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A signal-to-noise paradox in climate science
Adam A. Scaife1,2 and Doug Smith1

We review the growing evidence for a widespread inconsistency between the low strength of predictable signals in climate models

and the relatively high level of agreement they exhibit with observed variability of the atmospheric circulation. This discrepancy is

particularly evident in the climate variability of the Atlantic sector, where ensemble predictions using climate models generally

show higher correlation with observed variability than with their own simulations, and higher correlations with observations than

would be expected from their small signal-to-noise ratios, hence a ‘signal-to-noise paradox’. This unusual behaviour has been

documented in multiple climate prediction systems and in the response to a number of different sources of climate variability.

However, we also note that the total variance in the models is often close in magnitude to the observed variance, and so it is not a

simple matter of models containing too much variability. Instead, the proportion of Atlantic climate variance that is predictable in

climate models appears to be too weak in amplitude by a factor of two, or perhaps more. In this review, we provide a range of

examples from existing studies to build the case for a problem that is common across different climate models, common to several

different sources of climate variability and common across a range of timescales. We also discuss the wider implications of this

intriguing paradox.
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INTRODUCTION

The idea that there is unpredictable variability in the weather and
climate has been demonstrated in the seminal papers by Ed
Lorenz1,2 and is popularised as ‘chaos’ and the ‘butterfly effect’:
whereby a tiny disturbance such as the flap of a butterfly’s wings
can grow into large-scale differences in future weather patterns.
This leads to inherent uncertainty in any practical meteorological
forecast and suggests fundamental limits on the predictability of
the climate system. This sensitivity to initial conditions led to the
ideas behind the development of ensemble weather prediction
involving multiple numerical realisations;3 an approach that was
subsequently extended to longer range forecasts4 and is now
routinely used in seasonal predictions5 and longer climate
projections.6 In these ensemble prediction systems, individual
member simulations differ by small perturbations, which grow
with time due to unpredictable variability7 or ‘chaos’, limiting
predictability but also allowing the ensemble to capture the
uncertainty in the future state of the system that arises due to
uncertainty in initial conditions and/or model formulation.
Although the underlying equations in climate and weather
prediction models are fundamentally deterministic, and are
therefore not random, the range of outputs from ensemble
predictions is often treated probabilistically when either measur-
ing the skill of retrospective predictions8,9 or expressing the
outcome of a particular forecast.10

Estimates of the time horizon for predictability of individual
weather events is typically 2 weeks for the mid-latitude atmo-
sphere.11,12 However, some components of the climate system are
predictable well beyond these timescales. For example, the
Madden Julian Oscillation,13 El Niño-Southern Oscillation,14

Atlantic Multidecadal Variability15,16 and the Quasi-Biennial
Oscillation17 are all predictable at monthly, seasonal or even
longer timescales. Importantly, these sources of predictable

variability also have remote teleconnections,18,19 leading to
predictability in mid-latitude surface climate (i.e., average weather
conditions) at seasonal and decadal lead times.
Given this, in the following section we assess the predictability

for both observed (O) and model ensemble member (M) regional
climate by dividing the temporal variability into predictable
(signal, S) and unpredictable (noise, N) components:20,21

O ¼ So þ No; M ¼ Sm þ Nm; (1)

A SIGNAL-TO-NOISE PARADOX IN CLIMATE PREDICTIONS

In order to demonstrate the existence of a signal-to-noise paradox
we now compare the signal and noise components of observa-
tions and models. Climate model predictions, initialised with
observational analyses and using fully coupled ocean–atmosphere
models, now show potentially useful levels of prediction skill for
year to year variations in the winter North Atlantic Oscillation
(NAO). This implies predictability of European and North American
winter climate out to a season or even longer ahead.20,22–29

All of these studies use ensembles and create an ensemble
mean model prediction M to reduce the level of unpredictable
noise:

M ¼ Sm þ Nm=
p
n; (2)

where n is the number of ensemble members.
If the ensembles are run for a number of historical cases, for

example, a series of past winters, then the squared correlation
rmo,

2 between the year to year variability in the model ensemble
mean M(t) (where time t denotes a particular year) and the
observed variability O(t) provides an estimate of the predictable
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fraction of the observed variance30:

r2mo ¼ σ
2
So= σ

2
So þ σ

2
No

� �

; (3)

where σSo
2 and σNo

2 are the variances of the signal and noise
components of the observations, respectively.
In the limit of a large ensemble (n→∞), Eq. (2) implies that the

model noise vanishes and the ensemble mean consists of only the
modelled predictable signal Sm. The proportion of modelled
variance that is predictable may therefore be obtained as the
variance of Sm divided by the total variance of individual model
members. Eade et al.20 used these definitions of observed and
modelled predictability to define the ratio of predictable
components (RPC) between observations and model:
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;

(4)

In principle, the RPC should be 1, as the observations and model
should contain the same proportion of predictable variance and
the squared correlation should match the predictable proportion
of variance in the model.
If the RPC is less than one, then the correlation of the model

ensemble mean with observations (rmo) is smaller than would be
expected from the predictable fraction of variance in the model.
RPC values below 1 are commonly found in climate predictions,
especially in tropical seasonal predictions.20,31 This can be caused
by several factors, including too few ensemble members to
eliminate unpredictable noise, a lack of spread in the forecast
ensemble, systematic errors in predicted signals such as poorly
structured teleconnections or imperfect initialisation leading to
‘shocks’ in the forecasts.

If on the other hand, RPC is greater than one, then the
correlation is higher than would be expected from the proportion
of signal in the ensemble variance. RPC values above 1 were not
generally expected, but this second possibility has been
considered32 and examples have now been found in a number
of different ensemble seasonal predictions, particularly in winter
predictions of the NAO and Arctic Oscillation.21,23,25,28,29 For
example, in the seasonal forecasts of the NAO reported by Scaife
et al.,23 the predictable ensemble mean signal was around 2 hPa,
the total ensemble variability was around 8 hPa and the
correlation was around 0.6 so the RPC= 0.6/(2./8.) > 2. The high
correlation score is therefore inconsistent with the small
predictable signal in the model and it has been shown that the
discrepancy is highly statistically significant21, hence a ‘signal-to-
noise paradox’.26

An interesting consequence of the signal-to-noise paradox
comes from the alternate form of Eq. (4) based on correlations
alone:

RPC2 ¼ r2mo=r
2
mm: (5)

If RPC > 1, then Eq. (5) implies that the correlation between the
model ensemble mean and the observations (rmo) exceeds the
average correlation between the model ensemble mean and a
single ensemble member (rmm). In this case we arrive at the
counterintuitive result that the model is better at predicting the
real world than it is at predicting itself.20 Figure 1 illustrates this
explicitly for a set of seasonal predictions of the NAO. The
correlation of the modelled NAO (black line) climbs with ensemble
size due to the suppression of unpredictable noise (Eq. (2)),
asymptoting at the predictable limit where a very large ensemble
has suppressed all noise. If we replace the observations with a
single ensemble member (without replacement in the ensemble
mean so as to avoid artificially high correlations between
members with the same realisation of noise), then the resulting
correlation should ideally be the same, as each ensemble forecast
member is meant to represent an alternate, but perfectly viable
version of the observed evolution.
However, as shown in Fig. 1, in practise the correlation between

the ensemble mean and observations (rmo) is higher than the
correlation between the ensemble mean and individual ensemble
members (rmm), yielding an RPC value in excess of 2 as explained
above, and suggesting that the model is better able to predict the
real world than it is able to predict itself. Now as the total
ensemble standard deviation (σSm

2
+ σNm

2) is close to the
observed variability of 8 hPa, the only remaining term in Eq. (4)
is the signal standard deviation (σSm) which must therefore be at
least two times too small. Note that independent sets of ensemble
predictions give a similar result26 and other climate models show
similar effects in their predictions of the NAO and AO.22,25,28,29

Note also that practical calculations of the RPC are expected to
be underestimates of the true value.20 This is because any practical
ensemble is finite in size and so the correlation with observations
(rmo) will likely be lower than that of an infinite ensemble.
Furthermore, the ensemble mean variance (σSm

2) will likely be
higher than that of an infinite ensemble due to incomplete
suppression of noise. According to Eq. (4), the RPC from any
practical ensemble is therefore also likely to be an underestimate.
We deduce that ensemble mean signals are likely more than two
times too small for the NAO and recommend use of Eq. (5) to
calculate the RPC as it is an unbiased estimate.
Finally, as noted above, the signal-to-noise paradox is not only

limited to the NAO. Although it is clearest in and around the
Atlantic basin, it also occurs in parts of the Pacific and the
southern hemisphere (Fig. 2) where it occurs in predictions of the
Southern Annular Mode.33 Similar situations have been found on
longer timescales in both interannual and decadal predic-
tions20,26,34,35 and in other predicted variables such as surface
temperature,20 wind,28 and rainfall.20,36

Fig. 1 Predictability of the North Atlantic Oscillation in the real
world (black) is higher than the predictability in the model (blue).
The effects of ensemble size on seasonal hindcasts of the winter
North Atlantic Oscillation are plotted. The black line shows the
average correlation score when different size ensemble averages are
correlated with the observed NAO (rmo). The blue line shows the
same quantity when ensemble means are correlated with a single
forecast member (rmm). The black dotted line is a theoretical fit to
the solid black line.23 The skill grows with ensemble size due to the
suppression of unpredictable noise, but in principle the curves
should be the same. In practice the model is better able to predict
the real world than itself. Data are from the GloSea5 forecast
system23
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A SIGNAL-TO-NOISE PARADOX IN ATMOSPHERE-ONLY
MODELS

So far we have seen that initialised climate predictions of the
atmospheric circulation in the Atlantic sector exhibit a signal-to-
noise paradox, where they are better at predicting the real world
than they are at predicting themselves. In this section we show
that this idea could potentially explain a number of earlier results
from atmosphere-only climate models forced by specified ocean
conditions, and that the signal-to-noise paradox appears to have
been present in generations of previous climate models.
Early studies of NAO variability and its potential predictability,

given specified ocean surface conditions, gave moderate, but
highly significant correlations with observations if enough
ensemble members were used to eliminate unpredictable
variability in the model.37–39 This important result suggested that
their might be significant long-range predictability of the winter
NAO (as has since been demonstrated), but it was inconclusive at
the time because these were not actual forecasts. The specified
ocean conditions in these experiments contained information
from the future and in particular, this contained information about
the subsequent behaviour of the NAO, as the NAO leaves a tripolar
imprint in ocean temperatures40 which could feedback to the
atmosphere. Careful arguments were put forward to suggest that
reproducibility of the observed NAO variability in atmosphere-only
model experiments might therefore be due to the limitations of
the experiment in specifying the future ocean conditions, and that
this could give a misleading overestimate of actual predict-
ability.41 Despite this limitation, ensembles of these atmospheric
simulations appear to have contained the same paradoxical result
found in long-range forecasts and discussed in the previous
section. Figure 3 shows the skill of reproducing NAO variability in
one such ensemble of atmospheric model simulations. The same
slow climb of correlation skill with ensemble size occurred (blue
curve), and the correlation between the ensemble mean and the
observed NAO, although modest, ultimately rose to a level
exceeding the typical correlation with single ensemble members
(black dots). Given the striking similarity between these results
and results from the coupled model predictions in Fig. 1, it
appears that that these early simulations were subject to the same
signal-to-noise paradox.
Other atmosphere model experiments suggest that the signal-

to-noise paradox might also be present on multidecadal time-
scales. Although it has since declined,42 the large multidecadal

increase of the NAO from its low values in the 1960s to its very
high values in the early 1990s has been the subject of many
studies. The mechanisms behind this shift are still only partly
understood and studies have linked it to changes in the Indian
ocean basin,43 changes in the stratosphere,44 changes in the
tropics,45,46 simple internal variability,47 coupled
ocean–atmosphere cycles,48 or even climate change.49,50 How-
ever, there is a common thread to many of these studies, in that
(apart from very rare exceptions) these experiments consistently
reproduce only a fraction of the observed low frequency
variability, even when multiple models and multiple ensemble
members are considered.51 Although it is difficult to assess the
significance of such results because the period of rapid NAO
increase has been preselected from the observational record, this
underestimation of multidecadal variability of the NAO in
atmosphere-only (and coupled ocean–atmosphere52) model
experiments is consistent with the weak reproduction of NAO
variability in the signal-to-noise paradox.
Numerous other studies also show weak modelled signals in

simulations of the atmospheric circulation in the Atlantic sector.

Fig. 2 The signal-to-noise paradox is mainly in the North Atlantic but also exists elsewhere. Ratio of predictable components (RPC) for
seasonal predictions of winter sea level pressure. Orange and red values indicate RPC > 1 whereas blue and green values indicate RPC < 1.
Hatched areas are statistically significantly different from 1 at the 90% confidence level. Data are from the GloSea5 forecast system, Figure
courtesy of Eade et al.20

Fig. 3 Reproducibility of observed NAO variability in an atmo-
spheric climate model with prescribed observed SST variations. The
blue curve is for the model ensemble mean correlated with the
observed NAO. Note how it almost always shows higher correlations
than when the model ensemble mean is compared with one of its
own members (black dots). Although unimportant for this review,
the red curve shows correlation of low-frequency NAO variability
with observations. Dots show individual random subsamples with
the same ensemble size. From Mehta et al.38

A signal-to-noise paradox in climate science

AA Scaife and D Smith

3

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2018)  28 



The NAO-like response to the stratospheric quasi-biennial oscilla-
tion in winter appears to be underestimated in climate simula-
tions17,53,54 as is the NAO-like response to tripolar Atlantic SST
anomalies55,56 and the apparent response to Arctic sea ice
perturbations.57

In summary, it appears that the signal-to-noise paradox has
been present in atmospheric climate models for some time and it
may occur across a wide range of timescales and in the Atlantic
response to a wide range of phenomena.

A SIGNAL-TO-NOISE PARADOX IN THE RESPONSE TO
EXTERNAL CLIMATE FORCING?

A first line of evidence for a signal-to-noise paradox in the climate
response to external forcing comes from the simulated response
to tropical volcanic eruptions. Analysis of historical climate data in
post eruption winters again suggests a response in sea level
pressure that projects strongly on to the winter Arctic Oscillation
or NAO,58,59 see Fig. 4, left panel.
However, when volcanic aerosol forcing is added to climate

models, the response in the AO or NAO is of the correct sign but
invariably weak (Fig. 4, noting the different scale bars) and much
weaker than observed for both multimodel and individual model
studies.59–62 For example, Stenchikov et al.59 state that: “…

associated dynamic perturbations and winter surface warming
over Northern Europe and Asia in the post-volcano winters is
much weaker in the models than in observations”. Furthermore, it
has also been shown that the observed response appears to be
too large to be easily reconciled as chance aliasing of internal
variability of the Arctic Oscillation onto post volcanic win-
ters.60,62,63 In contrast, the mean global cooling response to
volcanic eruptions in climate models does not show this feature
and may even be too strong,64,65 so it is likely that in this case, the
global irradiance forcing is sufficient and it is again the regional
response in the north Atlantic that appears to lack amplitude.
Several studies also point out a prolonged response to volcanic
forcing, with a second winter response that is similar to that in the
winter immediately following the eruption58 but this lagged
response is not generally reproduced in climate models either.59,62

The weak model response in the two winters following explosive
tropical volcanic eruptions may therefore be another example of
the signal-to-noise paradox, with a similar pattern but weaker
amplitude Atlantic sector response than is found in observations.
A second line of evidence for a signal-to noise paradox in the

external response to climate forcing comes from a number of
studies that point out that the surface response to solar variability
may be too weak in climate model experiments.66–68 Recent

modelling studies have confirmed a regional response in sea level
pressure that maps onto the Arctic Oscillation and NAO,67,69,70 as
has previously been repeatedly suggested from analysis of
historical climate observations.71–73 A connection with the
signal-to-noise paradox described here comes from the observed
response to the 11-year solar cycle reaching its maximum not at
the peak of the solar cycle, but rather at a lag of a few (2–4)
years.69,74 In climate model experiments,69 the transient response
to a step change in solar forcing, grows year on year in association
with a growing tripolar anomaly in the North Atlantic sea surface
temperature. This tripolar SST pattern is known to feed positively
back onto the atmospheric circulation associated with the
NAO,37,38,40,55,75 so the integrating effect of the ocean due to
the relatively long decay time of oceanic anomalies and the
annual re-emergence of the solar induced heat content anomaly
in the Atlantic could give rise to a delay in the maximum
response69,74 as shown in Fig. 5.
Viewing the solar cycle as a boundary condition with an 11-year

sinusoidal period, and viewing the response as an ocean
integrated (cosine) wave with the same period, then we expect
a lag of π/2 radians (one quarter cycle) in the timing of the
maximum response. This is approximately 3 years for the 11-year
solar cycle, as observed. In contrast, when taken as a whole, the
reported responses to the 11-year solar cycle in current climate
models appear to be weak and most model simulations show no
clear lag.68,70,74,76,77 Scaife et al.74 showed that this could result
from too weak a feedback in the surface climate response to solar
variability. We should of course note that the strength of
observational estimates of solar irradiance variations continue to
be refined78 and this uncertainty in forcing may contribute to
uncertainty in the amplitude of the solar response in surface
climate. Nevertheless, the existence of a lag in the observed
response and the apparent difficulty in simulating this lag in
climate models is additional evidence of a weak response of the
atmospheric circulation in the north Atlantic sector to external
forcing which is again consistent with the signal-to-noise paradox
in climate predictions.
Our last example of the possible effects of the signal-to-noise

paradox is in the tropospheric climate response to the develop-
ment of the ozone hole. While some studies report successful
simulation of the temporal evolution,79 a number of studies have
noted a weaker then observed response in the Southern Annular
Mode (SAM)80–83 which is often then attributed to coincidental
internal variability. While this coincidental alignment of forced and
internal variability in the SAM is perfectly possible, we again note
that the common tendency for models to simulate weaker than
observed changes is consistent with a signal-to-noise paradox in

Fig. 4 Evidence for a signal-to-noise paradox in the response to volcanic forcing. Winter sea level pressure response to volcanic eruptions in
CMIP5 models. Modelled responses (right) are several times smaller than observed responses (left). Note the order of magnitude difference in
scale61
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the forced response of the SAM in models. Indeed, this has
recently been found in seasonal climate predictions of the SAM.33

In summary, the signal-to-noise paradox may therefore also
apply to a range of responses to external forcing, including

volcanic forcing, solar variability, and ozone depletion.

IMPLICATIONS

If the signal-to-noise ratio is underestimated by climate model
simulations and predictions, then each model ensemble member
cannot be regarded as an equivalent realisation of the real climate
system to that seen in the observations as it contains a smaller

Fig. 5 Evidence of a signal-to-noise paradox in the response to solar forcing. Sea level pressure anomalies are plotted at various lags from the
peak of the 11-year solar cycle in historical observations (left) and climate model simulations (right). Note the lagged response in the observed
case. After Gray et al.68

A signal-to-noise paradox in climate science

AA Scaife and D Smith

5

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2018)  28 



proportion of predictable variance than the observations. This has
a number of important implications:

1. Many measures will give inaccurate estimates of the forecast
skill that is potentially available. These include error
measures such as root-mean-squared error and mean-
squared-skill-score,84 as well as probabilistic measures,
including reliability and Brier skill score, that are based on
the distribution of ensemble members.30 Errors in the signal-
to-noise ratio can be corrected in forecasts by a postproces-
sing step that amplifies the predictable signal20,85 but
measures that assess the raw model data without such a
correction will be misleading. Note that anomaly correlation
is not affected by the magnitude of the ensemble mean
signal and is therefore unaffected, so it should be routinely
included in any skill assessment, providing that a large
enough ensemble is used to accurately estimate the
predictable (ensemble mean) signal.

2. Seasonal forecasts of tropical regions are typically over-
confident and their statistical properties may be improved
by techniques such as stochastic physics86 that often
increase the ensemble spread. However, such techniques
could potentially exacerbate problems where the signal-to-
noise ratio is too small and the models are under-confident.

3. Predictability is often estimated from model ensembles, for
example, by assessing the skill of predicting a single model
member instead of the observations.87–89 This has often
been regarded as an upper limit of the skill that could be
achieved using a particular model90 because it mimics the
situation in which each ensemble member is initialised with
perfect observations. However, if the signal-to noise ratio
were too large, then the additional predictability in the
model ensembles would be an overestimate, rather than
representing potential for future improvement. Similarly, if
the modelled signal-to-noise ratio is too small, as found
here, then the real world is more predictable than the model
(Fig. 1) and this approach will underestimate the true
predictability.

4. Event attribution91,92 seeks to quantify the change in the
probability of weather events due to human influences. One
approach is to compare a large ensemble of model
simulations driven by observed SSTs with another ensemble
driven by counterfactual SSTs—obtained by removing the
anthropogenic signal. This relies on the model correctly
simulating the amplitude of the response to SSTs and will
give incorrect results, especially in the North Atlantic sector,
where the signal-to-noise ratio is too small.

5. Large ensembles of model simulations suggest that natural
internal variability is the major source of uncertainty in
regional climate change projections over the coming
decades.93 This approach relies on the models correctly
responding to external forcing, including greenhouse gases,
anthropogenic aerosols and ozone. If the signal-to-noise
paradox also applies to the response to these forcing
factors, then the role of internal variability will be over-
estimated by this technique.

6. Although the signal-to-noise paradox highlights a poten-
tially serious problem with climate models, its discovery
helps to reveal that skilful forecasts are now possible for
some phenomena, including the NAO,23 including some of
the most extreme cases94 that were previously thought to
be unpredictable.95 We note that a large ensemble is
required in order to extract the maximum predictable signal
(Fig. 1), and postprocessing is needed to boost its
magnitude.20

7. Resolving the signal-to-noise paradox and correcting it in
climate models could increase the strength of the model
response to a whole host of phenomena and would settle

longstanding debates about whether various teleconnec-
tions are real. It would also enable smaller ensembles to be
used for detection, attribution and prediction, and could
increase the skill of climate forecasts and climate services.

CONCLUSIONS

We have provided a wide range of evidence for a ‘signal-to-noise
paradox’ in climate science. The paradox lies in the fact that
climate models are better able to predict observed climate
variability than would be expected from their low signal-to-noise
ratio. However, in many cases, the total amount of variability
found in ensemble member simulations closely matches that
found in observations, and so it is not just a simple case of models
being too ‘noisy’ or containing too much variability. We instead
conclude that the amplitude of predictable signals in response to
boundary conditions or external forcing may be much too weak,
especially in the Atlantic sector. This helps to explain why so many
climate modelling studies show clear relationships between
model and observations only after anomalies are ‘standardised’.
These anomalously weak signals in predictions hamper the use of
seasonal and decadal predictions, inhibit the validity of probabil-
istic and ensemble approaches and prevent the accurate
estimation of forced climate variability in the Atlantic sector.
The signal-to-noise paradox appears to be ubiquitous across

timescales: it appears on timescales of seasons20,23–25,36,38

years20,26,39 and multi-decades.43,50,51 It may even be present on
multi-century timescales in the Atlantic sector as there is proxy
observational evidence for negative NAO and associated Eur-
opean cooling in the Little Ice Age96,97 but numerous studies have
noted only weak model responses in the NAO98 and associated
temperatures.99

The signal-to-noise paradox also appears to be ubiquitous
across different climate models, spanning many years of model
development and using a wide variety of ensemble generation
techniques.23,25,27–29,38,39,43,55

The signal-to-noise paradox appears to be robust across
different experimental procedures. It appears as weak signals in
ensemble forecasts20,23,25,26,28,36 in atmosphere-only simulations
forced by prescribed ocean conditions29,38,39,51,55 and in models
subjected to changes in radiative forcing.59,61,62,74,99

While this review cannot provide absolute proof, it summarises
a growing body of evidence for a signal-to-noise paradox in
initialised climate predictions. A chance alignment of unpredict-
able and predictable variability could in principle lead to an
apparent paradox in this context but this is very unlikely.21 Instead
we suggest evidence that it may arise from an underestimate in
the strength of a wide variety of North Atlantic teleconnections in
climate models. The reasons for this remain unclear but there are a
number of obvious candidates including: lack of extratropical
ocean–atmosphere coupling, weak eddy feedback in current
resolution models, errors in remote teleconnections, or errors in
parametrised processes such as atmospheric convection. Some of
the further supporting evidence given here may eventually be
explained by other means, but there is also evidence that the
signal-to-noise paradox may be present in the modelled response
of the Atlantic sector to external radiative forcing. We do not yet
know whether it applies to the regional response to anthro-
pogenic greenhouse gases, but of course that is an important
question for future research, as it could imply large changes in
regional climate that are currently unrepresented in climate model
projections.
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