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Abstract. Establishing a prognostic genetic signature closely 

related to the tumor immune microenvironment (TIME) 

to predict clinical outcomes is necessary. Using the Gene 

Expression Omnibus (GEO) database of a non-small cell lung 

cancer (NSCLC) cohort and the immune score derived from the 

Estimation of Stromal and Immune cells in Malignant Tumours 

using Expression data (ESTIMATE) algorithm, we applied the 

least absolute shrinkage and selection operator (LASSO) Cox 

regression model to screen a 10-gene signature among the 448 

differentially expressed genes and found that the risk predic-

tion models constructed by 10 genes could be more sensitive 

to prognosis than TNM (Tumor, Lymph node and Metastasis) 

stage (P=0.006). The CIBERSORT method was applied to 

quantify the relative levels of different immune cell types. It 

was found that the ratio of eosinophils, mast cells (MCs) resting 

and CD4 T cells memory activated in the low-risk group was 

higher than that in the high-risk group, and the difference 

was statistically significant (P=0.003, P=0.014 and P=0.018, 
respectively). Inconsistently, the ratio of resting natural killer 

(NK) cells and activated plasma cells in the low-risk group was 

significantly lower than that in the high‑risk group (P=0.05 and 
P=0.009, respectively). Kaplan-Meier survival results showed 

that patients of the high‑risk group had significantly shorter 
overall survival (OS) than those of the low-risk group in the 

training set (P<0.001). Furthermore, Kaplan-Meier survival 

showed that patients of the high‑risk group had significantly 
shorter OS than those of the low-risk group (P=0.0025 and 

P=0.0157, respectively) in the validation set [GSE31210 and 

TCGA (The Cancer Genome Atlas)]. The 10-gene signature 

was found to be an independent risk factor for prognosis in 

univariate and multivariate Cox proportional hazard regression 

analyses (P<0.001). In addition, it was found that the risk model 

constructed by the 10-gene signature was related to the clinical 

related factors in logistic regression analysis. The genetic signa-

ture closely related to the immune microenvironment was found 

to be able to predict differences in the proportion of immune 

cells (eosinophils, resting MCs, memory activated CD4 T cells, 

resting NK cells and plasma cells) in the risk model. Our find-

ings suggest that the genetic signature closely related to TIME 

could predict the prognosis of NSCLC patients, and provide 

some reference for immunotherapy.

Introduction

Lung cancer ranks first among all malignant tumors in regards 
to morbidity and mortality worldwide, with 2.1 million new 

lung cancer cases and 1.8 million deaths expected worldwide 
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in 2018 (1). Non-small cell lung cancer (NSCLC) accounts for 

85% of all lung cancer cases, and targeted therapy and immu-

notherapy for NSCLC treatment are developing rapidly (2,3). 

Accurate judgment and prognostic assessment are important 

factors influencing the appropriate treatment for each indi-
vidual case. The current TNM staging system has been tested 

over time and remains the most powerful prognostic instru-

ment for lung cancer (4). However, due to the heterogeneity 

of the tumor itself and the complexity of the pathogenesis, 

even patients with the same TNM stage and treatment may 

exhibit various clinical outcomes (5). The current direction 

is to combine TNM with other prognostic factors to create a 

comprehensive prognostic indicator for NSCLC.

The tumor immune microenvironment (TIME) consists of 

immune cells, mesenchymal cells, endothelial cells, inflamma-

tory mediators, and extracellular matrix (ECM) molecules (6,7). 

The type, density and location of immune cells in TIME play 

an important role in the development of the disease and have 

been proposed to be valuable for the diagnosis and prognostic 

assessment of tumors (8). Therefore, immunological structures 

based on TIME should be used as a separate component in the 

classification system (9). Immunological analysis of the TIME 
(immunoscore) shows great promise for improved prognosis 

and prediction of response to immunotherapy. Several reports 

have demonstrated that immune scores and stromal scores 

calculated based on the ESTIMATE algorithm could predict 

the infiltration of non‑tumor cells, by analyzing specific gene 
expression signature of immune and stromal cells (10-13).

For the first time in the present study, using the Gene 

Expression Omnibus (GEO) database of the NSCLC cohort 

and the immune score derived from the ESTIMATE algo-

rithm, we extracted a genetic signature closely related to the 

TIME that predict the prognosis of lung cancer patients. Then 

the CIBERSORT method was used to quantify the relative 

levels of different immune cell types in complex gene expres-

sion mixtures. Furthermore, the validity and reliability of the 

gene signature were further verified. Our findings suggest that 
the genetic signature closely related to TIME is able to predict 

the prognosis of NSCLC patients, and provide some reference 

for immunotherapy.

Materials and methods

Data source and processing. Gene‑expression profiling data 
of NSCLC patients were downloaded from Gene Expression 

Omnibus datasets (GEO; GSE103584 and GSE31210) and 

The Cancer Genome Atlas (TCGA; https://tcga-data.nci.nih.

gov/tcga/). Microarray analysis of 130 NSCLC patients in 

GSE103584 was based on CancerSCAN panel (14). Dataset 

GSE103584 was used as a training set for model construction, 

and data in GSE31210 (15) and TCGA were applied to verify 

the validity of the model.

ESTIMATE algorithm‑derived immune scores. Immune 

scores were calculated by applying the ESTIMATE algorithm 

using gene expression data.

The algorithm was publicly available through the 

SourceForge software repository (https://sourceforge.

net/projects/estimateproject/) (13). The algorithm was based 

on single-sample gene set enrichment analysis and generates 

immune score (indicating the infiltration of immune cells in 
tumor tissue).

Differential gene screening related to immune scores and 

enrichment analysis of differentially expressed genes. The 

immune score for each sample in the training set was calcu-

lated according to the ESTIMATE algorithm, and the best 

cutoff value was generated using X-tile plots (16). Data analysis 

was performed using packaging limma (17). The relapse-free 

survival is defined as time from randomization to the first 

reucurrence or death. The overall survival is defined as the time 
from the initial confirmed diagnosis to the death of any cause. 
Fold change >1.5 and adj. P<0.05 were set as the cutoff value for 

screening differentially expressed genes. First, the low immune 

score and high immune score samples were normalized by the 

limma package, and then the differential genes were screened 

to obtain 448 differentially expressed genes.

Functional enrichment analysis of the differential genes 

was performed using Database for Annotation, Visualization 

and Integrated Discovery (DAVID) (18) and GO categories 

were identified by their biological processes (BP), molecular 
functions (MF) and cellular components (CC). The DAVID 

database was also used for pathway enrichment analysis with 

reference to the Kyoto Encyclopedia of Gene and Genomic 

(KEGG) pathway. False discovery rate (FDR) <0.05 was used 

as the cutoff.

Screening for prognosis‑related genes and building risk 

models. LASSO is a superior high-dimensional regression 

classifier and was used to select the key genes influencing 
patient outcomes (19). LASSO 1000 iterations were performed 

using the publicly available R package glmnet (20). Multiple 

genomes containing the optimal solution were received after 

multiple dimensionality reduction. At the same time, for 

the stability and accuracy of the results, a random sampling 

method of leave-one-out cross-validation (LOOCV) was used 

to select a set of genes to construct a prognostic model (19).

According to the selected genetic model, a risk formula of 

risk score was constructed to evaluate the high-risk and low-risk 

groups. The formula for obtaining the score is Σiωiχi, where ωi 

and χi are the coefficients and expressed value of each gene. The 
risk score for each sample in the data in the training set was 

calculated according to the formula, and the best cutoff value 

was generated using X-tile plots (16). This threshold was set to 

classify patients: Higher than the best cutoff for the low-risk 

group and lower than the risk score for the high-risk group.

Estimating the composition of immune cells. To estimate the 

immune cell composition in the sample, the analytical plat-

form CIBERSORT (https://cibersort.stanford.edu/) was used 

to quantify the relative levels of distinct immune cell types 

within a complex gene expression mixture (21). The analysis 

was performed with an arrangement of 100 default statistical 

parameters. The activation and quiescence state of the same 

type of immune cells were analyzed as a whole. CIBERSORT's 

deconvolution of gene expression data provides valuable 

information about the composition of immune cells in a sample.

Validation of the validity and reliability. Univariate survival 

analysis of the gene signature was assessed by using survival 
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in R language (P<0.05) (22). Then survival receiver operating 

characteristic curve (ROC) was used to complete the area 

under the curve (AUC) of gene signature and TNM classifi-

cation (23). External data from GSE31210 and TCGA were 

applied to verify the reliability of the gene signature's impact 

on the prognosis of the patients.

The univariate and multivariate Cox proportional hazard 

regression analyses were used to evaluate independent prog-

nostic factors associated with survival. Gene signature, age, 

sex, smoking status, T stage T, N stage, histology, grade, 

epidermal growth factor receptor (EGFR) mutation status and 

adjuvant chemotherapy were employed as covariates. In addi-

tion, the logistic regression analysis were used to analyze the 

association between the clinical related factors and risk model 

of gene signature construction.

Results

Correlation between immune score and overall survival in 

patients with NSCLC. There were 13,035 gene expression 

profiles obtained from 130 tumor samples in the dataset 

GSE103584 (Table SI). After normalizing the data of 130 

samples, the immune score, stromal score, and estimate score 

were calculated by immunocyte-related genes (Table SII). The 

21 low immune score samples and 109 high immune score 

samples were divided by X-tile plots (Fig. 1A and B, P<0.001). 

Kaplan-Meier survival curves showed that the relapse-free 

survival of patients with the high score group of immune 

scores was longer than that when compared with the patients in 

the low score group (Fig. 1C, P<0.001). Consistently, patients 

with high immune scores also showed longer overall survival 

compared to the patients with low scores (Fig. 1D, P=0.017).

Differential gene screening related to immune scores and 

enrichment analysis of the differential genes. To reveal the 

correlation of gene expression profiles with immune scores, we 
compared the gene microarray data of all 130 cases obtained 

in the dataset GSE103584. The low immune score and high 

immune score samples were normalized by the limma 

package and 448 differential genes were extracted from the 

comparison of high vs. low immune score groups. Heatmaps 

showed distinct gene expression profiles of cases in the low vs. 
high low immune score groups (Fig. 2A).

To analyze the potential functions of differential genes, 

we performed functional enrichment analysis on 448 

differentially expressed genes. The Gene Ontology (GO) 

terminology was identified. The top 10 positions of the GO 
term for biological processes, cellular component terms and 

molecular functions are listed (Fig. 2B). The top GO terms 

included ‘extracellular matrix organization’ and ‘extracel-

lular structure organization’ closely related to the immune 

microenvironment of tumors. In addition, pathway enrich-

ment analysis with reference to KEGG mainly focused on 

‘protein digestion and absorption’, ‘AGE-RAGE signaling 

pathway in diabetic complications’, ‘platelet activation and 

focal adhesion’ which also had a relationship with immune 

response (Fig. 2C).

Screening genes associated with prognosis and building risk 

models. We applied the LASSO Cox regression model to 

predict and analyze the most valuable prognostic genes among 

the 448 differential genes in the 130 sample data. A random 

sampling method of 10-cross validation was used to construct 

a prognostic model containing 10 genes (Fig. 3A). Through 

calculation and verification, it was found that the model 

constructed by 10 genes had the lowest error rate (Fig. 3B). 

Fig. 3C shows the specific information and coefficients of the 
10 genes.

To further validate the accuracy of the risk prediction 

model, we established a ROC plot of the signature model and 

TNM stage. As shown in Fig. 3D, we found that risk prediction 

models were more sensitive to prognosis than the TNM stage 

(P=0.006).

Estimating the composition of immune cells. We used 

CIBERSORT to estimate the immune cell composition of the 

130 samples and quantify the relative levels of different cell 

types in a mixed cell population. All results were normal-

ized relative proportions by cell type (Table SIII). As shown 

in Fig. 4A, B and E, we compared different types of cells in 

the low-risk group and the high-risk group. It was found that 

the ratio of eosinophils, mast cells resting and CD4 T cells 

memory activated in the low-risk group was higher than that 

in the high-risk group, and the difference was statistically 

significant (P=0.003, P=0.014 and P=0.018, respectively). 

Inconsistently, the ratio of NK cells resting and plasma 

cells activated in the low-risk group was lower than that 

in the high-risk group (P=0.05 and P=0.009, respectively) 

(Fig. 4C and D). The results indicated that activation and 

inhibition of various immune cells existed simultaneously in 

the tumor microenvironment.

Validation of the validity and reliability. Survival analysis 

in R language package was applied to examine the effects of 

the 10-gene signature on the prognosis of NSCLC patients. 

Kaplan-Meier survival curves for overall survival were used 

to represent the survival probabilities of the high-risk group 

and the low-risk group. The results showed that patients in the 

high-risk group had shorter overall survival than patients in 

the low-risk group (Fig. 5A, P<0.001).

Furthermore, external data from GSE31210 and TCGA 

were applied as a validating set to verify the validity and 

reliability of the 10-gene signature impact on the prognosis 

of the NSCLC patients. Kaplan-Meier survival showed that 

patients in the high-risk group had shorter overall survival 

than patients in the low-risk group (Fig. 5B, P=0.0025 and 

Fig. 5C, P=0.0157).

Correlation of the clinical information. The correlation 

analysis between gene signature and clinical pathological 

parameters in the training set (GSE103584) is shown in Table I. 

The high‑risk group was found to be significantly associated 
with all clinical pathological parameters. The univariate and 

multivariate Cox proportional hazard regression analyses were 

used to evaluate independent prognostic factors associated with 

survival. Gene signature, age, sex, smoking status, T stage, 

N stage N, histology, grade, EGFR mutation status and adju-

vant chemotherapy were employed as covariates. It was found 

that the risk model constructed by the 10-gene signature was an 

independent risk factor for prognosis (Table II, P<0.001).
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In addition, logistic regression analysis was used to 

analyze the association between the clinical related factors 

and risk model of 10-gene signature construction. As shown 

in Table III, we analyzed the risk factors for the risk model of 

the 10-gene signature construction. Age, sex, smoking status, 

T stage, N stage, histology, grade, EGFR mutation status and 

adjuvant chemotherapy were selected in the logistic regression 

model. T stage, N stage and EGFR mutation status were all 

independent risk factors in the multivariable analysis. The 

results showed that the patients with Stage T2 and Stage T4 

had a significantly higher risk than those with Stage T0‑1 (OR 
3.822, 95% CI 1.422-10.269, P=0.008; OR 19.671, 95% CI 

2.304-167.949, P=0.006) and the patients with Stage N2 had a 

significantly higher risk than those with Stage N0 (OR 13.066, 
95% CI 2.680-63.700 P=0.001). We also found that the patients 

without EGFR mutations had a significantly higher risk than 
those with EGFR mutations (OR 16.150, 95% CI 2.122-122.877, 

P=0.007).

Discussion

Malignant solid tumor tissues include not only tumor cells, but 

also tumor-associated normal epithelial cells and stromal cells, 

immune cells and vascular cells. Infiltrating immune cells are 
an integral component of the tumor immune microenvironment 

(TIME) and play an important role in increasing the effective-

ness of immunotherapy (24). This infiltrating immune cell 
population is usually a heterogeneous mixture of immune 

cells, including cell types associated with activity and inhibi-

tion (25). Because of the need for different types and subtypes 

of TIME to be identified in the immunotherapy of tumors, 
their characteristics and differences must be identified (26). In 
order to ensure substantial progress, bioinformatic techniques 

are used to assess the composition, functional status and 

cellular localization of immune cells. Based on gene signature, 

a more precise classification of patients based on their TIME 
will better predict overall survival and response to immuno-

therapeutic agents.

Firstly, we utilized an ESTIMATE algorithm to calculate 

immune scores and predict the level of infiltrating immune cells 
by immunocyte-related genes. The 21 low immune score 

samples and 109 high immune score samples were divided 

by X-tile plots. Kaplan-Meier survival curves showed that 

relapse-free survival and overall survival of patients in the 

high score group of immune scores was longer than the 

patients in the low score group. Next, 448 differential genes 

were extracted from the comparison of high vs. low immune 

score groups and the top Gene Ontology (GO) terms included 

extracellular matrix organization and extracellular structure 

organization closely related to the immune microenvironment 

Figure 1. Correlation between immune score and overall survival in patients with NSCLC. (A) X-tile plot pattern diagram. The red portion represent samples 

with a low immune score and the green portion represent samples with a high immune score. -151.5 is the AQUA score for this set of samples to determine the 

best cutoff value by X-title software. 0-10 represents the level of expression intensity. (B) Comparison of immune scores between low-immunity score samples 

and high-immunity score samples. (C) Kaplan-Meier survival curves for relapse-free survival in the immune score groups. (D) Kaplan-Meier survival curves 

for overall survival in the immune score groups. NSCLC, non-small cell lung cancer.
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of tumors. In addition, pathway enrichment analysis with 

reference to KEGG mainly focused on ‘protein digestion 

and absorption’, ‘AGE-RAGE signaling pathway in diabetic 

complications’, ‘platelet activation and focal adhesion’ which 

also had a relationship with immune response.

Furthermore, we applied the LASSO Cox regression model 

to screen a 10-gene signature among the 448 differential 

genes and found that risk prediction models constructed by 

10 genes were more sensitive to prognosis than TNM stage. 

That is the 10 differential gene signature including neural 

cell adhesion molecule 2 (NCAM2), caldesmon 1 (CALD1), 

neuron navigator 3 (NAV3), kinase insert domain receptor 

(KDR), islet cell autoantigen 1-like (ICA1L), CLN5 intracel-

lular trafficking protein (CLN5), zinc finger and BTB domain 

Figure 2. Differential gene screening related to immune scores and enrichment analysis of differential genes. (A) Heatmaps of the differential gene expression 

profile in the low immune score group and the high immune score group. Color represents the level of gene expression: Red represents high expression, and 
blue represents low expression. -5 stands for the lowest and 5 stands for the highest. (B) The top 10 positions of the Gene Ontology (GO) terminology for 

biological processes, cellular component terms and molecular functions. (C) The KEGG pathway enrichment analysis. Blue represents less enrichment to a 

pathway factor, and red represents more factors that are enriched into a pathway. Black dots represent the number of enrichment factors, the larger the dot, the 

higher the number. KEGG, Kyoto Gene and Genomic Encyclopedia.
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containing 34 (ZBTB34), PML-RARA regulated adaptor 

molecule 1 (PRAM1), sulfatase 1 (SULF1) and translocase of 

outer mitochondrial membrane 6 (TOMM6) may influence the 
survival time of NSCLC patients.

Moreover, survival analysis in R language pack was 

applied to examine the effects of the 10-gene signature on the 

prognosis of NSCLC patients. Kaplan-Meier survival curves 

for overall survival showed that patients in the high-risk group 

had shorter over survival than patients in the low-risk group. 

Then, external data from GSE31210 and The Cancer Genome 

Atlas (TCGA) were applied as a validating set to verify the 

validity and reliability of the 10-gene signature impact on 

the prognosis of the patients. Kaplan-Meier survival showed 

that indeed patients in the high-risk group had shorter overall 

survival than patients in the low-risk group.

We not only confirmed the stability and accuracy of the 
10-gene signature, but also found it was closely associated with 

other clinical information. The univariate and multivariate Cox 

proportional hazard regression analyses were used to evaluate 

independent prognostic factors associated with survival. It was 

found that the risk model constructed by the 10-gene signature 

was an independent risk factor for prognosis (Table III). In 

addition, logistic regression analysis was used to analyze the 

association between the clinical related factors and risk model 

of 10-gene signature construction. T stage, N stage and EGFR 

mutation status were all independent risk factors in the multi-

variable analysis. The results showed that the patients with 

Stage T2 and T4 had a significantly higher risk than those with 
Stage T0‑1 and the patients with Stage N2 had a significantly 
higher risk than those with Stage N0. We also found that the 

patients without EGFR mutations had a significantly higher 
risk than those with EGFR mutations. These results suggest 

that our characteristics may contribute to the clinical manage-

ment of NSCLC.

Finally, we used CIBERSORT to estimate the immune cell 

composition of 130 samples and quantify the relative levels 

of the different cell types in a mixed cell population and 

compared the different types of cells in the low-risk group and 

the high-risk group. Surprisingly, it was found that the ratio 

of eosinophils, mast cells resting and CD4 T cells memory 

activated in the low-risk group was higher than that in the 

high‑risk group, and the difference was statistically signifi-

cant. Inconsistently, the ratio of NK cells resting and plasma 

cells activated in the low-risk group was lower than that in 

the high-risk group. The results indicated that activation and 

inhibition of various immune cells existed simultaneously in 

TIME. The 10-gene signature was used to analyze the compo-

sition of immune cells helping to clarify the role of TIME 

Figure 3. Screening genes associated with prognosis and building risk models. (A) Trend graph of LASSO coefficients. The lines represent the coefficient 
of Lasso. L1 norm represents the calculation method of random sampling method. (B) Partial likehood deviation map. (C) The name and coefficient of the 
10-gene signature closely related to TIME. The partial likelihood represents the error rate chosen by random sampling. (D) ROC curves of the risk model 

and TNM staging in the training set. TIME, tumor immune microenvironment; LASSO, least absolute shrinkage and selection operator; ROC, receiver 

operating characteristic; NCAM2, neural cell adhesion molecule 2; NAV3, neuron navigator 3; KDR, kinase insert domain receptor; ICA1L, islet cell autoan-

tigen 1-like; CLN5, intracellular trafficking protein; ZBTB34, zinc finger and BTB domain containing 34; PRAM1, PML-RARA regulated adaptor molecule 1; 

TOMM6, translocase of outer mitochondrial membrane 6; CALD1, caldesmon 1; SULF1, sulfatase 1.
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and increase our understanding of molecular phenotype. The 

success of cancer immunotherapy has revolutionized cancer 

treatment and has used TIME parameters (immune cell 

composition and proportion) as predictive immunotherapy 

markers (8). Detailed characterization of the immune cell 

composition in tumors may be the basis for determining 

the prognostic and predictive biomarkers of immuno-

therapy (27,28). Therefore, incorporating TIME parameters 

into a gene signature can be more conducive to individualized 

treatment options (29). Studies have reported that the expres-

sion levels of various proliferation-related genes are related to 

the response to immune checkpoint inhibitors in NSCLC (30). 

Figure 5. Kaplan-Meier survival curves for overall survival in the training and validating set. (A) Kaplan-Meier survival curves for overall survival in the 

training set. (B) Kaplan-Meier survival curves for overall survival in the GSE31210 set. (C) Kaplan-Meier survival curves for overall survival in TCGA. 

TCGA, The Cancer Genome Atlas.

Figure 4. Estimating the composition of immune cells. (A) The ratio of eosinophils activated in the high-risk and low-risk group. (B) The ratio of mast cells 

resting in the high-risk and low-risk group. (C) The ratio of NK cells resting in the high-risk and low-risk group. (D) The ratio of plasma cells in the high-risk 

and low-risk group. (E) The ratio of CD4 T cells memory activated in the high-risk and low-risk group. NK, natural killer.
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In addition, JAK1/2 mutations are associated with resistance 

to anti-PD-1/PD-L1 antibodies and MDM2/MDM4 and EGFR 

changes may be associated with hyperprogression (31-33). 

Here, the 10-gene signature closely related to TIME could 

predict the prognosis of lung cancer patients, and provide 

some reference for immunotherapy.

Notably, among the 10-gene signature, only the gene 

KDR is involved in tumor immunity and most of the genes 

(NCAM2, CALD1, NAV3, PRAM‑1 and SULF1) are closely 

related to tumors and can be used as novel tumor biomarkers. 

There are also two other genes (ICA1L, CLN5) that have 

been reported to have related functions, but no reports exist 

on tumors and immunity. The TOMM6 gene has not been 

reported. NCAM2 is a close homolog of the neuronal cell 

adhesion molecule NCAM1 and stimulates neurite outgrowth 

through FGFR-dependent activation of the Ras/MAPK 

pathway (34,35). Several studies have reported that NCAM2 

can be used as a new therapeutic target for cancer, especially 

prostate cancer and breast cancer (36-38). CALD1 is a novel 

target of the TEA domain family member (39). Moreover, 

CALD1 encodes the caldesmon protein, which is a calmod-

ulin-binding and cytoskeleton-associated protein and regulates 

cell motility, such as migration and invasion (40,41). It has 

been suggested that CALD1 may indicate a general splicing 

event associated with cancer (41,42) and was also identified as 
a potential prognostic molecular marker for bladder and colon 

cancer (43-45).

NAV3 is a novel cancer-associated gene located at chro-

mosome 12q21 and belongs to the ‘hill’ genes of genomic 

landscaping associated with cancer (46). Accumulating 

evidence suggests that the NAV3 gene is a key player in a 

variety of cancers, with downregulation of NAV3 found in 

40% of primary neuroblastomas and adrenocortical carci-

nomas (47,48). NAV3 mutations have been found in melanoma, 

pancreatic cancer, breast cancer and colon cancer (49). We 

also found NAV3 gene copy number changes (deletions/ampli-

fications) in other cancer types of epithelial origin (50) and 
NAV3 gene allelic loss was found to be associated with several 

subtypes of cutaneous T-cell lymphoma (51,52). KDR, also 

known as VEGFR2, is expressed in endothelial cells (ECs) to 

promote EC growth and survival, thereby initiating angiogen-

esis (53). Research has shown that T cell KDR is an important 

molecule in immunity, and it was found that KDR was induced 

to be expressed in activated CD4 and CD8 T cells in vitro (54). 

In addition, KDR was also demonstrated to be expressed 

on T cells after interaction with tumor necrosis factor 

(TNF)-activated ECs, and have a function in transendothelial 

migration (55).

ICA1L is highly expressed in sperm cells and is closely 

related to male infertility (56). CLN5 mutations cause 

neurodegenerative diseases, and symptoms include mainly 

seizures, visual failure, motor decline, and progressive 

cognitive deterioration (57). ZBTB34 encodes a nuclear 

protein and functions as a potential transcriptional 

repressor. The transcript of ZBTB34 appears in a variety 

of adult tissues related to the immune, nervous, muscle and 

endocrine systems suggesting that ZBTB34 is a ubiquitously 

expressed protein that may function universally in transcrip-

tional regulation (58). PRAM-1 is an intracellular adaptor 

molecule that is upregulated during the induced granulocytic 

differentiation of promyelocytic leukemic cells and during 

normal human myelopoiesis (59). PRAM-1 is involved in a 

signaling pathway induced by retinoic acid in acute promy-

elocytic leukemia (APL) cells (60). SULF1 plays a key role 

in the pathogenesis of various types of human cancer, and 

SULF1 protein is secreted to the cell surface to regulate the 

sulfation of heparan sulfate proteoglycans (HSPGs) (61,62). 

SULF1 was also found to be a novel prognostic marker 

and predictor of lymph node metastasis in patients with 

Table I. Correlation analysis between genetic signature and 

clinical pathological parameters of the NSCLC patients in the 

training set (GSE103584).

 Low risk High risk

Variables n (%) n (%) P-value

Age (years)   <0.001

  <65 29 (32.6) 8 (19.5) 

  >64 60 (67.4) 33 (80.5) 

Sex   <0.001

  Female 26 (29.2) 8 (19.5) 

  Male 63 (70.8) 33 (80.5) 

Smoking status   <0.001

  Yes 75 (84.3) 35 (85.4) 

  No 14 (15.7) 6 (14.6) 

T stage   <0.001

  T0-1 46 (51.7) 12 (29.3) 

  T2 28 (31.5) 21 (51.2) 

  T3 13 (14.6) 3 (7.3) 

  T4 2 (2.2) 5 (12.2) 

N stage   <0.001

  N0 76 (85.4) 28 (68.3) 

  N1 9 (10.1) 3 (7.3) 

  N2 4 (4.5) 10 (24.4) 

Histology   <0.001

  Adenocarcinoma 67 (75.3) 29 (70.7) 

  Squamous 21 (23.6) 10 (24.4) 

  Others 1 (1.1) 2 (4.9) 

Grade   <0.001

  I 17 (19.1) 5 (12.2) 

  II 44 (49.4) 18 (43.9) 

  III 16 (20.0) 11 (26.8) 

  Other 12 (13.5) 7 (17.1) 

EGFR status   <0.001

  Yes 17 (19.1) 2 (4.9) 

  No 49 (55.1) 33 (80.5) 

  Unknown 23 (25.8) 6 (14.6) 

Adjuvant therapy   <0.001

  Yes 66 (74.2) 14 (34.1)  

  No 23 (25.8) 27 (65.9) 

NSCLC, non-small cell lung cancer; EGFR, epidermal growth factor 

receptor.
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gastric cancer (63). From the above results, we can conclude 

that our gene signature not only identified new promising 
biomarkers, but also may provide a direction for the study of 

TIME mechanisms.

In summary, the present research has the following 

novelty and innovation. First, multiple bioinformatic analysis 

methods were used to extracted a 10-gene signature closely 

related to TIME. Second, the risk model constructed by 

the 10-gene signature was able to predict the prognosis of 

NSCLC patients and was more sensitive for predicting 

prognosis than TNM stage. Third, the 10-gene signature was 

found to be closely related to TIME parameters (immune cell 

composition and proportion) and provides a certain reference 

for the immunotherapy of NSCLC. Fourth, some previously 

Table II. Univariate and multivariate Cox proportional hazard regression analyses between the risk factors and overall survival 

of NSCLC patients.

 Univariate analysis Multivariate analysis
 ------------------------------------------------------------- -------------------------------------------------------------------------------------

Variables Wald χ2 P-value HR (95% CI) P-value

Age (years) 0.253 0.615  NI

  <65    

  >64    

Sex 0.432 0.511  NI

  Female    

  Male    

Smoking status 0.443 0.506  NI

  Yes    

  No    

T stage 2.545 0.467  NI

  T0-1    

  T2    

  T3    

  T4    

N stage 4.706 0.095  NI

  N0    

  N1    

  N2    

Histology 0.379 0.827  NI

  Adenocarcinoma    

  Squamous    

  Others    

Grade 3.066 0.382  NI

  I    

  II    

  III    

  Other    

EGFR status 0.975 0.614  NI

  Yes    

  No    

  Unknown    

Adjuvant therapy 0.766 0.381  NI

  Yes    

  No    

Gene signature 26.149 <0.001  <0.001

  Low risk   Reference 

  High risk   8.828 (3.831-20.342) <0.001

NSCLC, non‑small cell lung cancer; EGFR, epidermal growth factor receptor; CI, confidence interval; NI, not included.
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ignored genes in the 10-gene signature may become poten-

tial novel markers for NSCLC. However, the present study 

also has certain limitations. First, the study consisted solely 

of bioinformatics research, and there was no validation of 

clinical sample data. Second, the study only verified the 

validity and reliability of the 10-gene signature impact on the 

overall survival of the patients, but did not verify relapse-free 

survival. Third, the sample size requires further expansion to 

verify the accuracy of the 10-gene signature and truly clarify 

its clinical value.
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