  = 2,  a = 0.036, and fi = 8). (e) 
Matched-filter spectrogram. ( f )  TFD computed from the tapered optimal 
kernel of volume a = 1.2.  

I 
t 2 5 msec 11 

” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkHz --1 

0 t 2 5  msec 

7 1 k H Z ’  

Fig. I O .  Time-frequency distributions of 2.5 ms of an echolocation pulse 
emitted by the large brown bat, Eptesicusfuscus. (a) Equal-energy contour 
plot of the Wigner distribution. (b) Spectrogram computed using a Gauss- 
ian window with an e - ’  time width of 160 ps. (c) Cone-kernel distribution 
(a  = 2,  a = 0 = 5 X IO-‘). (d) TFD computed from the tapered optimal 

kernel of volume a = 4.  The fundamental and first two harmonics of the 
chirp are sharply resolved in  the OK TFD. 
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bution of Fig. 10(a) is highly concentrated, it has large 
cross-components. A spectrogram analysis conducted us- 
ing a Gaussian window with an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-’ time width of 160 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps 
yields a smeared TFD (see Fig. lO(b)). The cone-kernel 
distribution of Fig. 1O(c) is similar. In the OK TFD of 
Fig. 1O(c), computed using a kernel volume of CY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, 
the fundamental and first two harmonics are sharply re- 
solved, while the cross-components have been sup- 

pressed. 
As demonstrated in Fig. 10, the OK TFD performs well 

with slightly hyperbolic-FM signals. However, as the FM 
law becomes highly nonlinear, the AF autocomponents 
become less concentrated, and performance deteriorates 
somewhat. For these types of signals, a technique allow- 
ing time and frequency variation of the optimal kernel 
would produce better results. See [ 171, [ 181 for a descrip- 
tion of related techniques. 

V.  KERNEL DESIGN WITH ADDITIONAL CONSTRAINTS 

The optimization formulation of Sections 11-A and 
111-A is a general tool for signal-dependent kernel design. 
In certain applications, properties in addition to cross- 
component suppression are required of the kernel. An at- 
tractive feature of the optimal kernel design formulation 
is the ease with which it can be customized to incorporate 
application-specific knowledge into the design process. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
priori information or requirements are included either by 
adding additional constraints, modifying the performance 
measure, or postprocessing the optimal kernel. 

A .  Smoothness Constraints 

An important consequence of the linear program for- 
mulation is that the optimal, signal-dependent kernel takes 
on essentially only the values 1 and 0 1221. Although such 
a kernel is optimal according to the criteria of Section 
111-A, its sharp cutoff may introduce ringing in the OK 
distribution, especially for small values of the kernel vol- 
ume parameter a. Smooth kernels can be created either 
by post-processing the optimal kernel or by adding ex- 
plicit smoothness constraints to the optimization formu- 
lation. 

A simple postprocessing approach to smoothing creates 
a transition band surrounding the region where +, = 1 by 
tapering the kernel. Let g ( k )  be a tapering function such 
that g ( 0 )  = 1 and g ( k )  smoothly decreases to zero as k 
increases. Examples of useful tapering functions include 
the Gaussian 

and the raised-cosine functions. We taper the kernel using 
the following procedure (repeated fork = 0, 1, . . ): at 
each sample that is outside the region of support of +(, but 
adjacent (within one unit horizontally or vertically) to a 

sample where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, = g ( k ) ,  set a, = g ( k  + 1). Note that 
because it increases the kernel volume, this scheme intro- 
duces a tradeoff between the amount of tapering and the 

amount of cross-component suppression: more gradual ta- 

pering results in less ringing, but also potentially lets more 

cross-component energy through into the TFD. The op- 
timal kernels given in Figs. 7(a) and 8(a) are shown ta- 
pered in Figs. 7(b) and 8(b). Alternatively, the kernel ta- 
pering can be balanced so that the kernel volume remains 
constant. 

An example will demonstrate the desirability of kernel 
tapering when the volume parameter is small. Fig. 11 
shows the OK distribution for the chirp signal of Fig. l(b) 
which results from an untapered kernel. Compare this 
TFD to Fig. 8(c) and note the substantial ringing that OC- 

curs without tapering. 
The tapering procedure is simple, but yields a kernel 

that is formally suboptimal. To obtain smooth optimal 
kernels, additional smoothness constraints can be added 
to the kernel optimization formulation (9)-( 12). For ex- 

ample, in [26], [27], [31] the kernel is constrained to be 
Gaussian along any radial profile zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+(e, = e - [ 8 2  + +/@($)I  (31) 

The term o2 ($) represents the dependence of the Gaussian 
“spread” on radial angle J / .  Note that any kernel of the 
form (31) is bounded and radially nonincreasing. Also, if 

o($)  is smooth, then clearly + ( O ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7) is also smooth. Un- 
fortunately, while the addition of this constraint results in 
smooth kernels, the efficient algorithm derived in [22] can 
no longer be applied to solve for the optimal kernel, be- 
cause the system (20)-(23), (31) is nonlinear. A gradient 
ascent algorithm that solves this system is given in 1261, 
[27], 1311. Note that the inherent smoothness of the ra- 
dially Gaussian kernel could result in less cross-compo- 
nent suppression for signal components that are closely 
spaced in time-frequency . 

B. Marginal Distributions 

A TFD satisfies the time and frequency marginal dis- 
tributions if its kernel takes the value 1 along the 8 and 7 
axes [4], [32]. If the following constraints are added to 
the linear program (20)-(23): 

(32) 

the signal-dependent kernel that results will be optimal 
with respect to the more restricted class of low-pass ker- 
nels corresponding to TFDs satisfying the time and fre- 

quency marginal distributions. The augmented linear pro- 
gram can be solved using the fast algorithm discussed in 
1221, because the new constraint does not disturb the spe- 

cial structure that makes efficient solution possible. 
The tapered kernel and marginal-satisfying OK distri- 

bution computed for the chirp signal are shown in Fig. 
12. Comparison with Fig. 3(c) suggests that this custom- 
ized OK distribution is an attractive alternative to the 
Choi-Williams distribution in applications where the 

marginals must be satisfied. 
Another technique for finding TFD’s that satisfy the 

marginal distributions has been developed recently by 
Loughlin, er u1. In [20] they find the nonbilinear TFD 

+,(m, 0) = +p,(O, n)  = 1 V n ,  m 
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Fig. 1 I .  OK TFD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the chirp signal of Fig. I(b) computed using the un-  

tapered optimal kernel. Compare to Fig. 8(c), and note the substantial ring- 
ing that occurs without tapering. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 e 

(a) (b) 

Fig. 12. (a) The optimal marginal-satisfying kernel (shown tapered) and 
(b) TFD computed for the chirp signal of Fig. I (b). The kernel is similar 
to that of Fig. 8(b), except along the 0 and ~ a x e s ,  where I t  takes the value 
I .  

from the positive class of marginal-satisfying TFD’s [2 11 

that is closest to a composite spectrogram prototype in the 
sense of minimum cross-entropy. A potential drawback to 

this approach is that the TFD design is based on the spec- 
trogram, which, as discussed in the Introduction, is biased 
by the choice of window function. Application of the min- 

imum cross-entropy technique to the OK TFD could re- 
sult in a positive, marginal satisfying TFD with reduced 
bias, especially for chirp signals. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATime or Frequency Support 

of a signal if its kernel satisfies a “cone constraint” [SI 
A TFD preserves the convex hull of the time support zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

00 

j +((e, 7)ep.jer d(e = 0 v (ti > 2171. (33) 

A similar constraint preserves embedded intervals of zero 
energy. Since (33) is a linear constraint on the kernel, it 
would appear that a discretized version could be added to 
the original constraints of the linear program (20)-(23). 
However, the resulting optimization formulation has two 
substantial drawbacks. First, the linear program loses the 

special structure that permits the application of the fast 
algorithm derived in [22]. Second, it is unknown whether 
there exist two-dimensional functions that simultaneously 

satisfy (33) and (22), implying that the augmented linear 
program may be ill posed. 

In this situation, postprocessing of the kernel is useful. 
To construct a signal-dependent kernel that preserves time 
support, we first solve the original linear program for the 
optimal kernel +‘opt, then find another kernel d that both 

preserves time support and is “close” in  some sense to 
If a least squares distance criterion is used, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is given 

- m  

by the orthogonal projection of +‘opt onto the set of sup- 
port-preserving kernels [33]. In continuous variables, we 

have 

r m  r rm  1 

(34) 

where 

1, 1x1 5 y i 0, otherwise. 
rect,.(x) = (35) 

In practice, &(/(m, n)  is obtained by taking one-dimen- 
sional FFT’s of the optimal kernel +Zpt(m, n )  along the m 
coordinate, zeroing the result outside of a cone, and then 
taking inverse FFT’s. 

While the post-processed kernel is no longer optimal 
with respect to the original optimization formulation, its 
passband retains the same general shape and orientation 
as the optimal kernel. The postprocessed kernel and TFD 
found using this technique for the chirp signal discussed 
in the Introduction are shown in Fig. 13. Comparison with 

Fig. 4(c) suggests that the customized OK TFD can offer 
a considerable performance improvement over the cone- 

kernel distribution in applications where the time support 
of the signal must be preserved. Similar methods can be 
applied to create kernels that preserve the frequency sup- 
port of the signal [33]. 

D. Generalized Performance Measures 

sion of (20) 
Consider a performance measure that is a modified ver- 

wheref: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIR, -+ R+. Given any such positive transfor- 
mation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, the optimization problem remains linear in the 
variables J+,,(m, n)I2, so the linear program (36), (21)- 
(23) can be solved using the same fast algorithm as dis- 
cussed above, but using the transformed data 

(37) 

(Note, the OK TFD is still computed as the Fourier trans- 
form of Ad+,, regardless of the transformation f . )  

For example, if the autocomponents of interest in a sig- 

nal are known to lie in a region (R of the ambiguity plane, 
then setting 

and 

will discourage the optimal kernel passband from lying 
outside of (R. Thus, autocomponents and cross-compo- 
nents lying outside of (R will be suppressed. This pass- 
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Fig. 13. (a) The optimal time support-preserving kernel and (b) TFD com- 
puted for the signal of Fig. I(b). (The optimal kernel was not tapered prior 
to the time-support postprocessing.) The postprocessing changes the shape 
of the optimal kernel (compare to Fig. 8(a)), but not its orientation angle. 

band constraint is potentially useful for analyzing tran- 
sient signals in the presence of sinusoidal interference 
signals. In this case, some of the interference can be re- 

jected by setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(m, n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 everywhere except in a 
region along the n axis, where autocomponents corre- 
sponding to sinusoids lie in the ambiguity plane. In gen- 

eral, the transformation (39) is valid for any real, non- 
negative, symmetric (as in (29)) Rd(m,  n ) .  

As a second example, consider a signal where a com- 

ponent of interest is of low energy relative to other signal 
components. Since the function IA,(m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn)I2 involves 
fourth powers of the signal, the amplitude of the AF au- 
tocomponent of interest may be so small that the optimal 
kernel is not attracted to the region where it resides. In 
this case, a nonlinear transformation is useful for reducing 
the dynamic range of the ambiguity surface. Any contin- 
uous function that grows more slowly than linearly is ap- 

propriate, such asf(x) = log(x + 1) orf(x) = &. While 
dynamic range reduction of the AF has the undesirable 
effect of amplifying any noise present in the signal, the 
OK design procedure appears quite robust at low signal- 
to-noise ratios (as demonstrated in Fig. 9). 

Conceivably, a series of constraints like the above mar- 
ginal and cone constraints could be simultaneously ap- 
pended to the optimal kernel design formulation in the 
hope that the resulting optimal-kernel TFD would sup- 
press cross-components yet still preserve every one of 
the Wigner distribution’s desirable properties. Unfor- 
tunately, some of the constraints required are mutually 
incompatible. For example, in order for Moyal’s formula 
[2] to hold in the TFD, the kernel must be all-pass, that 

is, )@((e, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT)( = 1 for all (e and 7. This constraint is clearly 
incompatible with the low-pass constraints (1 l), (12) that 
are necessary for cross-component suppression. Thus, it 

appears that (at least within the framework of Cohen’s 
bilinear class) only a subset of the desirable properties of 
the Wigner distribution can be obtained simultaneously 
with cross-component suppression. 

VI. CONCLUSION 

In this paper, we have proposed a new signal-depen- 
dent time-frequency representation. Signal-dependence is 

motivated by the fact that a fixed kernel limits the class 

of signals for which its corresponding TFD performs well. 
Only by using a kernel that adapts to each signal can a 

TFD analyze a large class of signals effectively. The sim- 
ple examples presented here demonstrate both the neces- 
sity of signal dependence as well as the excellent perfor- 

mance of the proposed design procedure. 
Several additional attractive properties distinguish the 

optimal kernel design procedure from other techniques 

proposed in the literature. First, it is based on quantitative 
optimality criteria. Second and third, it is automatic and 
relies neither on a priori knowledge about the signal nor 
good fortune to yield a high quality time-frequency rep- 
resentation. Fourth, the optimization criteria are formu- 
lated so that the optimal-kernel TFD is insensitive to the 
time-scale and orientation of the signal in time-frequency . 
Finally, performance remains good even in the presence 
of substantial additive noise, suggesting that the tech- 
nique may prove useful for the automatic detection of sig- 
nals in noise. 

Employing the fast algorithm derived in the companion 
paper [22], the computational cost of finding the optimal 
kernel TFD is O(L2 log L) ,  with L being the number of 
signal samples to analyze. Since this is the same order as 
the cost to compute any fixed-kernel TFD, the signal-de- 
pendent technique proposed here is practically useful, and 
not merely of theoretical interest. 

This paper by no means exhausts the possibilities for 
signal-dependent time-frequency analysis. As demon- 
strated in Section V,  additional constraints based on a 
priori or application-specific knowledge are often easily 
incorporated into the formulation discussed here. Fur- 
thermore, totally new optimization formulations may be 

developed by utilizing other constraints, other perfor- 
mance measures, or classes of TFD’s other than bilinear. 
The optimal radially Gaussian kernel formulation devel- 
oped in [27], [31] is one example. While the choice of 
class and performance measure is crucial to success, once 
a satisfactory class and measure are found, the design of 

a signal-dependent time-frequency representation reduces 
to simply solving an optimization problem. Given both 
the generality of the approach and the promise shown by 
the specific methods described in this paper, it seems 
likely that adaptive time-frequency representations will 
emerge as powerful tools for time-varying spectral anal- 

ysis. 

APPENDIX 
RADIAL TREE APPROXIMATION 

In the context of this paper, a tree is a set of connec- 
tions between sample points that lie on a rectangular grid. 
Trees find application in the kernel nonincreasing con- 
straint (22), (28) of Section 111-A. A connection between 
two samples corresponds to a constraint on the kernel val- 

ues at those samples, according to (28). The chains of 
connections that emanate from the origin or root of the 
tree to the outer edges are called branches. If the branches 

are arranged to fall along approximately radial lines, then 
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the tree approximates the radially nonincreasing con- 
straint on the kernel. This Appendix describes two recur- 
sive methods for constructing approximately radial trees. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Minimum-Norm Trees 

A minimum-norm tree is constructed to minimize the 
deviation between the branch of the tree that connects a 
sample to the origin and the radial line through that sam- 
ple. An example is given in Fig. 14. Recall from Section 
111-B that the tree need be defined only in the upper half- 
plane of samples. The pattern of branches repeats, so the 

tree is constructed in two steps. First, the branches for 
samples located in the triangularly shaped region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U = { (m ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ) :  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 m I -, 0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn I m }  (40) 

are specified. Then the pattern is copied throughout the 
rest of the tree. Since step two is straightforward, the re- 
mainder of this appendix deals exclusively with step one. 
The columns of samples in 'U can be enumerated by their 
m index4; we denote that kth column by C, 

M 

2 

M 
0 5 k I -.  

2 
C, = ((k, n):  0 I n 5 k}, (41) 

Note that the height of the columns increases with in- 
creasing k. 

In the region U, the tree is grown recursively, from the 
origin outwards. At step k of the recursion, the branches 
are extended to the samples in ck from the samples in  
C,- I .  The iterations are continued until the tree is the 

required size. Since all radial lines through samples in U 
lie at angles between 0" and 45" from the m axis, samples 
in  C, are linked back to samples ck - I either with hori- 
zontal or diagonal connections. For example, let s,, be a 
sample in C,, sh the horizontally adjacent sample in  C, - , , 
and sd the diagonally adjacent sample in C, - I .  If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,, cor- 

responds to sample (m ,  n) ,  then sh and sd correspond to 

samples (m - 1 ,  n )  and (m - 1,  n - l ) ,  respectively. 
The minimum-norm tree is locally optimal in the sense 

that it connects s,, to the sample in ck - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (either sh or sd) 
whose path to the origin deviates least from the radial line 
through s,. The procedure for choosing the correct con- 
nection is simple. First, compute the distances from the 
radial line through s, to each sample that lies on the branch 
that connects sh to the origin, and place them in a devia- 
tion vector 6,. Likewise, for the branch from sd ,  compute 
a deviation vector t jd. Next, calculate the norms, Eh and 
ed ,  of the deviation vectors 

Eh = ~ l ~ h ~ ~ ~  Ed 116(,11. (42) 

We have found the 1, and l2 norms useful for this purpose 
as each results in a slightly different tree. Finally, choose 
the connection corresponding to the smaller of Eh and e d .  

'The samples A,, (m,  n) form a rectangular matrix. We assume that n. 
- N / 2  5 n 5 N / 2  - 1 ,  is the row index and m ,  - M / 2  5 ni 5 M / 2  - 
I .  is the column index. 

m 

Fig. 14. Minimum-norm tree for the upper half-plane of a 32  x 32  rect- 
angular sampling grid, constructed to minimize the deviation of any branch 
from a radial line passing through the origin. Note the large number of 
junctions and dead branches. 

If Eh = cd ,  locate the two samples closest to the origin on 
the branches from s h  and sd to the origin where the dis- 
tances to the radial line differ. Then, connect s,, to the 
branch that minimizes this distance. The tree of Fig. 14 
is an 1, minimum-norm tree for the upper half-plane of a 
32 X 32  sampling grid. 

For the 1, minimum-norm tree, we believe that the 

minimax deviation between the branch connecting any 
sample to the origin and the radial line through that sam- 
ple is bounded above by twice the intersample spacing. 
Therefore, as the sampling density of the tree is in- 
creased, the branches of the tree converge to truly radial 
lines. Another important property of the minimum-norm 
tree is the presence of dead brunches, paths that do not 
reach the outside edges of the tree. Dead branches are 
formed whenever there is more than one junction in a col- 
umn of samples, a junction being a sample where two 
branches merge on their paths to the origin. In an M x N 
minimum norm tree, there are O ( M N )  junctions and 

0 (MN)  dead branches. 

B. The Minimum-Junction Tree 
In some applications, the numerous dead branches of 

the minimum-norm tree may be undesirable, if only for 
aesthetic reasons. To construct a tree with no dead 
branches, we must limit each column in the region U to 
a single junction. hence the name minimum-junction tree. 
One junction per column limits the total number of junc- 
tions in this tree to O ( M ) .  

Consider again two adjacent columns C,-, and ck in 
U. Column C,- I must have at least one junction, since 
C, contains one more sample than C, - I .  Since the junc- 
tion in C, - I connects to two samples in C,(one with a 
horizontal link and one with a diagonal link), to prevent 
a dead branch from forming in  C, - I ,  each remaining sam- 
ple in ck must connect to a unique sample in C, - There- 

fore, samples in C, - I that lie above the junction must 
connect to C, with diagonal links, while samples that lie 
below must connect with horizontal links. Hence, once 

the junction sample in C, - I is specified, all connections 
between ck- I and (2, are fixed. 

Like the minimum-norm tree, the minimum-junction 

tree is also constructed recursively. The kth iteration pro- 
ceeds as follows. For each sample in C,, compute the er- 
ror norms E / ,  and E ( /  as before. Then find the sample in C, 
(call it s,,,,) having the largest error norm and set the con- 
nection from s,,, to C,-  I to minimize this error. If a di- 
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TABLE I 

COMPARISON OF MAXIMUM RADIAL DEVIATIONS I N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX M MINIMUM- 
NORM A N D  MINIMUM-JUNCTION TREES FOR SEVERAL VALUES OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. 
A DEVIATION OF 1 .o CORRESPONDS TO A N  ERROR OF ONE SAMPLE 

INCREMENT 

Tree Size ( M )  32 64 128 256 512 1024 
Minimum-nom tree 1.029 1.272 1.435 1.607 1.729 1.877 

Minimum-junction tree 0.902 1.191 1.457 1.715 1.999 2.218 

agonal connection is chosen, set all connections to sam- 

ples in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAck above s,,, to diagonal; if a horizontal 
connection is chosen, set all connections to samples in C, 
below s,,, to horizontal. Now repeat the procedure for 

the samples in C, whose connections remain unspecified 
until all samples in Ck have been assigned a connection to 
ck - I .  An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, minimum-junction tree was shown in Fig. 6. 

Unfortunately, we have been unable to analytically 
bound the radial deviation for the minimum-junction tree. 
Table I gives the results of an empirical study that com- 
pares the maximum errors for various sizes of minimum- 
norm and minimum-junction trees. At present, it is not 
clear which of the two trees is preferred. We have em- 
ployed both in applications and found the results satisfy- 
ing. Asymptotically, the minimum-norm tree has the 
smallest radial deviation, but also many dead branches. 
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