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Recently,quantitative models based on signaldetection theory have been successfully applied to the pre
diction of human accuracy in visual search for a target that differs from distractors along a single attribute
(feature search). The present paper extends these models for visual search accuracy to multidimen
sional search displays in which the target differs from the distractors along more than one feature dimen
sion (conjunction, disjunction, and triple conjunction displays). The model assumes that each element in
the display elicits a noisy representation for each of the relevant feature dimensions. The observer
combines the representations across feature dimensions to obtain a single decision variable, and the
stimulus with the maximum value determines the response. The model accurately predicts human ex
perimental data on visual search accuracy in conjunctions and disjunctions of contrast and orientation.
The model accounts for performance degradation without resorting to a limited-capacity spatially lo
calized and temporally serial mechanism by which to bind information across feature dimensions.

Visual search for a target among a set of distractors

has been extensively studied by a large number of investi

gators, Typically, the observer's reaction time for finding

the target is measured as a function of the number ofdis

tractors (set size) in the display. When the target and the

distractors differ along one physical dimension or stim

ulus attribute (e.g., length, orientation, color, brightness,

etc.), the search task is known as a feature search. A com-
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mon finding for feature search is that reaction times are

independent of the number of distractors (small set-size

effect) in the display, which is commonly interpreted as ev

idence for unlimited capacity parallel processing ofall the

items in the display. On the other hand, when the target/

distractors discriminability is defined along two feature

dimensions, so that the target differs from two types ofdis

tractors by a different feature dimension (e.g., a tilted long

line among tilted short lines and vertical long lines), the

search task is known as a conjunction search. In this case,

a common finding is that reaction times increase as the

number of distractors in the display increases (large set

size effect), which is taken as evidence of serial processing

(e.g., Treisman & Gelade, 1980; Treisman & Gormican,

1988).

The dichotomy in results between feature (parallel pro

cessing) and conjunction (serial processing) search was

interpreted by Treisman (feature integration theory; Treis

man & Gelade, 1980) as evidence that integration or bind

ing of information across features can only be accom

plished through a spatially localized mechanism (visual

attention) that operates in serial fashion. In feature inte

gration theory, the visual field is first analyzed by a series

of spatiotopically organized maps, called feature maps,
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encoding the presence of a stimulus attribute or feature

(e.g., color, motion, orientation, etc.). Each feature map

independently signals the presence of a specific feature

(redness, tilted, long, etc.) in parallel across the visual

field. Therefore, ifthe visual search task is defined by a

feature (presence oftiltedness), the time to find the target

is independent of the number of elements in the display.

On the other hand, in order to combine activity or in

formation across different feature maps, visual attention

must focus on a localized region of the feature maps. Vi

sual attention is inherently spatially localized and tem

porally serial.

Further experiments (Duncan & Humphreys, 1989)

showed that when the similarity of the target and the dis

tractors is high, the set-size effect is large even with feature

displays. Treisman explained such findings by stating

that when the target/distractor similarity is high, visual

attention is needed to perform fine discrimination (Treis

man & Gormican, 1988).

Recently, other studies have shown that other lower

level factors affect visual search performance. Increasing

element retinal eccentricity has been shown to increase

set-size effects (Carrasco, Evert, Chang, & Katz, 1995;

Geisler & Chou, 1995). Increasing element density has

been shown to increase set-size effects, because ofan in

crease in lateral masking (Carrasco et aI., 1995). Experi

ments have also shown that the number ofeye movements

increases with increasing target/distractor similarity

(Zelinsky, Sheinberg, & Bulthoff, 1993). These results

suggest that, under free viewing (eye movements al

lowed), it becomes hard to separate set-size effects that

are due to the increasing number ofeye movements from

those that are due to the serial allocation of visual atten

tion. Many of the search time studies have not carefully

controlled for all these low-level factors that may be con

founded with any possible set-size effects that are due to

the capacity limitations ofattentional nature. An additional

limitation ofresponse time studies is that it is difficult to

keep observers' accuracy levels constant, so as not to have

differential speed/accuracy tradeoffs across set-size con

ditions. The inability to keep performance at a constant

level across set-size conditions might obscure any inter

pretations about capacity limitations.

In order to control for some ofthese lower level factors

and for differential speed/accuracy tradeoffs, many au

thors have chosen to use a visual search accuracy study

(Bergen & Julesz, 1983a, 1983b; Palmer, 1994a; Palmer,

Ames, & Lindsey, 1993). In this type of study, the display

is briefly presented. The briefpresentation precludes eye

movements by the observer during the trials. The ability

to correctly determine whether the target is present

(yes/no design) or which ofM displays contains the tar

get (alternative forced-choice [AFC] design) is mea

sured. The investigator manipulates the number of dis

tractors in the display for the different experimental

conditions. The rationale for the accuracy study is that

performance degradation with increasing set size may be

used to draw conclusions about capacity limitations. The

serial model makes explicit predictions for set-size effects

in visual search accuracy studies. Bergen and Julesz (1983a,

1983b) used this method to study search for an L among

Ts. Their results were consistent with a temporally ser

ial mechanism.

More recently, investigators have taken into considera

tion the inherent noise in visual processing. The presence

ofnoise in the encoding ofvisual properties is supported

by physiological studies measuring the statistical reliabil

ity ofthe responses ofcells (Tolhurst, Movshson, & Dean,

1982). As will be discussed in detail, the inclusion of

noise in the encoding of each element will produce set

size effects in visual search accuracy.

Palmer et al. (1993; Palmer, 1994a) have shown that per

formance degradation as a function of the number ofdis

tractors in feature displays can be predicted by a simple

model (decision integration hypothesis) that assumes

that the observer has noisy representations of the target

and the distractors (Palmer, 1994a; Palmer et aI., 1993;

Shaw, 1980) and uses the maximum response as the de

cision variable. This model is based on the widely used

signal detection theory (SDT; Green & Swets, 1966;

Swets, 1964) first applied by Tanner and Swets(l954)

and Tanner (1961). The model does not assume any change

in the quality of the representation ofeach individual el

ement as a function of target/distractor similarity or in

creasing number ofdistractors. The model has been suc

cessfully applied in predicting the effect of number of

distractors on performance in search tasks in which the

target was defined by a variety of properties-disk lumi

nance, blob luminance, blob color, disk size, ellipse orien

tation (Palmer, 1994a), letter type (Bennett & Jaye, 1995),

target speed (Verghese & Stone, 1995)-and in tasks in

volving the detection ofcontrast-defined targets on a va

riety of backgrounds (Burgess & Ghandeharian, 1984;

Eckstein & Whiting, 1996; Swensson & Judy, 1981).

The purpose ofthis study is to extend the principles of

SDT to visual search accuracy in multidimensional search

displays and to report quantitative predictions for per

formance degradation as a function of target/distractor

similarity for three commonly used multidimensional

search displays: conjunction, triple conjunction, and dis

junction (two-dimensional [2-D] feature) displays. The

model is used to fit data on human visual search accuracy

for conjunction and disjunction (2-D feature) displays

collected by Aiken and Palmer (1992). The methodology

and quantitative predictions that are presented can be used

to rigorously test whether the results of visual search ac

curacy studies can be accounted for by the inherent noise

in the visual system or whether capacity limitations (e.g.,

serial processing) need to be invoked. Before presenting

of the theory for multidimensional displays, we discuss

the theory for single-dimension (feature) displays.

ONE-DIMENSIONAL (FEATURE) DISPLAYS

Stimuli and Experimental Tasks

One important aspect of the work presented in this

study is that the predictions of the model are indepen

dent of the dimension manipulated in the experiment.
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Target Present Display Target Absent Display

Figure I. Feature search task for a two-alternative forced
choice defined with respect to contrast. One alternative contains
the target (brighter ellipse) and n - I distractors (dimmer el
lipse); the other alternative contains n distractors. The observers'
task is to correctly identify the alternative with the target. Ex

amples for n = I and n = 7.

presented either simultaneously or sequentially through

time. In the design used by Palmer and in the studies pre

sented in this paper, the observer responds without a re

sponse deadline. However, in order to control the response

time, one might include a response deadline.

The number of distractors is manipulated so that the

target-present alternative contains the target and n - I

distractors and the target-absent alternative contains the

n distractors. Figure I illustrates the task of searching for

a bright ellipse (target) among dimmer ellipses (distrac

tors) for set sizes n = I and n = 7 and for two alternatives

(M= 2).

Theoretical Principles
The basic assumption of SDT is that each element in

the display elicits an internal response in the observer.

The internal response to the same element will vary from

trial to trial, owing to the internal noise. Possible sources

of internal noise include fluctuations in the firing of the

cells (Barlow, 1957; Tolhurst et al., 1982) and variabil

ity in the decision criterion (Wickelgren, 1968). On av

erage, the target elicits a different internal response than

do the distractors. For example, if the target is brighter

than the distractors, the internal response to the target

will be, on average, larger than that to the distractor. How

ever, owing to the internal noise, the distractor might

elicit a larger response than the target in some trials. On

each trial, the observer is assumed to monitor n internal

responses to the n distractors in the target-absent display

and another n internal responses corresponding to the

n - I distractors and the target in the target-present dis

play. The observer then uses the maximum response

among the n internal responses for each display as the de

cision variable. If the maximum response for Display I is

larger than the maximum response for Display 2, then

choose Display I; otherwise, choose Display 2 (Fig

ure 2). Although the maximum response rule is not the

ideal Bayesian strategy (Pelli, 1985), it has been shown

to predict human results for a number of visual tasks

(Palmer, 1994a; Palmer et al., 1993; Swensson & Judy,

1981), and it sometimes approximates the optimal deci

sion rule (Nolte & Jaarsma, 1966).

If we define t(x) as the probability of the target re

sponse taking a value x, d(x) as the probability ofthe dis

tractor taking a value x, T(x) as the cumulative probability

of the target taking a value less than x, D(x) as the cu

mulative probability of the distractor taking a value less

than x, n as the number ofdistractors in the target-absent

display (set size), and M as the number of response alter

natives or intervals, the probability ofcorrect identifica

tion of the display containing the target (for derivation,

see Appendix A) can be written as

?c(n,M) = r:[ t(x)Dn-J(x)+(n -1)d(x)D
n-2

(x)T(X)]

. [Dn(X)r-Jd x. (1)

With the assumptions that the internal noise of the ob

server is Gaussian distributed and that the target distrib-

n= 7

n=1

The dimensions could be luminance, orientation, length,

hue, motion, speed, and so forth. The important param

eter that will quantitatively determine the effect of the

number of distractors is performance (Pc' proportion

correct) in identifying a single target from a single dis

tractor along the relevant dimension. As will be dis

cussed later, an underlying internal target/distractor dis

criminability is associated with the ?C. The observer's

internal target/distractor discriminability can be changed

by using different experimental manipulations. For ex

ample, one can change the physical appearance ofthe dis

tractor to make it more discriminable from the target. On

the other hand, one could shorten the time of presenta

tion of the display, which might reduce performance in

discriminating a single target from the distractors, effec

tively reducing the internal target/distractor discrim

inability. The essential point is that the feature attribute

that distinguishes the distractors from the target and the

method ofmanipulating the discriminability are irrelevant

to the model's predictions ofperformance degradation as

a function of set size. The derived results apply to any at

tributes and to any methods of manipulating disc rim

inability. The only restriction is that, as the number of

distractors is increased, any factors affecting discrimina

tion ofa single item (such as presentation time) must be

kept constant.
In this paper, we consider results for an AFC accuracy

design; however, the results can be generalized to yes/no

(Palmer et al., 1993) and rating type designs. In an M-AFC
design, M displays or alternatives are presented to the

observer: one alternative containing the target and M - I

alternatives with nontargets. The task of the observer is

to correctly identify the display or the alternative contain

ing the target. In this paper, we consider studies in which

the observer knows the target a priori. The alternatives are
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DISPLAY 1 DISPLAY 2

OBSERVER

CHOOSE MAX

~
CHOOSE MAX

~
IF MAX(display 1) > MAX(display 2)

SELECT display 1, else SELECT display 2

Figure 2. Decision strategy for observer with maximum response rule
(Palmer, Ames, & Lindsey, 1993; Swensson & Judy, 1981). Each element
in the two alternatives elicits an internal response in the observer. The
responses are subject to random fluctuations owing to internal neural
noise. The observer chooses the maximum response per alternative to
use as the decision variable and selects the alternative associated with
the highest maximum response.

ution has the same variance as the distractor distribution

but a higher mean (uo) ' the probability distibutions ofthe

internal responses can be parameterized as a function of

d ~ , defined as the distance between the center of the two

distributions divided by the standard deviation «(To)' For

the case of two response intervals or alternatives (M = 2)

investigated in this paper, Pc is given by

Pe(n,M =2,d~)

= r:[g(x-d~)Gn-l(X)

+ (n -1)g(x)G n-2(x)G(x - d ~ ) ] G n (x)dx, (2)

where

a: «;
o=a-'

o

g(x) is the Gaussian probability that the element value

takes a value x and G(x) is the cumulative Gaussian prob

ability that the element distribution takes a value less

than x.

The observers' internal discriminability between the

target and the distractor is described by d~. In practice, Pc
for a given number ofalternatives and distractors is mea

sured, and a corresponding d ~ is inferred from Equation 2.

Representing Target/Distractor Similarity
A large number of experiments have shown that in

creasing the similarity between the target and the dis-

tractor will reduce search efficiency, producing steeper

slopes in search time studies. These experiments have

manipulated color (Farmer & Taylor, 1980; Nagy

& Sanchez, 1990), curvature of lines (Treisman &

Gormican, 1988), letters (Bergen & Julesz, 1983a,

1983b; Duncan & Humphreys, 1989; Estes, 1972; Pash

ler, 1987; Pavel, Econopouly, & Landy, 1992; Treisman

& Gelade, 1980; Verghese & Nakayama, 1994; von Grii

nau, DuM, & Galera, 1994), and so forth. Palmer (1995)

has performed search accuracy studies in which the target

was a disk with a higher luminance value than the dis

tractors. His results show larger set-size effects (perfor

mance degradation from one and seven distractors) for

the conditions with smaller target/distractor differences

in luminance.

In the context ofSDT, changing the physical difference

between the target and the distractors along the relevant

feature dimensions will change the internal discrim

inability between the target and the distractor ( d ~ ) . The

exact relationship between the change in physical differ

ence (e.g., percentage oforientation difference or contrast

difference) and the internal discriminability between tar

get and distractor will depend on the feature dimension

manipulated. For example d ~ might be a linear function,

a power function, a log function, or some other function

of the physical difference between the target and the dis

tractor along the relevant feature dimension. However,

given a certain level of target/distractor internal dis

criminability ( d ~ ) , the effect of the number ofdistractors
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on performance can be obtained by evaluating Equa

tion 2 for the value of d ~ .

Figure 3 (left panels) shows the probability distribu

tions for the maximum response of all elements in the

target-present display (target and n - I distractors) and

the maximum response ofall elements in the target-absent

display (n distractors) for I, 5, and 30 distractors. The

target!distractor discriminability, d ~ , is 2.0.

Overlap between these two distributions is indirectly re

lated to the probability ofcorrectly identifying the target

present display and might give the reader some intuition

as to how performance is affected by increasing the set

size.

Figure 3 (left panels) illustrates how, as the number of

distractors increases, the overlap ofthe probability distrib

utions increases, effectively reducing the Pc for discrim

inating the target-present from the target-absent display.

Although both the target-absent and the target-present

displays contain distractors, the net effect of adding dis

tractors is to increase the probability that the maximum

response in the target-absent display will exceed the max

imum response in the target-present display. This behav

ior is a consequence of the internal noise and of the max

imum response decision strategy and not ofany reduction

in the underlying internal discriminability ( d ~ ) between

a single target and distractor.

Figure 3 (right panels) shows the probability distribu

tions of the maximum response for a case in which the

target/distractor discriminability is high (d~ = 4.5). In

creasing the set size for the high target/distractor dis

criminability results in a smaller increase in the distrib

utions' overlap than was the case for the lower target!

distractor discriminability ( d ~ = 2.0). Therefore, the net

effect of increasing the number of distractors interacts

with the discriminability between the target and a single

distractor.

Figure 4 shows Pc as a function of the number of dis

tractors in the display for five different levels of internal

target!distractor discriminability ( d ~ ) . For very high levels

of discriminability ( d ~ = 4.5), Pc remains approximately

constant as a function of number of distractors. When

target/distractor discriminability ( d ~ ) is decreased, the

change in Pc with number of distractors increases. I

Table I lists the obtained values of P; as a function of

number of distractors (n) for different levels of target!

distractor discriminability ( d ~ ) , based on the numerical

evaluation of Equation 2.

MULTIDIMENSIONAL SEARCH DISPLAYS:
BASIC THEORY

The SDT model can be extended to displays in which

the target differs from the distractors along more than

one physical attribute or feature dimension (multidi

mensional; Eckstein, Thomas, Palmer, & Shimozaki,

1996; Eckstein, Thomas, Shimozaki, & Whiting, 1995;

Pavel et aI., 1992). In the context ofSDT, we assume that

each of the feature dimensions of interest elicits an in-

dependent noisy internal value in the observer. In this way,

each element in the display elicits f internal responses

corresponding to the f feature dimensions. For the case

of two feature dimensions, we can represent the distrib

utions of internal responses associated with the target

and distractors by plotting a probability surface in x-y
Cartesian coordinates (Figure 5). The x-axis corresponds

to the probability distribution of the internal response to

the display elements along the first dimension (e.g., ori

entation), and the y-axis corresponds to the probability

distribution ofthe internal response to the display elements

along the second dimension (e.g., contrast).

The specific distractor configuration corresponds to a

typical conjunction display (Treisman & Gelade, 1980)

in which the target differs from each ofthe two distractors

along one feature dimension. In this paper, we investi

gate models that combine the information across the

two dimensions to create a new variable Z = f(xl' x 2). In

this way, each element in the display will be associated

with a value along the new decision variable Z. The de

cision process then remains the same: If the maximum

response to all the elements in Display I is greater

than the maximum response to all the elements in Dis

play 2, then choose Display I; otherwise, choose Dis

play 2. Figure 6 illustrates the decision rule for a multi

dimensional display that includes two relevant feature

dimensions.

The specific mathematical formf(x I' x2)ofthe function

used by human observers to combine information across

dimensions x I and x2 is unknown. In this paper, we con

sider two possible decision rules: (I) the maximum ofthe

linear combination of the responses along the feature di

mensions (max-linear) and (2) the maximum response

among the elements' minimum response between/among

the different feature dimensions (max-min).

In order to generate predictions ofthe Pc for the multi

dimensional displays, two steps are required: (I) to ob

tain mathematical expressions by which to calculate the

effective target!distractor discriminability along the new

decision variable after the combination of information

across feature dimensions, and (2) to obtain an expres

sion that takes into account the possibility of different

types of distractors with different associated target/

distractor discriminabilities along the new decision vari

able. Appendices Band C develop in detail the mathe

matical foundations for the general framework; however,

with the introduction of a number of assumptions, the

predictions of the model are greatly simplified.

Combining Information
Across Feature Dimensions

The first step required to develop predictions for mul

tidimensional displays is to be able to calculate the effec

tive target/distractor discriminability after combination

of information across feature dimensions.

Max-linear decision rule. In the multidimensional

displays, the target and the distractors elicit a number of

noisy responses (x l' x3' ... xI)' The max-linear decision
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Figure 3. Probability distributions for the maximum response ofthe target-present alternative and maximum response of the
target-absent alternative for a feature display. Overlap between the two distributions is a graphic measure of disc riminability be
tween the two alternatives. The distributions correspond to a d~ = 2.0 for n = I, n = 5, and n = 31. As the number of distractors
increases, the overlapping between the two distributions increases. The left panels correspond to medium targetldistractor dis
criminability ( d ~ = 2.0), and the right panels to high targetldistractor discriminability ( d ~ = 4.5).

rule uses a linear strategy to combine the f feature re

sponses for each element into a single response, Zi:

where Z, is the result of combining responses along allf

feature dimensions for the ith element, xi) is the internal

J

Zi=I,Wj'Xij'

j=l

(3)

responses along the jth independent feature dimensions

for the ith element in the display, and wj is the weight ap

plied by the observer to the jth feature dimension when

combining information across feature dimensions.

Ifwe assume that the responses along the individualf

feature dimensions are stochastically independent and

Gaussian distributed, it can be shown (Appendix B) that

the effective target discriminability between the target
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Figure 4. Proportion of correct identification of the target-present alter
native in a two-alternative forced choice task as a function of number of
distractors and target!distractor discriminability ( d ~ ) . Performance degra
dation as a function of number of distractors increases with lower target!
distractor discriminability over a large range of performance levels. Lines
correspond to theoretical results based on numerical evaluation of equations.
Symbols correspond to theoretical results based on Monte Carlo simulations.

and the ith distractor, after combining information across

feature dimensions, is given by

J

I,wj dij

d' = j=l (4)
lZ J

I,wJ
j=l

where d:z is the discriminability between the target and

the ith distractor type along the new decision variable z,

dij is the discriminability between the target and the ith

distractor along the jth feature dimension, and wj is the

weight used for the jth feature dimension for the linear

combination of information across feature dimensions.

Max-min decision rule. An observer who uses the

max-min decision rule first chooses for each element in

the display the feature dimension that elicits the smallest re

sponse and then chooses the alternative that contains the

maximum among these responses (Figure 6). The purpose

of this minimum operation is to choose for each distractor

the feature dimension that has the highest target/

Dimension 2

Distractor 2

Target

Dimension 1

Distractor 1

Figure 5. Two-dimensional (2-D) representation of a noisy response along
two independent dimensions. Concentric circles represent 2-D Gaussian dis
tributions in which the central areas have a higher probability of occurrence
than do the peripheral areas. The distributions are centered on the mean val
ues along both dimensions. The shown graph representation corresponds to a
typical conjunction display in which the target differs from each distractor
along one feature dimension. Target distribution has a high mean response
value along both feature dimensions. The distractor distributions have high
mean response values along only one feature dimension.
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Table 1
Proportion Correct for a Feature Display as a Function of Number of Distractors

for Different Levels of TargetlDistractor Discriminability ( d ~ )

Number of Distractors

d' I 2 3 4 5 6 7 9 II 16 21 26 31
0

.1 .5282 .5176 .5132 .5107 .5090 .5079 .5070 .5057 .5049 .5036 .5029 .5024 .5021

.2 .5562 .5361 .5274 .5224 .5190 .5167 .5149 .5123 .5106 .5079 .5064 .5054 .5047

.3 .5840 .5553 .5425 .5351 .5301 .5265 .5237 .5198 .5171 .5129 .5105 .5089 .5077

.4 .6114 .5751 .5586 .5487 .5421 .5372 .5335 .5282 .5244 .5186 .5152 .5130 .5114

.5 .6382 .5955 .5755 .5634 .5551 .5490 .5443 .5375 .5327 .5252 .5208 .5178 .5156

.6 .6643 .6164 .5932 .5790 .5691 .5618 .5562 .5479 .5420 .5327 .5271 .5234 .5206

.7 .6897 .6375 .6116 .5954 .5841 .5756 .5690 .5592 .5523 .5411 .5344 .5298 .5264

.8 .7142 .6588 .6305 .6126 .5999 .5903 .5828 .5716 .5636 .5506 .5426 .5371 .5331

.9 .7377 .6801 .6499 .6304 .6165 .6060 .5976 .5850 .5759 .5610 .5517 .5454 .5406

1.0 .7602 .7014 .6696 .6488 .6339 .6224 .6132 .5993 .5892 .5724 .5619 .5546 .5491

1.1 .7817 .7223 .6895 .6677 .6518 .6395 .6296 .6145 .6034 .5849 .5731 .5649 .5586

1.2 .8019 .7429 .7094 .6869 .6702 .6572 .6467 .6306 .6186 .5983 .5854 .5762 .5692

1.3 .8210 .7630 .7293 .7062 .6890 .6754 .6644 .6474 .6346 .6128 .5986 .5885 .5808

1.4 .8389 .7825 .7489 .7255 .7080 .6940 .6826 .6648 .6513 .6281 .6128 .6018 .5934

1.5 .8556 .8012 .7681 .7448 .7270 .7128 .7011 .6827 .6687 .6442 .6279 .6161 .6070

1.6 .8711 .8192 .7869 .7638 .7460 .7317 .7198 .7010 .6865 .6610 .6439 .6313 .6215

1.7 .8853 .8363 .8051 .7824 .7648 .7505 .7386 .7196 .7048 .6785 .6606 .6474 .6370

1.8 .8985 .8525 .8225 .8005 .7833 .7692 .7573 .7382 .7232 .6964 .6779 .6641 .6533

1.9 .9104 .8677 .8392 .8181 .8013 .7875 .7758 .7568 .7418 .7146 .6957 .6815 .6702

2.0 .9213 .8819 .8551 .8349 .8187 .8053 .7938 .7752 .7603 .7331 .7139 .6994 .6878

2.1 .9312 .8950 .8700 .8509 .8354 .8225 .8115 .7932 .7786 .7516 .7324 .7176 .7058

2.2 .9401 .9072 .8840 .8660 .8514 .8391 .8284 .8108 .7966 .7700 .7508 .7361 .7241

2.3 .9481 .9183 .8970 .8802 .8665 .8548 .8447 .8279 .8141 .7881 .7693 .7546 .7426

2.4 .9552 .9285 .9090 .8935 .8807 .8698 .8602 .8442 .8310 .8059 .7874 .7729 .7611

2.5 .9615 .9377 .9200 .9058 .8940 .8838 .8749 .8597 .8472 .8231 .8052 .7911 .7794

2.6 .9670 .9460 .9300 .9172 .9063 .8969 .8886 .8744 .8626 .8397 .8225 .8088 .7974

2.7 .9719 .9534 .9391 .9275 .9176 .9090 .9013 .8882 .8772 .8556 .8392 .8260 .8150

2.8 .9761 .9600 .9473 .9369 .9280 .9201 .9131 .9010 .8908 .8706 .8551 .8426 .8321

2.9 .9798 .9658 .9547 .9454 .9374 .9303 .9239 .9129 .9035 .8848 .8702 .8584 .8484

3.0 .9831 .9709 .9612 .9530 .9458 .9395 .9338 .9238 .9152 .8980 .8845 .8734 .8640

3.1 .9858 .9754 .9669 .9597 .9534 .9478 .9427 .9337 .9259 .9102 .8977 .8874 .8786

3.2 .9882 .9793 .9720 .9657 .9602 .9552 .9507 .9426 .9357 .9214 .9100 .9005 .8924

3.3 .9902 .9827 .9764 .9709 .9661 .9618 .9578 .9507 .9445 .9316 .9213 .9126 .9052

3.4 .9919 .9856 .9802 .9755 .9713 .9676 .9641 .9578 .9523 .9409 .9316 .9238 .9169

3.5 .9933 .9880 .9835 .9795 .9759 .9726 .9696 .9642 .9593 .9492 .9409 .9339 .9277

3.6 .9945 .9901 .9863 .9829 .9798 .9770 .9744 .9697 .9655 .9566 .9493 .9430 .9375

3.7 .9956 .9919 .9887 .9858 .9832 .9808 .9786 .9746 .9709 .9632 .9567 .9512 .9462

3.8 .9964 .9934 .9907 .9883 .9861 .9841 .9822 .9788 .9757 .9689 .9633 .9584 .9541

3.9 .9971 .9946 .9924 .9904 .9886 .9869 .9853 .9824 .9797 .9740 .9691 .9648 .9610

4.0 .9977 .9956 .9938 .9922 .9907 .9893 .9879 .9855 .9832 .9783 .9741 .9704 .9671

4.1 .9981 .9965 .9950 .9937 .9924 .9912 .9901 .9881 .9862 .9820 .9785 .9753 .9725

4.2 .9985 .9972 .9960 .9949 .9939 .9929 .9920 .9903 .9887 .9852 .9822 .9795 .9771

4.3 .9988 .9978 .9968 .9959 .9951 .9943 .9935 .9921 .9908 .9879 .9854 .9831 .9810

4.4 .9991 .9982 .9975 .9967 .9961 .9954 .9948 .9936 .9926 .9902 .9881 .9861 .9844

4.5 .9993 .9986 .9980 .9974 .9969 .9963 .9958 .9949 .9940 .9921 .9903 .9887 .9873

4.6 .9994 .9989 .9984 .9980 .9975 .9971 .9967 .9959 .9952 .9936 .9922 .9909 .9897

4.7 .9996 .9991 .9988 .9984 .9980 .9977 .9974 .9968 .9962 .9949 .9937 .9927 .9917

4.8 .9997 .9993 .9990 .9987 .9985 .9982 .9980 .9975 .9970 .9960 .9950 .9941 .9933

4.9 .9997 .9995 .9993 .9990 .9988 .9986 .9984 .9980 .9977 .9968 .9960 .9953 .9947

distractor discriminability.? In order to obtain a general ex- where ei,min(X) is the probability that the minimum
pression for the performance of the max-min observer, we among the ith element's f feature responses will take a
need to first obtain the probability distribution of the min- value x, ei/x) is the probability of the ith element's elic-

imum response among f feature dimensions. The distribu- iting a response of value x, along the jth feature dimen-

tion of the minimum response among f feature dimension sion, Eik(>X) is the cumulative probability of the ith el-
responses for each individual element is given by ement's eliciting a value greater than x along the kth

ei,min (x) =Min{xij,j =l, ... ,f}
feature dimension, and ~k is the Kronecker delta, which
is 1 for j = k and 0 otherwise. Equation 5 can be used to

calculate, for each element (target and different distrac-

J f (I-Ojd tors), the probability functions for the minimum re-

=Leij(x).Il [Eik(>x)] , (5) sponse among all the individual feature responses. These
j=\ k=! minimum responses are used as the decision variable, and
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DISPLAY 1 DISPLAY 2
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Rlz R2z R3zCOMBINATION Rlz R2z R3z

CHOOSE DISPLAY

WITH MAX RESPONSE

OBSERVER

Figure 6. Max-linear and max-min decision rules for a conjunction of con
trast and orientation search task for a two-alternative forced choice. The tar
get is a vertical high-contrast ellipse among vertical low-contrast ellipses and a
horizontal high-contrast ellipse. The observers' task is to correctly identify the
alternative with the target. The observer is assumed to monitor two indepen

dent noisy responses per element, corresponding to the two feature dimensions.
For each element, the two responses are combined through a linear combina
tion rule or a minimum rule, resulting in a single decision variable. The ob
server then chooses the alternative eliciting the highest response along the de
cision variable.

the observer is assumed to choose the response alternative

containing the maximum response among all the elements'

minimum feature responses.

Multiple Distractor Types Along the
New Decision Variable (Distractor Variability)

Ifthere are different types ofdistractors in the display,

the target/distractor discriminability along the new deci

sion variable, after combining information across feature

dimensions, might be different for different distractors.

For the case in which there are different distractors with

different associated target/distractor discriminabilities

along the new decision variable, we assume that different

distractors elicit noisy values with different means.

For the case ofmultiple distractors, the decision rule re

mains the same as the case with a single distractor type,

where the observer monitors all internal responses in the

target-present and target-absent displays and selects on

each trial the display containing the maximum response.

The Pc in identifying the target-present display for the

case of multiple distractor types can be calculated by

computing the probability that the maximum response in

the target-present display will exceed the maximum re

sponse in the target-absent display. A general purpose

mathematical expression can be derived to predict Pc for

a given target, a set of distractors (N = {n\, nZ, n3' ... ,

nd, with k different distractor types having nj number of

distractors), and number of response alternatives M (see

Appendix C for derivationj.'

SIMPLIFIED FORMULATION FOR
MULTIDIMENSIONAL SEARCH DISPLAYS

In the previous two sections, we developed the general

framework of SDT for multidimensional displays. How

ever, with the additional assumption that the target/dis

tractor discriminabilities along the different individual

feature dimensions are approximately equal, the predic

tions of the SDT model for multidimensional displays

are greatly simplified.

Combining Information
Across Feature Dimensions

Max-linear decision rule. For the case in which the

internal target/distractor discriminability is approximately

the same across the different feature dimensions.t one

might assume that the observer might equally weight in

formation across different dimensions (averaging or

straight summation). For this special case, a simple rule

(feature combination rule) can be used to calculate the

effective target/distractor discriminability (see Appen

dix B for derivation).

The feature combination rule states that, iff is the

number of relevant feature dimensions across which the
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(6)

internal responses are combined, r is the number of fea

ture dimensions along which the distractor and the target

differ, and d~ the target!distractor discriminability along

each of the the r feature dimensions, the effective target!

distractor discriminability is given by

a: _ rd~
r,f - ! ...

,jl

The probability function for the target, after combination

across feature dimensions, is then given by tf(x) = g(x 

d'r,f), and that for the distractor is given by dr,f(x) = g(x).

Max-min decision rule. For the special case in which

the target/distractor similarity is the same along the in

dividual feature dimensions and the individual internal

responses are Gaussian distributed, the target probabil

ity function for the max-min observer is given by

tminf(X) = Ig(x - d~)G(>x - d~)f-l, (7)

where the notation is as previously defined.

Similarly, for the distractors, we obtain

dminr,f(x) = (f - r)g(x - d~)G(>x - d~)f-r-lG(>x)'

+ rg(x)G(>xy-lG(>x - d~)f-r. (8)

APPLICATION TO COMMON DESIGNS

Conjunction Displays

In the typical conjunction search task (Treisman,

1991; Treisman & Gelade, 1980), half the distractors are

different from the target along a dimension or stimulus

attribute xl' and the other half of the distractors are dif

ferent from the target along another dimension or stimu

lus attribute X2' For example, Figure 7 (row 2, column 1)

shows a possible task in which the two relevant dimen

sions are contrast and orientation. The target is a vertical

high-contrast ellipse. Half the distractors are horizon

tally oriented and have high contrast, and the other half

of the distractors are vertically oriented and have low

contrast. In order to generate quantitative predictions for

the SDT model for conjunction displays, we apply the

two decision rules (max-linear and max-min).

Max-linear decision rule. For the conjunction display,

the information is combined across two feature dimen

sions (I = 2), and each distractor differs from the target

along one feature dimension. Using the feature combina

tion rule (Equation 6), we find that the effective target!dis

tractor discriminability for both distractors is given by

, , d~ (9)
dconjunction = dr;I,f;2 = ---r;:'

'12

The effective target/distractor discriminability can then

be used with Equation 2 to obtain Pc for increasing set

size. Performance predictions in a conjunction display

are identical to those in a feature display (Equation 2),

except for an additional factor ofV2 dividing d~. This ob

servation leads to the prediction that, if Pc in a conjunc

tion display is transformed to a d' value, using Equa-

tion 2, the max-linear model predicts a d' that is lower

by a factor of V2 than the d' found for performance for

the corresponding feature display (where the target/dis

tractor discriminability along the feature dimension is

kept the same as that for the conjunction display). This

prediction holds for all levels of target!distractor dis

criminability ( d ~ ) and number of distractors (n).

Max-min decision rule. The purpose of the initial

minimum operation among feature dimensions in the

max-min decision rule is to select the feature dimension

in the distractors that differs from the target the most.

Since for the conjunction displays, the target has a higher

mean response along both dimensions and the distrac

tors have a higher mean along one dimension, the mini

mum operation will tend to select in the distractors the

dimension that has the lowest mean response (and, there

fore, the dimension that differs in mean response from

the target).

The maximum operation will then tend to select the

target over the distractors. In order to obtain an expres

sion for the max-min decision rule for conjunction dis

plays, we replace the1= 2 and r = I in Equations 7 and

8 to obtain the probability functions for the minimum

among 1 feature responses:

t m i n l ~ i x ) = 2g(x - d~) . G(>x - d~) (10)

and

dminr~1,f~2(X)=g(x - d~)

. G(>x) + g(x) . G(>x - d~). (II)

Replacing these expressions into Equation I, one can ob

tain an expression for Pc as a function of number of dis

tractors (n), number ofresponse alternatives (M), and in

ternal target!distractor discriminability ( d ~ ) .

Theoretical results. Figure 8 shows that, for both

models for a given level of target!distractor discrim

inability ( d ~ ) along an individual feature dimension,

overall performance is reduced in a conjunction versus a

feature display. In the present comparison, the feature

and conjunction displays have the same target!distractor

difference along one feature dimension, and in the con

junction display, the target!distractor internal discrim

inability has been matched along both feature dimensions

(Treisman, 1991). The results show that degradation as

a function of number of distractors increases in the con

junction condition for both models (Figure 8), although

the increase in performance degradation is larger for the

max-linear model.

Discussion. Our theoretical results show that the SDT

model predicts larger set-size effects for conjunction dis

plays than for feature displays for any given level of tar

get/distractor discriminability ( d ~ ) . In the SDT model,

the lower search efficiency in conjunction displays is a

consequence of the combination of noisy activity across

the two independent feature dimensions, given the spe

cific task configuration. Since, for each type of distrac

tor, there is only one feature dimension that provides in

formation by which to discriminate it from the target, the
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Figure 7. Summary of definitions, properties, and predictions of the search displays investigated in this paper. From top to bottom:
feature, conjunction, disjunction, and triple conjunction displays. The left panels show examples of the corresponding search displays.
The middle panels show two-dimensional (2-D) representations of the noisy internal responses for target and distractors for the dif
ferent search displays. The concentric circles represent 2-D Gaussian distributions. The right panels are the performance predictions
for the max-linear observers for the different displays, given that the experimentally obtained proportions correct are transformed
to d' using Equation 2. Predictions for the max-min observers are more complex and are not summarized in the diagram.
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Figure 8. Performance (proportion correct) in identifying the alternative containing
the target for the max-linear (ML) observer and the max-min (MM) observer in a two
alternative forced choice task as a function of number of distractors for feature, conjunc
tion, triple conjunction, and disjunction displays for d~ = 3.0. Lines correspond to theo
retical results based on numerical evaluation of equations. Symbols correspond to
theoretical results based on Monte Carlo simulations.

effect of combining information across an informative

noisy encoder and another, noninformative noisy en

coder is to reduce the discriminability between target

and distractors along the new decision variable. The re

duction in the effective target/distractor discriminability

along the new decision variable is what causes the con

junction displays to have larger set-size effects.

Triple Conjunctions
Wolfe, Cave, and Franzel (1989) used a display that

included three types of distractors and each three dis

tractors shared a different feature with the target (see,

e.g., row 4, column I in Figure 7, where the target is a large

vertical high-contrast ellipse and the distractors are a

small vertical low-contrast ellipse, a small diagonal high

contrast ellipse, and a large diagonal low-contrast el

lipse). He called this display a triple conjunction display.

Results showed that set-size effects in search time stud

ies were larger for regular conjunctions than for triple

conjunctions. This finding was not predicted by standard

feature integration theory and led to a modification ofthat

model (guided search model; Wolfe, 1994; Wolfe et aI.,

1989) in order to account for the findings.

We will develop the predictions of the SDT model and

compare them with simple conjunctions and feature dis

plays for the case in which the internal target/distractor

discriminability ( d ~ ) is matched across the three feature

dimensions and is kept constant across displays.

Max-linear decision rule. For triple conjunctions, in

formation is combined across three feature dimensions

(f= 3), and each distractor differs from the target along

two feature dimensions (r = 2). Using Equation 6, we

then obtain

2d'
a: a: 0 (12)

triple conjunction = r=2,f=3 = ~.

The prediction of the SDT model with a max-linear de

cision rule is that, if performance is obtained in a triple

conjunction display and converted to d', using Equation 2,

the resulting d' will be larger by a factor of 2/\/3 than

that obtained for the corresponding feature condition

(along any of the three feature dimensions in the task).

Figure 7 summarizes the model predictions for the max

linear model in a triple conjunction display.

Max-min decision rule. Since the target has a high

mean along three feature dimensions and the distractors

have a high mean along one feature dimension, the mini

mum operation will tend to select in the distractors one of

the two feature dimensions with the lowest mean. The

maximum operation will tend to select the target over the

distractors. In order to obtain an expression for the

max-min decision rule for conjunction displays, we re

place the/= 3 and r = 2 in Equations 7 and 8 to obtain the

probability functions for the minimum among/feature

responses:

t m i n f ~ 3 ( X ) = 3· g(x - d~)' G2(>x - d~) (13)

and

dmin r = 2,f~ ix) = g(x - d~) . G2(>x) + 2

. g(x) . G(x) . G(>x - d~). (14)

Replacing the probability functions for the target and the

distractor in Equation 1, one can obtain an expression for

Pc for triple conjunctions.

Theoretical results. Comparison ofthe results in Fig

ure 8 shows that performance for the max-min model is
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slightly better than that for the max-linear model. Figure 8

shows that, for both models at a given level of target/

distractor discriminability ( d ~ ) along an individual fea

ture dimension, overall performance is higher for the triple

conjunction than for the conjunction and feature displays.

In the present comparison, the target/distractor physical

differences for the conjunction and triple conjunction dis

plays are matched.

Discussion. In the SDT formulation, the improvement

in performance from the conjunction display to the triple

conjunction display is due to the fact that the target differs

from each distractor along two feature dimensions. The

effect of combining information across two informative

and a noninformative noisy feature responses is a nois

ier decision variable (by a factor ofY3), but one that dis

criminates target responses from distractor responses

better (by a factor of2). In this way, SDT predicts higher

set-size effects for conjunctions versus triple conjunctions

without resorting to a two-stage model consisting ofa par

allel stage guiding a serial processor (Wolfe et aI., 1989).

Disjunction (Two-Dimensional Feature)

Treisman (1991) measured search response times for

a display in which the target differed from the distractors

along two feature dimensions (disjunctions). In order to

match distractor variability with respect to conjunction

displays, two distractors were used in the disjunction dis

play. The results showed that, even when target/distractor

physical difference and distractor variability are matched

across displays, disjunctions result in smaller set-size ef

fects than do conjunction displays. In this section, we

apply SDT to a disjunction display similar to that used by

Treisman. Unlike Treisman's disjunction display, which

consisted of two type ofdistractors, we generated model

predictions for a disjunction display with one type ofdis

tractor. However, our results could be easily generalized

to any number of distractor types. Figure 7 (row 3, col

umn 1) shows the disjunction display in which the target

differs from the distractor along two feature dimensions.

Max-linear decision rule. Noting that, for the case of

our disjunction displays, information is combined across

two feature dimensions (f= 2) and that the target differs

from the distractor along the two feature dimensions

(r = 2), we obtain from Equation 6

, , 2d~ (15)
ddisjunction = dr=2,[=2 = --;::=-.

~2

The equation reduces to an expression that is identical to

the equation describing the feature search, exctJ't for the

fact that a d~ is multiplied by a factor of 2/yl2 (target/

distractor discriminability along the individual feature

dimensions). The prediction of the SDT model with

the max-linear decision rule is that, if performance in

a disjunction display is converted to d', using Equa

tion 2, the resulting d' will be larger by a factor of2/\/2

than that obtained for the corresponding feature condi

tion (along any ofthe two feature dimensions in the task).

Max-min decision rule. Since the target has a high

mean response along both dimensions and the distractors

have a low mean response along both dimensions, the

minimum operation will tend to select any of the two tar

get and distractor feature dimensions. The maximum op

eration will then tend to select the target response over

the distractors.> In order to obtain an expression for the

max-min decision rule for disjunction displays, we use

Equations 7 and 8 to obtain

t m i n f ~ 2(X) = 2 . g(X - d~) . G(>X - d~)

and

dmin r> 2,[~ 2(X) = 2 . g(X) . G(>x). (16)

Replacing the probability functions for target and dis

tractor into Equation 1, one can obtain an expression for

P; as a function of number of distractors (n) for disjunc

tion displays.

Theoretical results. Figure 8 shows that performance

in disjunction displays for the max-linear model is some

what superior than that for the max-min model (the op

posite of what was found for conjunction displays) for a

fixed level of target distractor discriminability ( d ~ ) and

number of distractors (n). Figure 8 shows that, for both

models for a given level oftarget/distractor discriminabil

ity (d~) along an individual feature dimension, overall

performance is higher for the disjunction displays than

for the triple conjunction, feature, and conjunction dis

plays. For the present comparison, the target/distractor

physical differences are kept constant across displays.

Discussion. Although our results agree qualitatively

with the finding in search time studies ofa higher search

efficiency for disjunction than for conjunction displays

(Treisman, 1991), our particular disjunction display is

not identical to the one used for Treisman's search time

study, where the target was a vertical blue bar, half the

distractors were right oriented 27° and violet, and halfthe

distractors were left oriented 27° and turquoise. A main

difference is that, in Treisman's display, the target's value

lies in between the mean values of the distractors (along

the hue and orientation dimensions). Although the max

linear decision rule does not apply directly to this dis

play, it can be shown that, with a change of variables, the

two displays become identical and that the max-linear

model makes identical predictions for the disjunction

display addressed in this paper and the disjunction dis

play investigated by Treisman.s In summary, the SDT

model predicts performance improvement from con

junction to disjunction displays.

Matching Performance Across Display Types

The SDT predictions in the previous sections corre

spond to displays in which the physical difference be

tween target and distractors along the different dimensions

are matched across displays (feature vs. conjunction,

triple conjunction, and disjunction). However, what if

the target/distractor discriminability along the individ-
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Figure 9. Performance (proportion correct) in identifying the alternative contain
ing the target for the max-min (MM) and the max-linear (ML) observer in a two
alternative forced choice task as a function of number of distractors for the case where
performance was matched across displays for the case of n = 3. The graph shows fea
ture, conjunction, triple conjunction, and disjunction displays. Lines correspond to
theoretical results based on numerical evaluation of equations. Symbols correspond
to theoretical results based on Monte Carlo simulations.

ual feature dimensions in the multidimensional display is
increased so that Fe in the n = 2 condition in the feature

and the multidimensional display (e.g., conjunction, dis
junction, triple conjunction) are equal?"

Figure 9 shows that, if the targetldistractor internal

discriminability (d~) along the individual feature dimen
sions are adjusted so that performance across both display
types are matched for a given set size (n), the set-size ef
fects for the max-linear observer become the same for all

three display conditions and approximately the same as
those for the max-min observer.

The Effect of TargetJDistractor
Discriminability in Multidimensional Displays

Manipulating the target/distractor discriminability

along each individual feature dimension will also affect
performance in multidimensional displays. For the max
linear model and the specific displays investigated in this

paper (where d:,j, the targetldistractor discriminability,
along all r feature dimensions is equal), the effect of
changing the targetldistractor discriminability (d:,j) on
Fe is the same as that for the feature task and is entirely
described by Figure 4. For the max-min observer, a sim

ilar effect is found.

EXPERIMENT
Testing Set-Size Effects in Disjunctive

and Conjunctive Displays

To illustrate the applicability of SDT to visual search
accuracy in multidimensional displays, we use human

data from experiments performed at the University of
Washington by Aiken and Palmer (1992). They used
conjunction and disjunction displays that were somewhat

different than the ones previously presented in this paper.

The conjunction display had an additional third distractor
that had a smaller mean response than did the target

along both feature dimensions (Figure 10). The disjunc
tion display had two additional distractors that also dif

fered along both dimensions from the target (Figure 10).
Thus, the distractors were identical in the conjunction
and disjunction conditions. There were three conditions:

(1) conjunction display, (2) disjunction display, and
(3) disjunction display with reduced target/distractor dis

criminability.
For each condition, search accuracy was measured for

two and eight distractors (n = 2 and n = 8). We applied

the developed SDT-basedmodel in an attempt to quantita
tivelypredict human visual search accuracy for the displays
used. The predictions are compared with the predictions

ofa limited capacity serial mechanism previously used by
Bergen and Julesz (1983a, 1983b) to predict search ac
curacy for a T among Ls. In the temporally serial model,

the observer can perfectly process h items per presenta
tion time. When the display contains fewer than h items,
the observer performs perfectly (100%). On the other hand,
when there are more than h items in the display, the ob

server processes h random elements of the total n ele
ments in the display (without processing the same ele
ment twice). The Data Analysis section describes the
details about the mathematical fit of the serial model to
the data.

Method
Subjects. Three male young adults (age, 23-28 years) with nor

mal or corrected acuity participated in the study.

Apparatus. Images were displayed on a 13-in. Apple color mon
itor driven by a Macintosh Ilcx computer. The monitor had a back

ground luminance of200 cd/rn- and a resolution of640 by 480 pix-
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Contrast feature dimensions. A second disjunction condition was also stud

ied, in which the target/distractor discriminability was reduced by

making the target an ellipse with 64.5% contrast and an orientation
of -1.75 0

•

One additional complication of the design of the displays used by

Aiken and Palmer (1992) was that the appearance of a distractor

was probabilistic. Instead of assigning, from trial to trial, a fixed

number of ith type distractors to the displays, distractors were sam

pled randomly from the three distractor types with a probability of 13.
This design added the additional complication that the display

could have different distractor configurations from trial to trial. For

example, for the case of n = 3, the alternative containing the target

might have two distractors of Type I, two distractors of Type 2, two

distractors of Type 3, one distractor of Type I and one distractor of

Type 2, and so on. Appendix D develops in detail the application of

the SDT model to this particular design, in order to generate the

quantitative predictions to be compared with the human data.

Procedure. The display was presented to the subjects in the fol

lowing sequence. A fixation point was first presented for 100 rnsec,

followed by an interstimulus interval of 1,000 msec. The first stim

ulus display alternative was shown for 100 msec, followed by an

other interstimulus interval of 1,000 msec. Finally, the second stim

ulus display alternative was presented for 100 msec. The observers

had unlimited time in which to make their decisions.

Data analysis. ~ for identifications of the alternative display

containing the target was computed for each subject and condition.

Performance for each of the possible display configurations can be

calculated (Appendix D). The probability of occurrence of each

possible display configuration can also be calculated, given that

each distractor has a 13 probability of being sampled. Finally, an

expectation value for ~ can be obtained:

'

Conjunction
target

Disjunction Target

62%

64.5%

Conjunction Target

-3' - 1.75> r - - - ~ = - - 

Experiment 2 ~,~'r'
Experiment 1--'"

Disjunction
targets

Orientation

Equation 18 was fit to the human data for the conjunction dis

plays, with h as the only free parameter.

k

E(~) =PI . ~I + P2 . ~2 + P3 . ~3 + ... + Pk . ~k =L Pi' ~ i ' (17)
i=1

Results
Table 2 summarizes the measured P; for performances

for the different observers in the three different experi

mental conditions. Figures II A through II C show si
multaneous fits of the max-linear and the max-min de

cision rules for each observer to all three conditions. In
order to make these fits, an additional assumption was
made about linearity between the physical difference in

where Pi is the probability of the ith configuration and ~i is the
model prediction for the ith distractor configuration. Equations D6

through DlOin Appendix D were used to iteratively change the

value of d~ to provide the best chi-square fit to the data. In a first

analysis, the fits were independently done for each display type.

The expected variance (denominator) in the chi-square goodness of

fit was based on the statistical variance in ~ based on the binomial

variance. In a second analysis, for each observer, simultaneous fits

were performed for all conditions with one free parameter d ~ .

Performance for the limited capacity serial mechanism for visual

search accuracy was previously used by Bergen and Julesz (1983b).
Performance as a function of the number of elements in the display

(n) and the number of elements that can be processed serially in the

presentation time (h) is given by

h
~(n,h) = 0.5 + -, for n 2: h,

2n

(18)~ ( n , h ) = 1.0, for n < h.

and

Figure 10. Modified conjunction and disjunction displays used
in the Aiken and Palmer (1992) studies. The top diagram shows
the contrast and orientation values for the ellipsoidal targets and
distractors used in the conjunction and disjunction experiments
by Aiken and Palmer. The bottom diagrams show sample dis
plays used in the experiments, in which the elements appear
along the circumference of a circle centered on a fixation point.

els. Viewing distance was from 61 ern. resulting in a subtended

angle of 2 min of arc per pixel.
Stimuli. The stimuli for the experiment were ellipses with major

axes of 30 arc min and minor axes of 10 arc min. The ellipses lay

on the perimeter of an imaginary circle with a radius of 6° of arc

centered on the fixation point (Figure 10). Manipulations of the

stimuli were performed along two physical attributes: ellipse con

trast and orientation. A pilot study was used to determine how to

match changes along both dimensions in order to achieve the same

search accuracy. These pilot studies revealed that, for a standard el

lipse of vertical orientation and 61% contrast, a 5% change in con

trast produced approximately the same accuracy as a 3° change in

orientation.
Two displays were investigated. In the conjunction display, the

target ellipse had an orientation of +3° and a contrast of72%. There

were three types of distractors: (I) distractors with 0° orientation

and 67% contrast, (2) distractors with +3° orientation and 67% con
trast, and (3) distractors with 00 orientation and 72% contrast. In

this way, two of the distractors shared the same value along one of

the feature dimensions with the target. The third distractor differed

from the target along both feature dimensions.
In the disjunction display, the distractors remained the same, but

the target was an ellipse with 62% contrast and an orientation of

- 30. In this way, the target differed from the distractors along both
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Note-Performance is for two set-size levels: n = 2 and n = 8.

Table 2
Proportion Correct for Three Observers for Three

Display Conditions: Conjunction, Disjunction With High
Target/Distractor Discriminability, and Disjunction

With Low Target/Distractor Discriminability

contrast and orientation and the internal target/distractor
discriminability ( d ~ ) along the feature dimensions.

In order to compare the performance predictions of

the max-linear model for the Aiken and Palmer (1992)
modified conjunction and disjunction displays with
those for the standard conjunction and disjunction dis

plays (rows 2 and 4 of Figure 7), P; predictions of the
model were converted to d', using Equation 2 (for feature

displays). As Figure 7 summarizes, the result of such a
transformation for the conjunction display is a d' that is
smaller by a factor ofV2 than the d' for the feature dis

play (for all levels of target/distractor discriminability
and number of distractors). For the disjunction display,
the transformation results in a d' that is larger by a factor

ofV2 than the d' for the feature display. For the modified
Aiken and Palmer conjunction display, use ofEquation 2
to transform p" to d' results in a d' that is smaller by a

factor of 1.25/\/2 than the d' for the corresponding fea
ture condition. For the Aiken and Palmer disjunction

condition, the result of the transformation is a d' that is
larger by a factor of 1.25 . 2/V2 than the d' for the fea

ture condition. Table 3 summarizes the performance pre

dictions, using Equation 4 for the max-linear observer
for a feature condition, a standard conjunction condition,
a standard disjunction condition, and the Aiken and

Palmer modified conjunction and disjunction conditions.
The max-linear prediction of the model for the ratio be
tween the d's for the conjunction and disjunction dis

plays (using Equation 2) is 2.0 for both the standard dis
plays (Figure 7) and the Aiken and Palmer modified
conjunction and disjunction displays.

The ratios between the d's (using Equation 2) for the

two display conditions for the 3 human observers were
1.78,2.25, and 2.78 for the n =2 condition and 1.77, 1.7,
and 2.50 for the n = 8 condition. Averaging across condi
tions and observers, the ratio ofd's between the conjunc
tion and the disjunction displays is 2.13.

Table 4 (upper part), shows the chi-square values for
the simultaneous fits for 3 observers. The model could
not be rejected (p > .01) for Observers 1 and 2 (for both
models) but was rejected for Observer 3 (for both mod
els). For Observer 1, the max-min model provided a bet

ter fit, but for Observer 2, the max-linear model provided
a better overall fit. Table 4 (lower part) shows the chi-

Conjunction Disjunction I Disjunction 2

n=2 n=8 n=2 n=8 n=2 n=8

square values for separate fits for each display condition.

These fits do not make any assumptions about the relation
between the physical difference in contrast and orienta
tion and the internal target/distractor discriminability

( d ~ ) . The model could not be rejected (p > .01), except
for the conjunction condition for Observer 2.

Table 4 also shows the chi-square values for the best

fit of the temporally serial model to the conjunction con
dition for each observer. Figures llA-ll C also show the

best fit for the limited capacity serial model for the con
junction condition for the 3 observers. For all the ob
servers, the best fit was for h = 1 (Equation 18), which

corresponds to a processing of 10 items per sec. The lim
ited capacity serial model could be rejected for all 3 ob

servers (p < .01).

Discussion
For Observer 1, the set-size effects were larger for the

conjunction type displays than for the disjunction type

displays. However, for Observer 2, the set-size effect was
larger for the disjunction than for the conjunctions. This is

due to the fact that Observer 2 was operating at lower per
formance levels (low target!distractor discriminability),
where the performance is closer to the 50% floor level.

At these low levels of performance, set-size effects de
crease with decreasing target!distractor discriminability.

The separate fits to each condition show that the SDT

model with two possible decision strategies (max-linear
or max-min) can be used to predict performance degra

dation in visual search accuracy as a function of the num
ber of distractors for conjunctions and disjunctions of
contrast and orientation. On the other hand, the specific

temporally serial model previously successfully used by
Bergen and Julesz (1983a, 1983b) failed to predict human

visual search accuracy for the conjunction displays (see
Table 4B).

Our results are in disagreement with the results of
Bergen and Julesz (1983a, 1983b) where the serial model
predicted visual search accuracy for a T among Ls. An

other disadvantage is that the serial model makes the
same set-size prediction at all levels of target/distractor
discriminability, unless one assumes that the number of

items processed per second somehow depends on target!
distractor discriminability.

Figures llA-llC show that the SOT model can be

used to successfully make predictions across display types.
The ability to simultaneously predict performance for
the conjunction and the disjunction displays shows that
the difference in performance across displays can be ac

counted for by the model without assuming any qualita
tive or quantitative changes in the processing. Compari
son between max-linear d' predictions for the modified

Aiken and Palmer (1992) conjunction and disjunction
displays and those for the standard conjunction and dis
junction displays (see Table 3) show that d' in the former
is larger by a factor of 1.25 for both displays. This find-
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Figure 11. Proportion correct as a function of number of distractors in the display for three
display conditions: conjunction, disjunction high target/distractor discriminability, and dis
junction low target/distractor discriminability. There were two number-of-distractor condi
tions: n = 2 and n = 8. Solid lines correspond to the max-linear model used to fit the display
conditions simultaneously. Dashed lines correspond to the max-min model used to fit all the
display conditions simultaneously. Different figures (A, 8, C) correspond to the 3 different
observers.

ing is consistent with the fact that the Aiken and Palmer

displays included additional distractors (see Figure 10)

that had higher target/distractor discriminability than did

the original distractors in the standard conjunction and

disjunction displays (see Figure 8). As a result, the group

ofdistractors in the Aiken and Palmer displays degraded

performance with respect to a feature display but less than

did those in the standard conjunction and disjunction

displays.

The ability to predict performance across the two dis

junction conditions shows that the model can predict

changes in set size with different levels oftarget/distractor
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Table 3
Predictions of the Max-Linear Model for the Standard Conjunction and

Disjunction Displays and for the Modified Conjunction and Disjunction Displays
Used by Aiken and Palmer (1992), Which Included an Additional Third Distractor Type

Feature Conjunction Modified Conjunction Disjunction Modified Disjunction

d ~ d ~ / V 2 1.25 d~/V2 2d~/V2 1.25 2d~/V2

Chi-Square Fit

Model Subject I Subject 2 Subject 3

Note-Values with an asterisk (*) indicate that the model could be re

jected at a .0 I significance level.

2.46

0.267

0.56

6.1*

10*

2.23

2.61

6.48

1.16

0.97

1.10

0.34

Separate Fit

0.358

0.832

0.516

Simultaneous Fit

Max-Linear

Max-Min

Max-Linear

Conjunction

Disjunction I

Disjunction 2

Serial

Conjunction 58.98' 41.93' 14.94'

ever, the model needs to be generalized to the case in which

the target/distractor discriminability is not approximately
equal along the individual feature dimensions. We have
also assumed that each feature dimension elicits a statis

tically independent response. Model predictions should
be extended to the case in which there are possible corre

lations (nonindependent) between the feature responses.

Table 4
Reduced Chi-Square Goodness of Fit [ X ~ = (x2/df)1

for Separate and Simultaneous Fits to the Different
Display Conditions for the Two Signal Detection
Theory Based Models and the Limited Capacity

Serial Model of Bergen and Julesz (1983a, 1983b)

Feature Versus Conjunction
There have been numerous studies finding larger set

size effects in search times for conjunction versus fea

ture displays (Treisman & Gelade, 1980; Wolfe et aI.,
1989). Duncan and Humphreys (1989) performed visual

search time studies and showed that visual search effi
ciency increased with increasing target/distractor dis

criminability and decreased with increasing distractor
variability. In their view, the feature/conjunction di
chotomy was due to the lower target/distractor discrim

inability and the higher distractor variability in the con
junction displays. To determine whether target/distractor

discriminability could explain all of the difference in
performance, Treisman (1991) performed an experiment
in which the discriminability between the target and the

distractor was kept constant from the conjunction to the
feature display. Starting with a conjunction display, this

was achieved by eliminating the differences between tar
get and distractors along one of the two feature dimen

sions and keeping the difference along the other dimen-

discriminability ( d ~ ) without assuming quantitative or
qualitative changes in processing at the different levels
of target/distractor discriminability. In the present treat

ment, we made the assumption that the internal discrim
inability between target and distractor was linear with

the physical difference (contrast and orientation) between
the target and distractor. The model fit might be improved
if we were to explicitly measure the relationship between

percentage ofcontrast difference or percentage oforien

tation difference and d~. Interestingly, the present results
cannot be used to decide between the two decision strate
gies, max-linear or max-min. Further experiments need

to be performed to decide which decision strategy best
models human visual search accuracy.

GENERAL DISCUSSION

Multidimensional Extension
of the Signal Detection Theory Model

We have presented an extension of an SOT based

model that has been previously used to predict visual
search accuracy in feature displays (Palmer, 1994a). Un
like most current theories of visual search, the SOT

model provides a quantitative framework that can be
used to rigorously test whether set-size effects are ac
counted for by the model. The model can be applied to

predict the effects on visual search accuracy of target/
distractor similarity and distractor variability, number of
distractors, and number of response alternatives, and it

can be applied to a variety ofmultidimensional displays,
including conjunction, disjunction, and triple conjunction
displays (among others). Performance degradation is

predicted with relatively few and well-established as
sumptions: internal noise, maximum response decision
rule, independent processing of features, and for multi

dimensional displays, linear combination ofresponses or
minimum response across feature dimensions.

Application of the model to data collected at the Uni

versity of Washington showed how the model can be suc
cessfully used to predict performance in conjunctions
and disjunctions ofcontrast and orientation. Wehave gen
erated predictions for two different decision strategies

for combining information across feature dimensions:
the max-linear and max-min models. Throughout our
theoretical treatment, we have assumed that the target/
distractor discriminabilities were matched across feature

dimensions. This assumption guaranteed that the equal
weighting in the linear combination was optimal. How-
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sion constant. Treisman still found larger set-size effects

of conjunction displays versus feature displays where the

target/discriminability ( d ~ ) along the feature dimensions

in both displays were matched. Feature integration the

ory attributes the larger set-set size effect in conjunctions

to the serial allocation of visual attention needed to bind

information across feature dimensions.

Geisler and Chou (1995) have done experiments show

ing that the feature versus conjunction dichotomy could

be explained, in part, by low-level factors. They con

ducted carefully controlled 2AFC search accuracy tasks

and used the same target and background in a search

time study. They showed that the rank order ofthe search

times in feature and conjunction displays could be pre

dicted from the size ofan accuracy window. An accuracy

window is defined as the accuracy (Pc) in a 2AFC as a

function of target position eccentricity. They concluded

that the feature/conjunction dichotomy can, in part, be

accounted for by the low-level factors, such as stimulus

information. Geisler and Chou did not manipulate set

size, nor did they propose a mathematical model that

generates visual search accuracy results as a function of

number ofdistractors (set size). Their focus was on mul

tiple fixation search tasks in which observers were al

lowed to move their eyes during the search. Their work

also showed the effect of eccentricity on visual search

accuracy.

The work presented in this paper specifically attempted

to isolate set-size effects of an attentional nature from

set-size effects from element eccentricity, element den

sity, and eye movements. Therefore, we focused on an

experimental paradigm that tried to neutralize other

sources of set size.

Unlike previous treatments (e.g., Geisler & Chou,

1995), our model explicitly attributes the feature/con

junction dichotomy to a specific neural computation.

Our model predicts larger set-size effects for conjunction

than for feature displays, even when the target!distractor

discriminability along the individual feature dimensions

are matched in the feature and conjunction displays (Treis

man, 1991). In our model, the larger set-size effects for

conjunctions are an emerging property of the system,

given the existence ofnoise within the visual system, the

independent processing of the features in the display, and

an assumed decision rule for combining information

across feature dimensions. Our results for disjunction

(2-D feature) versus conjunction displays were well pre

dicted by the SDT model and were not predicted by a se

rial attentional mechanism. Therefore, our findings with

visual search accuracy are not consistent with a tempo

rally serial mechanism that binds information across fea

ture dimensions. These results agree with recent results

(Eckstein, 1998) showing that the one-dimensional fea

ture versus conjunction dichotomy is also predicted by

the SDT-based model and not by a temporally serial

mechanism.

The main assumption in the SDT model is that the two

relevant search dimensions or features have independent

noise. On the other hand, if the two features were pro

cessed by the same encoder and the observer had direct

access to such an encoder, one might not expect the ad

ditional performance degradation in the conjunction dis

play. This might be the case for conjunctions of stereo and

motion. Nakayama and Silverman (1986) obtained exper

imental results for conjunction visual search efficiency

no lower than that for the typical feature display and re

lated the results to physiological evidence for cells in the

visual cortex area MT that respond to motion and stereo

disparity (Ballard, Hinton, & Sejnowski '983). The SDT

model predicts that performance degradation from con

junctions can still be overcome by increasing the target!

distractor discriminability to higher levels. This obser

vation seems to agree with results that found very shallow

slopes (high search efficiency) for conjunction displays

with high target/distractor discnminability (Duncan &

Humphreys, 1989; McLeod, Driver, & Crisp, 1988).

Conjunction Versus Triple Conjunctions

Wolfe et al. (1989) and also Quinlan and Humphreys

(1987) found larger set-size effects In search time Studies

for conjunctions than for triple conjunctions where the

target/distractor discriminabilities were kept constant

across displays. Wolfe et al. interpreted the findings as

supporting the idea of guided search where the parallel

processes guide the serial-attention-mediated process

(Wolfe, 1994; Wolfe et aI., 1989), In this view, set-size

effects are smaller in triple conjunctions, because in this

case, the target differs from the distractors along two di

mensions (vs. one dimension in standard conjunctions),

providing more information by which the parallel pro

cess may guide attention. The proposed SDT model also

predicts overall performance improvement and smaller

set-size effects for visual search accuracy in the triple con

junction displays without resorting to a parallel mecha

nism's guiding of a serial mechanism.

It is also interesting to note that Wolfe et al. (1989)

also performed experiments for a cecond kind of .riple

conjunctions in which the target differed from each of the

distractors along a single feature dimension instead oftwo

(e.g., a large, vertical, high-contrast ellipse target among

large vertical, low-contrast ellipses, large, diagonal, high

contrast ellipses, and small vertical, high-contrast el

lipses). His results showed that, for triple conjunctions in

which targets and distractors differ along a single feature

dimension, the set sizes are about the same size as those for

conjunctions. Although we did not develop our model in

detail for this display, it is interesting to observe that, for

the max-linear model, if performance for such a display

is transformed to d~, using Equation 2, we obtain a d'

that is smaller by a factor V3 than that for feature dis

plays and about the same as the one obtained for conjunc

tion displays (a factor of ~ smaller than the conjunc-
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Table 5
Comparison Between Predictions of the Signal Detection Theory (SDT)

Model for Set-Size Effects in Visual Search Accuracy Experiments
and Experimental Results for Search Accuracy and Search Time Studies

Predictions of the Experiments

SDT Model for Set-Size Effects Search Accuracy Search Times

Palmer (I 996)

Geisler & Chou (1995);

Eckstein (1998)

Treisman & Gelade (I 980);

Duncan & Humpheys (I 989);

Geisler & Chou (I995)

Conjunction> triple conjunction Bartroff & Eckstein (1999) Wolfe, Cave, & Franzel (1989)

Conjunction> disjunction (2-D feature) Results in this paper Treisman (I 991)

< Target/distractor discriminability Palmer (1996)

> Set size effect

Conjunction> feature

Note-The SDT predictions in this table are for high performance levels. At low performance levels, these

model predictions do not hold, because performance cannot degrade below chance level (50%) for a two

alternative forced-choice task that leads to violations of the given predictions.

tion d'). These results again seem to qualitatively agree

with the findings of Wolfe et al.

Search Accuracy Versus Search Times
The presented SDT-based model makes predictions

for visual search accuracy and makes no explicit predic
tions for reaction time search studies. In different parts

of this paper, we compared the set-size effects predicted
by the model in search accuracy studies with previous
search time results in the literature. We found that, for

high performance levels in the search accuracy studies,
the rank order of set-size effects predicted by our model

agreed closely with the results in search time studies.
These comparisons included feature, conjunction, triple
conjunction, and disjunction displays. Table 5 summarizes

some of the set-size effects predicted by the presented
SDT model for visual search accuracy with experimental
results for visual search accuracy and visual search times.

The validity of the comparisons between search accu
racy and search times is based on the assumption that
larger set sizes in visual search accuracy studies lead to

larger set sizes in visual search time studies. This assump
tion is supported by the experiments in Palmer (1995),
where the target was a disk with a higher luminance than
the distractors.

His results show larger set-size effects for the condi
tions in which the target/distractor difference in lumi
nance is smaller. In a subsequent experiment with the

same stimuli, the results show that the conditions with a
smaller target/distractor luminance difference also lead
to larger set-size effects in search time studies (with ac
curacy kept approximately constant; Palmer, 1996). This
finding suggests that, within certain performance ranges,

larger set-size effects in search accuracy studies lead to
larger set-size effects in search time studies. Geisler and
Chou (1995) presented experiments in which accuracy
in a 2AFC and search times for the same stimuli as a

function ofeccentricity were measured. Their results also
showed that lower performance in search accuracy stud
ies led to larger response times in search time studies.

Even though these studies support the preservation of
rank order of set sizes across displays, there is still a need

for a model that can mathematically map accuracy mea
sures to reaction times. Work extending the validity of
the SDT theory from accuracy studies to reaction time

studies has been recently reported (Palmer, 1994b, 1995,
1996; Palmer & McLean, 1996).

CONCLUSIONS

We have extended and applied a model based on SDT
to predict set-size effects on visual search accuracy for

displays in which the target differs from the distractors
along more than one dimension (multidimensional search
displays). The model accounts for many findings in vi

sual search without resorting to a temporally serial mech
anism that binds information across feature dimensions.
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NOTES

I. The statement does not hold for low discriminability ( d ~ = 1.0 and

0.5), where performance levels cannot decrease below the 50% chance

leve!.

2. However, for the minimum operation to be general, a common

scale is needed to compare values across feature dimensions. In order

to guarantee the generality and effectiveness of the max-min decision

rule described, one has to take three steps. (I) We adjust the sign of the

scale along the feature dimensions so that the target always elicits that

larger response. (2) From each element's individual feature response, we

subtract the mean response of the distractor type with the smallest mean

feature response. (3) We divide the feature responses by the internal

noise in that feature dimension. This step transforms the responses along

different feature dimensions to a common scale, signal-to-noise ratio.

3. The derived equation can also be applied to one-dimensional dis

plays with distractor variability, such as those studied by others (Cahill

& Carter, 1976; Indow & Kanazawa, 1960).

4. This can be achieved by performing individual feature search ex

periments (high-contrast vertical ellipse among low-contrast ellipses

and a vertically oriented high-contrast ellipse among nonvertically ori

ented high-contrast ellipses) and adjusting the target/distractor physical

difference along the relevant feature dimension in order to achieve ap-
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proximately the same performance across all feature conditions (e.g.,

orientation feature search, contrast feature search).

5. Note that, for the disjunction display, a max-min rule results in the

same predictions as a max-max rule (an observer who, for each ele

ment, takes the maximum response among the two feature dimension

responses and then chooses the display containing the maximum re

sponse among the maximum feature responses).

6. The mean and variance for the two distractors and the target in

Treisman's (1991) 2-D feature display can be written to be: Target:

xl ,xl,lT~; Distractor I: XI + uo,xl + Uo,lT~; Distractor 2: xl - uo,xl 

Uo,lT~. Given that the target does not have the larger response value, the

max-linear and the max-min decision rules are not directly applicable

to this task. However, one can apply a transformation to the responses

by subtracting from all responses by the expected mean responses for

the target, then taking the absolute value ofthe responses and finally the

negative of the responses. After this transformation the mean and vari

ance of the responses for target and distractors become Target:

-lxI-xII =0, -lx2-x21 = O,lT~; Distractor I: -uo' -Uo,lT~; Distractor 2:

-uo' -Uo,lT~. With the transformation, the expected responses for the

two distractors become the same, and the Treisman (1991) 2-D feature

display is equivalent to the 2-D feature disjunction display presented in

this paper. The model predictions for both 2-D feature cases are identical.

7. For the max-linear model, matching performance between the fea

ture condition and the multidimensional display would involve increas

ing the target/distractor discriminability ( d ~ ) along each feature di

mension by a factor of 0 for the conjunction display and V3/2for the

triple conjunction display and reducing it by a factor of 0/2 for the dis

junction display.

(A3)

(A7)

APPENDIX A
Feature Displays

The probability of correct identification of the target-present display (Pc) is the probability that the

maximum response to the target-present display is larger than the maximum response to the target-ab

sent display. Assuming that each element elicits a statistically independent internal response, Pccan be

expressed as the product ofthe probability that the maximum response to the target-present display will

take a value x and the probability that the maximum response to the M - I target-absent displays will

take a value less than x:

Pc = P[max(T, D tI , Df2, ... ,Dtn- 1) =x] P[max(Ddl, Dd2, ... , D dn) < x], for all x. (AI)

The probability that the maximum response to elements in the target-present display will take a value

x can be expressed as the sum of t(x) Dn-l(x) (the first term in Equation A2; the probability that the

target will take a value x and that the n - I distractors will take values less than x), (n - I) d(x) (the prob

ability that any one ofthe n - I distractors [n - I permutations] will take a value x), and T(x) Dn-Z (x)

(second term in Equation A2; the probability that the target and the remaining n - 2 distractors will take

values less than x):

P[max(T, D t l, D tZ' ... , D tn- I ) = x] = t(x)Dn-I (x) + (n - I) . d(x)Dn-Z(x) T(x). (A2)

The probability that the maximum response in the target-absent display will take a value less than x can

be guaranteed if all the distractors take a value less than x:
n

P[max(Ddl,DdZ, ... ,Ddn)<X]= I1D(x)=D
n(x).

I

Replacing expressions A2 and A3 into Equation Al and integrating over all possible values ofx, we

obtain

p.,r:[ t(x)D n-l(x)+(n -1)d(x)D n-z(x)T(x)]D n(x)d x. (A4)

The equation can be generalized from a 2AFC to any M-AFC by noting that, in an M-AFC, there are

M - I target-absent displays containing n distractors that cannot exceed the maximum response to the

target-present display:

p"(M,n) = r: [t(x)D n-l(x)+(n -1)d(x)D n-z(X)T(X)][D n(X)r-
1

d x. (A5)

With the assumption of equal Gaussian internal noise for the target and distractors, the target and dis

tractor density functions are described with equal Gaussian variance distributions, and Equation A5 can

be written as

p"(M,n,d~) = r: [g(x - d ~ ) G n-l(x)+(n -1)g(x)G n-z(x)G(x - d ~ ) ] [G n(x)] M-l d x, (A6)

where M is the number ofalternatives, n the number of distractors per alternative, d ~ is the distance be

tween the target and the distractor distribution in standard deviation units, g(x) is the probability ofthe

Gaussian distribution's taking a value x,

g(x) = R exp( _ ~ Z ),

and G(x) is the cumulative probability of the Gaussian distribution taking a value less than

(
Z)x rrr: -y

G(x) = L~ I)li'1r exp -2- dy. (A8)
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APPENDIX A (Continued)

When there are no distractors in the target-present display (n = I), Equation A4 reduces to the familiar

2AFC expression, with one display containing one nontarget and the other the target (Green & Swets,

1966):

M~I

~(M) = f== t (x)[D(x)] d x.

A mathematical expression by which to calculate ~ in the feature condition was first derived by Shaw

(1980) and is mathematically equivalent to Equation A I.
-'----------------------

APPENDIXB
Combining Information Across Feature Dimensions

. ~ - - - - - - - - -

Max-Linear Decision Rule
In order to calculate the effective target/distractor discriminability along the new decision variable,

we must find the expected value of the mean response and standard deviation to the target and distrac

tors after the linear combination of responses across feature dimensions. The mean response to an el

ement along the new decision variable will be the linear combination of the mean responses of that el

ement along the individual feature dimensions:

I

Zi = I wi' x,j. (BI)
j ~ l

The variance of an element's response along the new decision variable, O'L is given by (Taylor, 1982)

(B2)

where

la~J
is the partial derivatives of Z with respect to xii and a~i is the variance of the responses along the jth

dimension. For the case of a linear combination of responses across feature dimensions, the variance

of the new decision variable, o'~, reduces to

(B3)

(B4)

The internal discriminability between a single target and the ith distractor along the new decision vari

able can then be described by the distance between the means of the target distribution (2
1

) and dis

tractor distribution (2d i ) divided by the standard deviation of the distributions:

d' = Z, -Zdi
1:: .

: 2
\0'=

For the case in which the standard deviation for internal noise is the same along the different feature

dimensions and for the different elements, and replacing B I and B3 into B4, the effective target/distractor

discriminability reduces to

where

f

IwAi
, j~1

di-=~---' - /

'I 2: w .

\

' j
'j~l

X'j-Xd
i l

d;j=----

(B5)

is the discriminability between the target and the ith distractor along thejth feature dimension.

For the special case in which the target/distractor discriminabilities along all r feature dimensions

are approximately equal and the observer uses equal weighting (wj = I for alljs) for all/feature di

mensions, Equation B5 reduces to



(B6)

(B7)
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APPENDIX B (Continued)

, rd~
dr,f = [i

where d~ is the target/distractor discriminability along the individual feature dimensions, r is the num

ber of features along which the target differs from the distractors, andfis the number of features in

formation is combined across.

Max-Min Decision Rule
A second possible way in which the observer can combine information across feature dimensions for

each element is by choosing the minimum response across feature dimensions. Given that each element

consists of many feature dimensions, the distribution of the minimum is given by the probability that

the ith element will take a value x along thejth feature dimension [e;j(x)] times the probability that all

other responses along the remaining feature dimensions take a value larger than x,

1
II [Eik(> x) r-oJ

,) :
k=l

" 1 1 (I-Oj' )
ej.min (x) =Mm{xjj,j =1,... ,f} =Le;j(x), II [Ejk(> x)] .

j=1 k=!

Specializing the equation for the target and distractors, we obtain

1 1

tmin(x)=Min {x; ,i =I, ... .r] =Ltj (x)· II [Tk(> x)r-
o

J,}

j=l k=1

and

(B8)

(B9)
1 1

dmin(x)=Min{x; ,i =I, ... ,f}=Ldj (x)· II [Dk(> x)r-
Oj

,) .

j=l k=l

Assuming that the target differs from the distractors along r of thef distractors (f??: r) and that the targetI
distractor discriminability along all those r feature dimensions is the same, Equations B7 and B8 be

come

tmin(x) = f· t(x)[T(>X)]U-I)

and

dmin(x)= (f - r)t(x)T(>x) I-r-I D(>x)r + rd(x)D(>x) r-l T(>x)/-r.

With the assumption that the internal responses are Gaussian distributed-t(x) =g(x - d~),d(x) =g(x),T(x) = ft(y)dy,

x

and
+~

D(x)= fd(y)dy.
x

APPENDIXC
Multiple Distractor Types (Distractor Variability)

(B1O)

(BII)

For the case of multiple distractor types with different associated target/distractor discriminability

along the new decision variable, the probability of correct identification of the target-present display

is still the probability that the maximum response to the target-present display will be larger than the

maximum response to the target-absent display (Equation AI). The only difference is that now there

are a total ofk different distractors types, instead ofone type ofdistractors. Each ith distractor type has

ni elements. The probability that the maximum response to elements in the target-present display will

take a value of x can be expressed as the sum of

k

t(x)II D7 i (x)
;=1

(the first term in C1), the probability that the target will take a value of x and that the n i distractors of

all k types will take values less than x, and
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APPENDIX C (Continued)

I k [ I ](I-Oj )

n;d;(x)T(x)Dti- (x)II Dt'- (x)
1=1

(the second term in Cl; also, oij is Kronecker delta, which is I for i = j and 0 otherwise), the probabil

ity that anyone of the n j distractors [nj permutations] of all k distractor types will take a value of x

[njdj(x)], that the target and all the remaining nj - I distractors ofthe ith type will take a value less than

x [T(x)Djn i - I(x)],and that all the njdistractors of the k- I remaining types will take a value less than x

[

k [n i J(I-o'/)lII n, (x) :
j=l

k k [ k [ ](1-0)1
p[maX(T,Dtl,Dt2, ... ,Dtn)=X]=t(X)J]Dti(X)+ ~ n i - d ; ( X ) . T ( X ) . D t i - l ( x ) ~ . Dti(x) 'J.

(CI)

The probability that the maximum response in the target-absent displays will take a value less than x

can be guaranteed if all the distractors take a value less than x:

k+1

p[ max(Ddl,Dd2, ... .o.;+ I) < x] = IIDti(x),
j=l

(C2)

where D;"j (x) is the cumulative probability that all the njdistractors of ith type take a value less than x.

Note that the multiplication index runs to k + I, because ofan additional distractor in the target-absent

display that was added so that the target-present and the target-absent displays would contain the same

number of elements.

Replacing expressions C I and C2 into Equation A I and integrating over all possible values ofx, we

obtain

+~ [k k [ k (1-0 )11
Pe(N,M,k)= _ ~ t(X)J] Dj

n,
(x)+ ~ n j - d ; ( X ) - T ( X ) . D t i - I ( X ) ~ -[DinJ(X)] J

-[DDti(X)r-
1dX.

(C3)

PeeN, M, k) is performance for M alternatives and k distractors types, where the number of distrac

tors n j of each of the ith type is given by N = {n I' n2' n3' ... nk} and Ojj is Kronecker delta, as defined

above.

If the observers' internal responses to the different elements in the display are assumed to be Gauss

ian and only different in their mean internal response, the probability distributions of the responses for

the different elements can be parameterized in terms of the distances in standard deviation units be

tween the target response distribution and each of the distractor response distributions (d!). Equa

tion C3 then reduces to

P(N,M,k,D')=I [g(X)llCni(x+d;)

>+ ~ ln j .g(x +d;)·C(x)· Cni-I(X+d;)D[cn; (x +dif-
Oi;)

JJ

. [ucni(x+d;)r-ldX, (C4)

where PiN, M, k,D') is the Pe for performance as a function of k (the total number of distractor types),

the number of distractors n j of the ith distractor type as specified by N = {n" n2' n3 , ... nd, the num

ber of response alternatives M, and d; (the discriminability between the target and the ith distractor type

as specified by the set D' = {d~, d;, d~, ... dk}). The set size is the total number of distractors plus the

target and is given by

k

n= Lnj+l,
i=l

where the summation is over k the total number of distractor types. Also, g(x) and C(x) are defined as

in Equations A7 and A8.
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APPENDIXD

Derivation of Model Predictions for the Aiken and Palmer (1992) Experiment

Max-Linear Decision Rule

The first step needed to calculate ~ is to obtain the effective targetldistractor discriminability along

the new decision variable after the linear combination of information across feature dimensions. As

suming that the observer equally weights the information across feature dimensions and taking into ac

count that the target/distractor discriminability was matched along the orientation and contrast di

mensions, we can use Equation B5 to obtain the target/distractor discriminability along the new

decision variable (d:z ) '

Modified conjunction task. For two of the distractors in the modified conjunction, d ~ z = d~z and is

given by

And for the third distractor,

f

~dij [d'+0]
d' -d' _ ~ __o I. d'.
lz- 2z- Ji - -J2 - \2 O'

(01)

(02)

f

I,d{j [d' +d']

d;z =JIi = o~2 0 2 '2d~,

where d~ is the targetldistractor discriminability between the target and distractors along the individ

ual feature dimensions (contrast and orientation).

Modified disjunction task. Similarly, we can obtain the effective targetldistractor discriminability

for the modified disjunction display:

and

f

I,d{j [2d' +d']
d; = a: =.L:!..- = 0 0 = 3 d'

lz 2z {f ~ 2 \ 2 0
(03)

f
~d'
~ Ij [d' +d']

d' =.L:!..- = 0 0 = 2 . d'. (04)
3z r7 t: \2 O'

'VI '12

Calculation of Proportion Correct. Since the modified conjunctions and disjunction displays con

tain multiple distractors with different associated target/distractor discriminability along the new de

cision variable, calculating Pc requires equation C4 (for multiple distractors), rather than Equation A6.

The expressions for d~z, d~z, and d 3z for the conjunction and disjunction displays (Equations 01-04)

might be used with equation C4 in order to predict Pc' However, an additional property of the Aiken

and Palmer (1992) studies was that, on each trial, the selection of a particular distractor was proba

bilistic. Inthis way,the distractor configuration varied from trial to trial. Inthis way, specializing Equa

tion C4 for any particular distractor configuration will not correctly describe Pc for the Aiken and

Palmer experiments. The appropriate expected value of Pc for these experiments, in which the distrac

tor configuration was randomly determined from trial to trial, is calculated by calculating the ~ for each

possible display configuration and multiplying it by the probability ofoccurrence of that particular display:

k

E(~)= PI ' ~ l + P2 '~2 + P3 '~3 + ... + Pk '~k = LP;'~i' (05)
j=l

where E(~) is the expectation value of Pc for the experiment, Pc< is the ~ prediction for the ith display

configuration, and P; is the probability of occurrence of the ith display.

Noting that the probability of occurrence of a given distractor configuration with i Oistractors 1 and
n - I - i Oistractors 2 is given by (Taylor, 1982)

(
n-I); n-l-;

i Psi-P d2 ,

a general equation describing the expectation value of ~ as a function of number of distractors and d~

can be derived:

n n-l

E(~(n,2,d~) = I, I, [I(n,i)+ J(n,i) + K(n,i)]. [L(n,})],
j=Oi=O

(06)
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where the summations are over the number of distractors of Type I in the target-present and the target

absent displays.

Also, the expressions I(n,i), J(n,i), K(n,i), L(n,) are given as follows.

+~ ( I) ()i ( )n-'-i
I(n,i)= J ~ n ~ g(z) ~ Gi(z+(,) t G

n-'-i(z+d;2)dz
(07)

is the probability that the target will obtain a value ofz and the probability that all the i Distractors I

and the n - I - i distractors will be less than z;

J(n,i) =I (n~ 1) A~ )g(z +d;,)( ~ r1G i-1(Z +(l)(tf i

- ' Gn-1-i(z +d;2)G(z)dz (08)

is the probability that anyone Distractor I will take a value ofz and that the i-I Distractors I, the n 
I - i Distractors 2, and the target will be less than z;

+= (I) ( ) ()n-i-2. ( )i
K(n,i) = L n~(n_I_i). t g(z+d;2) t G

n-'-2(z+d;2) ~ Gi(z+d;,)G(z)dz (09)

is the probability that anyone Distractor 2 will take a value of z and that the n - i - 2 Distractors 2,

the i Distractors I, and the target will be less than z; and

L(n,j)= T(n)(~ JGJ(Z+d;,>(tJ-J G
n-J(Z+d;2)dz

(010)
- ~ }

is the probability that all the j Distractors I and the n - j Distractors 2 in the target-absent display will

take a value ofless than z (the maximum of the target-present display).

The validity of Equation DlO was verified with Monte Carlo simulations performed in the same fash

ion as those described previously.

Max-Min Decision Rule

Performance for the max-min observer for the Aiken and Palmer (1992) experiment can be found

by first computing the probability of the minimum responses in the target present and target-absent dis

plays. Replacing the probability distributions for the responses ofeach element type along both feature

dimensions into Equations 88 and 89 we obtain the following.

Modified conjunction. For the conjunction task, the target minimum response distribution is given by

tmin(x)=g(x-d~) ·G(>x-d~)+g(x-d~) ·G(>x-d~),

d 'mi,(x)=d 2mJx)= g ( x - d ~ ) . G(>x)+ g(x) · G ( x - d ~ ) ,

d 3mJx)= g(x) . G(>x)+ g(x) . G(>x). (011)

Modified disjunction. For the disjunction task, the target minimum response distribution is given by

tmin(x)=g(x-d~) ·G(>x-d~)+g(x-d~) ·G(>x-d~),

d 'mJx) = d2min(x) = g(x + d ~ ) . G(> x)+ g(x) . G(> x +d~),

d 3min(x)=g(x) ·G(>x)+g(x) ·G(>x),

and
x x

Dimin(X)= fdimin(y)dyandTmin(x)= ftmin(y)dy, (Dl2)

where tmin(x) is the probability function of the target's minimum response between the two feature di

mensions, dimin(x) is the probability function ofthe distractors' minimum response between the two fea

ture dimensions, Dimin(x) is the cumulative probability that the distractors' minimum response between

the two feature dimensions will take a value less than x, and Tmin(x) is the cumulative probability that the

target's minimum response between the two feature dimensions will take a value ofless than x.

Plugging in the expressions for tmin and dimin, Tmin and Dimin into equations similar to D6~D I0, one

can obtain an expression for Pc as a function of number of distractors (n), number of response alterna

tives (M), and target/distractor discriminability ( d ~ ) for the max-min observer. The equations were

verified with a Monte Carlo simulation in the same fashion as that described previously.
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