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Abstract

The spatio-temporal-prediction (STP) method for multichannel speech enhancement has recently been proposed.

This approach makes it theoretically possible to attenuate the residual noise without distorting speech. In addition,

the STP method depends only on the second-order statistics and can be implemented using a simple linear filtering

framework. Unfortunately, some numerical problems can arise when estimating the filter matrix in transients. In such a

case, the speech correlation matrix is usually rank deficient, so that no solution exists. In this paper, we propose to

implement the spatio-temporal-prediction method using a signal subspace approach. This allows for nullifying the

noise subspace and processing only the noisy signal in the signal-plus-noise subspace. As a result, we are able to not

only regularize the solution in transients but also to achieve higher attenuation of the residual noise. The experimental

results also show that the signal subspace approach distorts speech less than the conventional method.
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Introduction

Speech enhancement is important for many applications

including mobile communications, speech coding, speech

recognition, and hearing aids. The traditional objective

of multichannel speech enhancement is to recover the

source speech signal from the outputs of an array of

microphones. It is usually achieved by using the beam-

forming techniques [1-3]. The key idea of beamforming is

to process signals of a microphone array, so as to extract

the sounds that come from only one direction. In this

way, it is possible to dereverberate speech, but the back-

ground noise can be reducted as well by avoiding noise

directions. Unfortunately, in order to work reasonably well

in a reverberant environment, these techniques usually

require knowing the impulse responses of the acoustic

room or their relative ratios. These parameters can be

fixed, provided the geometry of the microphone array is

known, or estimated adaptively [4], which in general is a

difficult task, however.
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Recently, the objective of multichannel speech enhance-

ment has been reformulated, so that noise reduction can

be achieved without dereverberating speech. In opposi-

tion to the beamforming techniques, the knowledge about

the geometry of the microphone array is not required,

and the optimal filter depends only on the second-order

statistics of the noisy signal.

In [5], the authors presented the most common tech-

niques of multichannel noise reduction based on linear

filtering. In such solutions, the noise-free speech is esti-

mated by a linear transformation of the observation vec-

tor. The simplest approach is tominimize themean square

error (MSE) between the noise-free and filtered speech

signals at a given microphone, which leads to a multi-

channel version of the classical Wiener filter. In this case,

some noise is reduced at the cost of the increased speech

distortion, but we cannot explicitly control the trade-off

between these quantities.

Speech estimation can also be considered as a con-

strained optimization problem, where the speech dis-

tortions are minimized subject to the residual noise

power. This approach is used by the single-channel meth-

ods [6] and was implemented in a similar way using a

signal subspace technique in [5]. Unlike the frequency
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domain methods, which are based on the discrete Fourier

transform (DFT), the signal subspace approach decom-

poses the vector space of noisy signals into the speech-

plus-noise subspace and noise-only subspace using the

Karhunen-Loeve transform (KLT). Then, spectral weight-

ing is performed only in the signal-plus-noise subspace.

The components projected onto the noise-only subspace

are simply nullified, which results in significantly better

performance when compared to the conventional DFT-

based methods, where the full-band (and thus erroneous)

spectrum must be processed. Unfortunately, also in this

case, it is impossible to reduce the residual noise with-

out introducing speech distortions. Several single-channel

approaches [7-9] that exploit the masking effects are

known to make the speech distortion or the residual noise

inaudible, but introducing psychoacoustics into multi-

channel speech enhancement is a challenging task. On

the other hand, some hearing properties have been intro-

duced in a beamforming technique [10], but the resulting

improvement is not as great as in the single-channel

case.

It seems that the major limitation of all these methods

is that they use only temporal prediction. In fact, spatial

correlations are implicitly embedded in the second-order

statistics, or inter-channel correlation matrices, but are

not explicitly used. Therefore, in [11,12], the authors pro-

posed a novel technique based on the spatio-temporal

prediction (STP). A DFT-based implementation of this

technique has also been proposed [13,14], but in this

case, the algorithm has been restricted to use only spa-

tial prediction. It has been verified experimentally that

the STP approach outperforms the classical beamform-

ing techniques in terms of noise reduction [11]. In [5],

it was proved analytically that by using the STP method,

it is theoretically possible to reduce the residual noise

without distorting the speech. However, a major draw-

back of the STP method is its numerical instability, as

this approach assumes that speech correlation matrix is of

full rank. Because this is not true for low power speech

at transients, the solution must be regularized empirically

in practice. Alternatively, under the uncertainty about the

speech presence, the conditional estimators can be used

[15]. Even if the speech correlation matrix is of full rank,

the STPmethod requires manymicrophones to effectively

reduce the residual noise.

In this paper, we propose a signal-subspace implementa-

tion of the STPmethod. By decomposing the signal vector

space, we are able to limit processing to the signal-plus-

noise subspace only. Thus, the numerical problems can be

evaded in a more natural way. Since the noisy speech pro-

jected on the noise-only subspace can simply be nullified,

the signal subspace approach allows for attenuating noise

more, even for a small number of microphones. In addi-

tion, we have rederived the STP method using a notation

slightly different from that in [5], in order to expose the

possibility of denoising all microphone signals at once.

Signal model and linear filtering
Let us consider an array of N microphones with arbitrary

geometry and a single speech source s(k) located inside a

reverberant enclosure. The observation signal at the nth

microphone is given by:

yn(k) = an(k) ∗ s(k) + vn(k) = xn(k) + vn(k), (1)

where ∗ denotes convolution, an is the acoustic impulse

response from the source to the nth microphone, and

xn(k) and vn(k) are, respectively, the noise-free speech and

the noise components received by the nth microphone.

Such a mixing model is illustrated in Figure 1.

Usually data are processed in L-sample blocks. Thus,

the signals can be represented using the vector-matrix

notation as follows:

yn(k) =
[

yn(k) yn(k − 1) . . . yn(k − L + 1)
]T

. (2)

The estimate of the noise-free speech at the nth micro-

phone can be obtained using a linear transformation of the

observation vector:

x̂n(k) = Hny(k) = Hn [x(k) + v(k)] , (3)

where:

y(k) =
[

yT1 (k) yT2 (k) . . . yTN (k)
]T

,

x(k) =
[

xT1 (k) xT2 (k) . . . xTN (k)
]T

,

v(k) =
[

vT1 (k) vT2 (k) . . . vTN (k)
]T

.

(4)

The vectors xn(k) and vn(k) denote the noise-free

speech and the noise, respectively, and are defined simi-

larly to Equation 2.Hn is a filtering matrix of size L × LN .

The estimation error is defined by:

e(k) = x̂n(k) − xn(k)

= (Hn − Un)x(k)
︸ ︷︷ ︸

ex(k)

+Hnv(k)
︸ ︷︷ ︸

ev(k)

, (5)

where:

Un =
[

0L×(n−1)L IL 0L×(N−n)L

]

, (6)

is a selection matrix of size L × LN . The terms ex(k) and

ev(k) denote the speech distortion and the residual noise,

respectively.

For completeness, we also define the correlation matrix

of an arbitrary vector a as:

Raa(k) = E
{

a(k)aT (k)
}

, (7)

where E{.} is the expectation operator. Assuming

that the speech and noise are short-term stationary
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Figure 1Multi-microphone signal model.

and uncorrelated processes, the correlation matrix of the

noisy speech can be written as:

Ryy(k) = Rxx(k) + Rvv(k). (8)

Unless otherwise stated, all equations hold for any arbi-

trarily chosen point in time. Therefore, for the sake of

brevity, the time index k is often omitted in the rest of this

paper.

Spatio-temporal prediction
The STP method is based on the assumption that the

microphone signals can be predicted not only in the time

domain but also in the space domain [11]. In particular,

the signal xm(k) can be predicted from the signal xn(k)

using a linear filter matrixWn,m such that:

xm(k) = WT
n,mxn(k), m = 1, 2, 3, . . . ,N , (9)

withWn,n = IL. The prediction matrices can be concate-

nated so as to form the L × NLmatrix:

Wn =
[

Wn,1 Wn,2 . . . Wn,N

]

, (10)

and:

x(k) = WT
n xn(k). (11)

By substituting Equation 11 into Equation 5 and assum-

ing that HnW
T
n = IL, we can deduce that the residual

noise can be minimized without distorting speech. Thus,

the constrained optimization problem is formulated as

follows:

min
Hn

tr
{

E
[

ev(k)e
T
v (k)

]}

subject toHnW
T
n = IL. (12)

The optimal filter matrix is found using the Lagrange

multipliers method:

Hn =
(

WnRvv
−1WT

n

)−1
WnRvv

−1. (13)

A solution exists if and only if Rvv is positive definite,

and thematrixWn is of rank L. As noise signals are usually

stationary and have smooth spectra, Rvv has full rank and

can be estimated using long-term averaging during speech

pauses.

Unfortunately the prediction matrices Wn,m for m �= n

are not known and have to be estimated. They can be

found by solving the following minimization problem:

min
Wn,m

E

{
[

xm(k) − WT
n,mxn(k)

]T [

xm(k) − WT
n,mxn(k)

]
}

.

(14)

whose solution is given by:

WT
n,m = RxmxnR

−1
xnxn

(15)

where Raiaj stands for the (i, j)th L × L submatrix of the

matrix Raa. The correlation matrices of the clean speech

are unknown, and the vectors xn(k) cannot be observed

directly, but by using Equation 8 we can write:

Rxnxm = Rynym − Rvnvm , m = 1, 2, . . . ,N . (16)

Thus, finally, we obtain the following expression for the

prediction matrices:

WT
n,m =

(

Rymyn − Rvmvn

) (

Rynyn − Rvnvn

)−1
. (17)

In order to obtain a full rank matrix Wn,m, the matri-

ces Rxmxn and Rxnxn have to be positive definite. In [5], the

authors suggest to estimate the filter matrix (Equation 13)

only when the speech source is active, using a voice activ-

ity detector (VAD), but this generally does not prevent the

matrix Wn,m from being rank deficient. Moreover, such a

technique can introduce discontinuity effects at transients

or/and increased residual noise during silence intervals.

For low-power speech signals, the covariance matrix of

the clean speech is usually positive semi-definite, or at

least ill-conditioned, which means that in practice the

STP method is numerically stable only for high signal-to-

noise ratios (SNRs). The simplest solution is to add some

white noise to the speech signal, so that the inverses in
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Equation 13 and Equation 17 can be replaced with pseu-

doinverses and properly regularized [16]. However, all

these approaches are rather empirical and need a careful

adjustment. Thus, we need a more robust solution, which

can be applied also to low power speech signals, especially

at low SNRs.

Signal subspace approach

In the conventional STPmethod, data are processed in the

vector space of the noisy speech. The key idea of the sig-

nal subspace approach is to decompose that vector space

into the signal-plus-noise and noise-only subspaces and

to process data only in the signal-plus-noise subspace,

while the projection of the noisy signal onto the noise-

only subspace is simply nullified. The dimensionality of

the signal-plus-noise or, simply, signal subspace is closely

related to the rank of the speech correlation matrix. Thus,

by introducing the signal subspace approach to the STP

method, we are able to not only increase the attenuation

of the residual noise during silence intervals but also to

avoid the ill-conditioning issues.

Let us rewrite Equation 13 more compactly. Please

notice that the prediction matrix can be alternatively

written as:

Wn = R−1
xnxn

UnRxx, (18)

and then, by substituting the above into Equation 13, we

obtain:

Hn = Rxnxn

(

UnRxxR
−1
vv RxxU

T
n

)−1
UnRxxR

−1
vv . (19)

Since Rvv is positive definite, the matrices Rxx and Rvv

can be jointly diagonalized [17,18], i.e.:

R−1/2
vv RxxRvv

−1/2 = V�VT , (20)

where V denotes the orthogonal matrix of the eigenvec-

tors, and � = diag {λ1, . . . , λNL} is the diagonal matrix

of the corresponding eigenvalues. We also assume that

the eigenvalues in � are arranged in descending order, i.e.

λi ≥ λj for any i < j. The matrix V can also be interpreted

as the KLT matrix of the whitened clean speech. Alterna-

tively, it can be obtained using the eigendecomposition of

the whitened noisy speech correlation matrix:

R−1/2
vv RyyRvv

−1/2 = V (� + I)VT . (21)

As shown in [17], the vector space of the noisy speech

can be decomposed using the square matrix:

B = VTR1/2
vv (22)

which has full rank but is not necessarily orthogonal.

Please notice that applying B−T to the noisy signal is

equivalent to whitening data before performing the sub-

space decomposition, so that the resulting coefficients are

perfectly decorrelated in the transform domain, i.e.:

E
[

ỹ(k)ỹT (k)
]

= � + I, (23)

where ỹ(k) = B−Ty(k). Thus, our correlation matrices

can be expressed as follows:

Ryy = BT (� + I)B

Rxx = BT�B

Rvv = BTB

(24)

Let Qn = �BUT
n . Substituting the relations given in

Equation 24 into Equation 19 results in the optimal filter

matrix:

Hn = UnB
T

[

Qn

(

QT
nQn

)−1
QT

n

]

B−T . (25)

Since Rvv is positive definite, and Rxx can be semi-

positive definite, the dimension of the signal-plus-noise

subspace is equal to the number of non-zero eigenvalues

of the correlation matrix of the whitened clean speech.

Assume that NL = Ls + Lv, where Ls and Lv denote the

dimensions of the signal-plus-noise and noise-only sub-

spaces, respectively. Thus, for Ls < NL, we can rewrite

Equation 25 as follows:

Hn = UnB
T

[

�n 0Ls×Lv

0Lv×Ls 0Lv×Lv

]

B−T , (26)

where:

�n = Qn,1:Ls

[

QT
n,1:Ls

Qn,1:Ls

]−1
QT

n,1:Ls
(27)

can be viewed as a reweighting matrix, withQn,1:Ls denot-

ing sub-matrix of Qn consisting rows from 1 to Ls. As

can be seen the noisy signal is transformed using a non-

orthogonal matrix B−T . The denoising is achieved by

‘reweighting’ the coefficients in the signal-plus-noise sub-

space using the matrix�n and simply nullifying the noise-

only subspace. In opposition to the conventional signal

subspace approach, the reweighting matrix is not diagonal

here but symmetric and idempotent.

Finally, the filtered signal is brought back to the time

domain using the inverse transform BT .

In practice, Ls can be estimated as the number of the

strictly positive eigenvalues, according to the following

rule:

Ls ≈ argmax
1≥l≥NL

{λl > θ} , (28)

where the threshold θ is a some small positive number.

It can be noticed that QT
nQn is invertible as long as

Ls ≥ L. However, even when this condition is not in

force (which is fairly common at transients or during

silence intervals), the inverse can be easily regularized.

For example, if Ls = L, Qn,1:L is a square matrix, and
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�n = I, which means that the filter performs nullifying

the noise subspace without cleaning the signal-plus-noise

subspace, or that the residual noise can be effectively

reduced without distorting the speech.

Therefore, in order to regularize the solution, the best

we can do is to use the following rule:

�n =

{

Qn,1:Ls

[

QT
n,1:Ls

Qn,1:Ls

]−1
QT

n,1:Ls
, Ls > L

ILs , otherwise.
(29)

Please also notice that if N = 1 and Ls = L, then the

filter matrix is simply the identity matrix. For N > 1, it is

possible to arrange matrices Hn, n = 1, 2, . . . ,N into the

single filter matrix:

HP =
[

HT
1 HT

2 . . . HT
N

]

, (30)

which can be used to estimate all noise-free microphone

signals at once. Namely, the vector x(k) can be estimated

as follows:

x(k) ≈ x̂(k) = HPy(k). (31)

The filter matrix HP can also be written in a more

convenient form:

HP =
[

U ◦
(

BT�B
)] [

U ◦
(

BT�2B
)]−1

B�B−T ,

(32)

where:

U = IN ⊗ JL×L, (33)

and the operators ◦ and ⊗ stand for the Hadamard and

the Kronecker products, respectively, and JL×L is the L×L

matrix of ones.

The proposed approach can be verified analytically in

terms of noise reduction and speech distortion. The noise

reduction factor can be defined for any filter matrix Hn as

follows:

ξnr (Hn) =
tr

{

E
[

Unvv
TUT

n

]}

tr
{

E
[

HnvvTHT
n

]} =
tr

{

UnRvvU
T
n

}

tr
{

HnRvvHT
n

} . (34)

It is expected that ξnr(k) ≥ 1: the larger this factor, the

lower residual noise. Usually, the noise is reduced at the

cost of attenuating speech. Therefore, in order to quantify

this attenuation, we define the speech reduction factor:

ξsr (Hn) =
tr

{

E
[

Unxx
TUT

n

]}

tr
{

E
[

HnxxTHT
n

]} =
tr

{

UnRxxU
T
n

}

tr
{

HnRxxHT
n

} (35)

and expect ξsr(Hn) ≥ 1. The output SNR of the filter H

can be expressed in the following way:

SNR(H) =
tr

{

HnRxxH
T
n

}

tr
{

HnRvvHT
n

} = SNR
ξnr(H)

ξsr(H)
, (36)

where the SNR stands for the input SNR.

For Ls ≥ L, the proposed approach is theoretically

equivalent to the time-domain implementation of the STP

method. In order to analyse performance of the proposed

implementation for Ls < L, we consider the case of

the white noise, for which Rvnvn = σvnI. Because the

inverse
(

QT
nQn

)−1
does not exist for Ls < L, we use

Equation 29. Then, by replacing �n in Equation 26 with

the identity matrix and by substituting it to Equation 34

and Equation 35, we obtain:

ξnr(Hn) =
L

L∑

i=1

Ls∑

j=1

V2
(n−1)L+i,j

> 1 (37)

ξsr(Hn) = 1. (38)

Since ξnr(Hn) > ξsr(Hn), we always have SNR(H) >

SNR, or an improvement of the SNR.

Simulations
Although a full evaluation of the proposed approach,

including listening tests, is out of the scope of this arti-

cle, we have conducted some experiments using objective

measurements. In this section, we compare the perfor-

mances of the conventional time-domain implementation

of the STP method and of the proposed approach based

on the signal subspace.

Implementation

Both methods have been implemented in MATLAB.

Instead of recalculating the filter from sample to sam-

ple, we collect the microphone recordings in overlapped

buffers and process them frame-by-frame in a similar way

as in [8] or [19]. Namely, we divide the microphone sig-

nals into frames of lengthNf with 50% overlap. Each frame

is partitioned into M = Nf − L + 1 shorter overlapping

L-dimensional vectors. The sequence of these vectors is

arranged into the trajectory matrix of size L-by-M. The

trajectory matrices for all microphones are concatenated

together so as to form the noisy speechmatrix Y(k) of size

LN-by-M so that:

Y(k) =
[

y(k) y(k − 1) · · · y(k − M + 1)
]

. (39)

As all required parameters are estimated, the effec-

tive filter matrix Hn is computed, and then all in-

frame vectors are processed using the same matrix, i.e.

Ŷ(k) = HnY(k). The enhanced vectors are obtained

from the matrix Ŷ(k) using the diagonal averaging tech-

nique [19]. Finally, the frames are multiplied by the
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Hanning window and synthesized using the overlap-add

method.

The correlation matrix of the noisy speech can be esti-

mated according to:

Ryy(k) ≈
1

MN
Y(k)Y(k)T , (40)

being the outer product of the matrix Y(k). This estimate

is the basis for computing both noise statistics and the

KLT of the whitened signal (Equation 20). The matrix Rvv

is estimated only during speech pauses as:

Rvv(k) ≈

{

αRvv(k − 1) + (1 − α)Ryy(k), if I(k) = 1

Rvv(k − 1), otherwise

(41)

where 0 < α < 1 is the forgetting factor, and I(k) is

the VAD output of the kth frame. In our simulations, the

VAD was not implemented, and the speech pause/activity

regions were marked manually.

Figure 2 Estimation of the dimension of the signal-plus-noise subspace. (a) Example noisy speech signal at SNR = 10 dB. (b) The parameter θ

and major eigenvalue of the whitened clean speech. (c) Estimate of the dimension of the signal-plus-noise subspace.
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In most cases, the noise correlation matrix is positive

definite, so that the computations of both whitening and

unwhitening transformations (R
−1/2
vv ,R

1/2
vv , respectively)

should be numerically stable. The transformations can be

calculated at once using the eigenstructures of the matrix

Rvv = Vv�vVv
T in the following way:

R
−1/2
vv = Vv�

−1/2
v Vv

T ,

R
1/2
vv = Vv�

1/2
v Vv

T ,
(42)

where Vv denotes the orthogonal matrix of the eigenvec-

tors, and �v is the diagonal matrix of the corresponding

eigenvalues.

In our experiments, we take α = 0.75, Nf = 400, and

L = 20. A proper choice of the value of the parameter

θ seems to be crucial for the proposed implementation.

In general, greater values of θ lead to cancellation of the

residual noise, but a special care must be taken because

low-power speech components can be also nullified.

Therefore, the simplest solution is to fix this threshold,

so that it is large enough to give Ls = 0 (or equivalently

θ ≫ λ1) during speech pauses. We found empirically that

its value depends mainly on the bias of the estimator of

the noise correlation matrix, i.e. on the forgetting factor

α and the frame/window size Nf . In Figure 2c, we present

the variability of the estimated dimension of the signal-

plus-noise subspace for the parameter θ = 3. Further

experiments show that the optimal value of the parameter

θ (in terms of speech distortion) does not depend on the

input SNR. It can be observed that Ls < L occurs fairly

commonly, not only at transients, but also during speech

activity.

In the case of the conventional implementation, all

inverses in Equation 17 and Equation 13 were replaced

with pseudoinverses. They were computed using singu-

lar value decomposition (SVD), and all singular values less

than some tolerance were treated as zeros. In fact, that tol-

erance plays the same role as the parameter θ in the signal

subspace approach. Thus, by setting it sufficiently large, it

is possible to increase noise reduction. Unfortunately, the

speech reduction factor is also increased. Additionally, we

have found empirically that the optimal tolerance is SNR

dependent. Therefore, during our simulations, all SVD-

based pseudoinverses were computed using the default

tolerance set by MATLAB.

Objective evaluation

The acoustic environment was simulated using the image

method [20]. We assumed that the enclosure is rectan-

gular with dimensions 6 × 5 × 2.8 (all dimensions and

coordinates are in meters). A uniform linear array of eight

microphones was placed along the x-axis, with spacing

0.1 and beginning from the first microphone at the posi-

tion (2.65, 4, 1). The locations of the microphones and the

sound sources are shown in Figure 3. The source speech

signal was sampled at 16 kHz. The signal was about 14-

s-long and comprised of four short sentences uttered by

male and female speakers (see Additional file 1). In order

to represent general broadband signals the pink noise

was chosen. The microphone signals were obtained by

convolving the source speech signal with the generated

Figure 3 Floor plan of the simulated enclosure (all coordinates in meters).
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impulse responses of a room, and by adding noise signals

at SNRs ranged from −5 to 20 dB, in accordance with

Equation 1. An example noisy speech sample is provided

as the Additional file 2. In all experiments, we estimated

the noise-free signal only at the first microphone, n = 1,

which served as the reference microphone.

The SNR-based measures were used for evaluating the

objective performance. The speech distortion measure

(SD) was defined as the segmental signal-to-noise ratio,

in which the noise was identified with the difference

between the source signal and enhanced speech. The

higher the value of this factor, the better the perfor-

mance. The amount of reduced noise was measured using

the noise attenuation (NA) factor defined as the mean

ratio between the input noise power and output noise

power.

Firstly, taking into consideration only on the first

four microphones, we have evaluated the impact of the

Figure 4 Adjustment of the parameter θ for N = 4. (a) Speech distortion measure (SD) and (b) noise attenuation factor (NA).
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parameter θ on speech distortion and noise attenua-

tion. The measured speech distortion, which is shown in

Figure 4a, indicates rather weak influence of the parame-

ter θ on the input SNR. The optimal value of θ is between

3 to 4 for all SNRs. On the other hand, the plot of the

noise attenuation factor in Figure 4b, demonstrates that

the higher the value of the θ , the higher noise attenuation.

The subsequent simulations were performed for θ =

3 and N = 2, 3, . . . , 8. For conciseness, we present in

Figure 5 only the results of objective measurements of the

systems with N = 2, 4, and eight microphones. Example

recordings of the speech enhanced using conventional and

proposedmethod are provided as Additional files 3 and 4,

respectively.

Figure 5 Objective measurement of the time-domain (TD) and signal subspace (SS) implementations. (a) Speech distortion and (b) noise

attenuation factor.
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It can easily be seen that the proposed method outper-

forms the conventional one, as it provides lower speech

distortions and higher noise attenuation. Surprisingly, the

speech distortion for the system with N = 2 micro-

phones was lower than for the eight-microphone system,

especially at high SNRs. A possible explanation of this

phenomena is that for more microphones, the correlation

matrix is larger, which makes the estimation less accurate.

In practice, it makes sense to use more microphones only in

the conventional time-domain method (in order to improve

the noise attenuation). Figure 5a shows that the speech

distortion can be also decreased but only at low SNRs.

Unlike the conventional method, the signal subspace

approach does not require many microphones to work

Figure 6 Speech spectrograms. (a) Noisy speech at microphone number 1 (input SNR = 10 dB). (b) Speech enhanced with time-domain STP

method. (c) Speech enhanced with the signal subspace implementation of the STP method.
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reasonably well. The proposedmethod removes the resid-

ual noise almost completely (NA = 70 to 90 dB) without

introducing speech distortions or unnatural discontinu-

ity effects at transients. This is not surprising, since the

matrix �n may contain only zeros during silence intervals,

which is highly desirable in speech coding or automatic

speech recognition (ASR) systems. On the other hand,

complete cancellation of the noise is neither necessary nor

desired in some applications, like mobile communication.

In such cases, zero diagonal coefficients in �n can be

replaced with some small positive numbers.

The objective evaluation has been validated using spec-

trograms. Figure 6a shows the spectrogram of the noisy

speech signal recorded at the first microphone, at SNR =

10 dB. The enhancement results for the conventional and

proposed methods withN = 4 are presented below. Once

again, we see that the proposed method offers incompa-

rably higher noise attenuation during both speech pauses

and voice activity periods. Unlike the time-domain imple-

mentation, the signal subspace approach does not gener-

ate musical tones (random peaks in the time-frequency

plane). However, one should remember that this is an

idealized situation, because the VAD has not been imple-

mented, and speech/pause frames were marked manually.

In practice, the VAD is difficult to implement, and its per-

formance generally depends on the input SNR. Therefore,

we expect some performance drop in real applications.

Conclusions

We have shown that the STP method can be imple-

mented using a signal subspace approach. The conditions

for uniqueness of a solution have been provided. We pro-

posed Equation 29 as a simple rule that can be used

when the speech correlation matrix is rank deficient. It

has been verified analytically that the proposed approach

can reduce noise without distorting the speech (as long

as the parameter Ls is not less than the true rank of Ryy).

In order to estimate the dimension of the speech-plus-

noise subspace, we also used some sort of the thresh-

olding technique. However, we have found empirically

that, unlike in the conventional SVD-based regulariza-

tion, a corresponding threshold (or the parameter θ ) is

not SNR dependent and can be adjusted to fixed value.

The objective measurements show that the signal sub-

space approach outperforms the conventional one provid-

ing higher noise attenuation and lower speech distortion.

We have also reported that the proposed implementation

does not require as many microphones as its time-domain

counterpart to work reasonably well.

Listening tests are usually difficult and time-consuming,

thus they were not used to evaluate our approach.

In this article, we have introduced a novel notation that

allows for estimating the speech signals at all microphones

at once. This can potentially be useful if the system has

to work as a preprocessor for a beamformer. Since the

STP method relies only on the second-order statistics, it

may find other applications in areas where multi-sensor

data are processed, i.e. in the electroencephalography, as a

means for enhancing EEG signals. These points have not

been discussed here, but they are promising directions for

future work.

Additional files

Additional file 1: Clean speech sample recorded at microphone

number 1.

Additional file 2: Noisy speech sample recorded atmicrophone

number 1 (at SegSNR = 0 dB).

Additional file 3: Speech signal enhanced using time-domain STP

method.

Additional file 4: Speech signal enhanced using the proposed

method.
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