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1 Introduction

Sequences of real-valued data arise in many applications ranging from the stock mar-
ket to electro-cardiograms. Often, it is of interest to locate sequences that are similar
to a specified query sequence. The notion of similarity is application dependent, and
even within a single application, may vary from one query to the next.

Work in this area is usually specific to one particular domain and uses one spe-
cific notion of similarity. For example, Faloutsos et al [6, 1] studied the problem
of searching a database of time sequences for sequences similar to one given. They
reduced sequences to points in a low-dimensional space by using Fourier transforms
and used the Euclidean distance in this space to measure similarity. This notion
of similarity is extended in [21] by allowing a class of transformations that includes
moving average and time warping to be applied to sequences before computing the
Euclidean distance. Retrieval by similarity has also been studied in the context of
image retrieval [15], genome/protein matching [3, 12] and text string searching [31].
Other authors have recently studied models and languages for databases containing
sequences, (e.g., [5], [13], [10], [22], [26]), but without taking into account notions of
similarity or approximation.

In a previous paper [16], Jagadish et al developed a general framework for posing
queries based on similarity. The framework enables a formal definition of the notion
of similarity for an application domain of choice, and then its use in queries to perform
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similarity-based search. In this paper, we adapt this framework to the specialized do-
main of real-valued sequences. (Although some of the ideas we present are applicable
to other types of data as well). In particular we focus on whole-match queries. By
whole-match query we mean the case where the user has to specify the whole sequence
(e.g., in a collection of 2-second voice clips with the phrase “good-morning” find the
ones that are similar to my own utterance).

Similarity-based search can be computationally very expensive. The computation
cost depends heavily on the length of sequences being compared. To make such sim-
ilarity testing feasible on large data sets, we propose the use of a signature based
technique. In a nutshell, our approach is to “shrink” the data sequences into signa-
tures, and search the signatures instead of the real sequences, with further comparison
being required only when a possible match is indicated. Being shorter, signatures can
usually be compared much faster than the original sequences. In addition, signatures
are usually easier to index. For such a signature-based technique to be effective one
has to assure that

(1) the signature comparison is fast, and

(2) the signature comparison gives few false alarms, and no false dismissals.

We study these issues below, and present conditions under which these requirements
are satisfied. Our goal is to show that this general framework fits many real-life
applications and leads to efficient searching. The techniques we suggest have been
implemented and tested. At least in one application of interest, these techniques did
lead to a significant improvement in performance.

2 Basics

In this section we present the basic framework on sequences, similarity measurements,
and signature extraction.

2.1 Sequences, Distance Functions, and Transformation Lan-
guages

Real-valued sequences, like stock-market or electro-cardiogram data, can be viewed
as strings of numbers. For example, a possible data sequence could be the string

7 =1{10.2,12.5,3.0}.

We use the following notational conventions:
e 1; denotes the i-th entry of the sequence &
e 1;; denotes the sub-sequence {x;, z;y1,...,2;} of the sequence ¥

Following the framework of [16], the dissimilarity between two objects can be mea-
sured as the cost of transforming one into another by means of a transformation
sequence selected from a transformation language T. Thus the distance between
two sequences measures the cost to transform the first sequence to the second, or



both to a common, third sequence, given an application dependent set of allowable
transformations and their associated costs. Given a set of transformations 7 and a
transformation T' € T, and a sequence & in some set of sequences S (e.g., S = R,
n=1,2,...), T(¥) is the sequence in § that results from applying transformation T
to Z. The cost of this transformation is cost(T).

We extend [16] by allowing the possibility that, after all allowable transformations
are exhausted, the two sequences are still different, in which case we measure the
distance between the transformed strings using a traditional distance function, de-
noted by Dy(), such as the Euclidean distance or the city-block (Manhattan or L)
distance function. The Dy() distance will be called the base distance. The distance
between two strings #,y is defined as the cost of transforming each of the strings
to two strings that are as close as possible in base distance, plus the base distance
between the transformed strings. Formally,

D(E’,ﬂ = min_(cost(Ty) + cost(Tz) + Do(T1(Z), T5(y))) (1)

T, 12€T
Often, the allowable transformations consist of a sequence of basic building blocks.
In this case, let Ty be the set of these basic, atomic transformations. For example, for
the string-editing distance, the set of atomic transformations could be 7o = { ’insert’,
‘delete’, 'substitute’ }. A composite transformation is an allowed sequence of such
atomic transformations with cost that is the sum of the individual costs, then we can
express the distance function recursively as follows:

DG ) = min{ e (ot 4 ontT) £ DO LD

As we show in Appendix 7, several practical distance functions follow this model.
The Euclidean distance readily obeys the model, if no transformations are allowed,
and Dy() is the Euclidean distance.

Definition 2.1 A base distance function Dy() is said to be additive if for sequences
T,y of equal length |
Do(Z,y) = Yiz1.ad(x;,y:), where d() is some non-negative function, and Dy(Z,y) is
undefined otherwise.

We require in this paper that the base distance function used be additive. This
is not an onerous requirement since every example we are aware of in practice does
satisfy this requirement. Observe that one cannot compute the base distance between
two sequences of unequal length.

2.2 Signatures

Given a database containing sequences and a query sequence to be matched within
a certain distance, a naive evaluation strategy is to iterate over the sequences in
the database and for each one compute the distance from the given sequence. The
complexity of each such test is determined by the length of the sequence and the



notion of similarity being used (that is, the class of transformations allowed). Since
individual sequences in the comparison can often be large, approximate matching can
be computationally intensive.

We wish to reduce the computation cost by using short representative signatures
to perform the matching instead of the real sequences. Signatures are scanned se-
quentially and matched against the signature of the given query. Due to their small
size, this scan can take place orders of magnitude faster than a full scan and match
on the entire database. In some applications, if the signatures are short enough, it
may even be possible to build index structures on the signatures.

A signature is a word in a selected description language. We associate a determin-
istic Turing machine Tz with a given description language £. We say that a sequence
T is (exactly) represented by a word w in a description language £, if ¥ is the output
of 17, on the input w. Note that no two sequences are represented by the same word;
we often refer to the sequence represented by word w as seq(w). We extend the seq
mapping from words to sub-words by saying that a subsequence ¥’ of 7 is represented
by a sub-word w’ of w when #’ is the output of 77, on w'.

A sequence may be represented in many different ways in a given description lan-
guage. Even when a sequence does not have a compact signature, it may be possible
to use a compact signature that represents a “similar” sequence. An example of such
an approximate signature is the representation of a sequence by its first few Fourier
coefficients [1].

Definition 2.2 Given a sequence ¥, a base-distance measure Do(.), and a description
language L, the e-complexity of T is the smallest integer K such that there exists a
word w, € L with |w,| = K and Dy(Z, seq(w,)) < e. If there is no such word in L,
the e-complexity of ¥ is undefined. Such a word w,, which is not necessarily unique,
is called an c-signature of T in L.

Although not every sequence will have an exact representation in the description
language £, we will choose £ and € in each application to ensure that every sequence
has an e-signature. For brevity we will omit the € and just use the word signature.
A signature of a sequence & will be denoted by w,. Sequences that have an exact
representation in a description language £ will be called canonical. For a signature w,
the sequence seq(w), is the canonical sequence represented by w. If w, is a signature
of ¥, the canonical sequence represented by w, will be called a canonical form of ¥
and denoted z.

In general, finding a good representation for a sequence is difficult. Given a descrip-
tion language £ (with associated Turing machine T},), a base distance function Dy, a
set of transformations 7, a distance bound ¢, a sequence s, and a number k, we call
the problem of testing whether s has e-complexity of k, the signature testing problem.
Note that the problem of determining the Kolmogorov complexity of a sequence [17]
is a special case of this problem, from which it follows that:

Theorem 2.1 The signature testing problem is undecidable.



The undecidability comes from the power of having an arbitrary Turing machine
T, to compute sequences from descriptions; in practice, people do not use arbitrary
description languages. They use Fourier transform, piece-wise linear approximations,
regular expressions, etc. For such languages it is easy to devise a simple grammar to
determine whether a description word is valid in that it describes some sequence. And
for such words the mapping usually takes time that is at most linear in the length of
the sequence.

Figure 1 gives an example, where the transformation 7" is what we call “regional
add”: A regional add transformation R < 7,7, A > of magnitude A at positions ¢
through 7 of a sequence adds A to every entry of the sequence, starting from position
¢ until position j, included. We assume that the description language £ uses piece-
wise constant (i.e., zero-th order polynomial) approximations to obtain canonical
sequences. Specifically, Figure 1 shows (a) a sequence (light line) and (the canonical
representation of) its signature (bold line), and (b) the effect of a transformation
(‘regional add’) on the sequence and the signature. The heavy line with the double
arrows stand for the 'jump’ of magnitude A at position .
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(a) sequence and canonical form (b) a ‘regional add’ transformation

Figure 1: (a) Illustration of a sample sequence, and its signature (piece-wise flat
approximation (b) example of a transformation (‘regional add’, of magnitude A at
interval -5 and its effect on a sequence and its signature

3 Similarity Retrieval - Conditions for Efficiency
and Correctness

3.1 Lower Bounding

We need to ensure that the process of matching signatures of the database strings
against the query signature does not lead to false dismissals. For this we show that,
under realistic conditions, the distance between two signatures provides a lower bound



on the distance between the pairs of strings that map to them. Thus, if two signatures
are far apart, we know the corresponding strings must also be far apart.

Definition 3.1 Let C; be the set of all canonical sequences with respect to language
L:
Ce = {seq(w) | w e £} 3)

We need to know how the transformations in 7 distort distances, and to find
bounds on these distortions. First, we define the maximum distortion of the distance
between a sequence ¥ and any of its canonical forms & that can be introduced by a
transformation T € T.

Definition 3.2 Given a set S of sequences, T a transformation language, L a de-
scription language and Do() a base distance function, let ¥ € S and T € T. We
define the transformed signature error for @ and T to be

Kyr = max{Dy(T(¥), T (%)) | & is a canonical form of & } (4)
Let
Ky = max(Do(T'(7), T'(2)) (5)

be the maximum distortion that any transformation can introduce between a sequence
T and any of its canonical forms &. Finally, we maximize over all sequences in S:

K= %E%X(Ax) (6)

Theorem 3.1 [f the base distance measure Dy() satisfies the triangular inequality,
then

D(fv g) > D(‘%v yN) - I(x - I(y > D(‘%v yN) — 2K (7)

The proof is omitted.

In other words, one can find the distance between (canonical representations of)
signatures and use it to bound the distance between the original sequences, even if
the transforms to be applied in the matching process are different in the two cases.

An issue that now arises is that 7'(#) might not be a canonical form, that is T'(Z) ¢
Cc. For example, if £ keeps the first few DFT coefficients of the sequence #, no
canonical form Z can have high frequencies; thus, if we apply to a canonical form
& a transformation 7' that introduces high frequencies (e.g., a regional add with a
large “jump”), the result T'(%) cannot possibly belong to C.. It is desirable to find a
related transform 77, so that T'(Z¥) € C,, while not too far away from 7'(¥), and with
cost similar to the cost of 7. When this holds, we say the description language is
correspondence-bounded with respect to the transformation language. More precisely:

Definition 3.3 A description language L is said to be y-correspondence-bounded with
respect to a transformation language T if there is a constant x such that for every pair
of transformations Ty and Ty in L and for every pair of canonical sequences & and y



in Cr there exist two other transformations T{ and Ty in T such that T|(%),Ty(7) are
canonical sequences and

Do(T(2), Ta(9)) + cost(Ty) + cost(Ty) < Do(Ty(2), T5(9)) + cost(T}) + cost(T) +(>§
8

The quantity x is called the correspondence error bound.

Definition 3.4 A description language L is said to be closed with respect to a trans-
formation language T if for all T € T and for all w € L we have that T'(seq(w)) € C.
That ts, all transformations in £ map canonical sequences to canonical sequences.

So, we have bounds on the two sources of error: the error introduced by matching
signatures instead of the original sequences, bounded by K, and the error introduced
by using transformations that preserve canonical forms, instead of the transformations
that we would use on the original strings; this one is bounded by .

In the rest of this extended abstract we consider only cases where x is zero. The
case of arbitrary y is considered in the full version of the paper [7]. For lack of space
we omit it here. This leaves us with two tasks — one is to compute the distance
between (the canonical representations of) two signatures, by looking only at the
signatures. The other is compute the bound K, for specified transformation and
description languages. We pursue both in turn.

3.2 Match Effort

The reason to use signatures is that the comparisons of query and data can proceed
rapidly — much faster than if the longer actual sequences were to be compared. Is
this always true?

All that one can say in general is that it is asymptotically no more expensive
to compute the distance between two sequences represented as signatures than to
compute the distance between the original sequences themselves. The reason is that
the complexity of obtaining the distance between two sequences is at least linear in
the length of the sequences, since an additive distance function will at least require
reading each point in the sequence once. The complexity of expanding a signature
into a full sequence is also typically proportional to the length of the full sequence.

Of course, the whole point of using signatures is that these comparisons be signif-
icantly faster. Ideally, we would like comparisons to require time that is a function
only of the length of the signature, independent of the length of the original sequence
and of the canonical representation of the signature.

Definition 3.5 We say that a description language L, closed w.r.t. T, is T-compare-
polynomial if the distance between (the canonical sequences of ) two signatures can be
computed in time polynomial in the length of the signatures, that is, for all w,, w, in
L, D(&,7) can be computed in time polynomial in the lengths of w, and w,.



Note that, in the presence of transformations, the distance between two sequences
may be hard to compute, even in the case of fully expanded sequences. For carefully
chosen transformation languages, this computation can be done in polynomial time.
Consequently, achieving polynomial time computation of the distance between two
signatures is a good objective. We present such a case below. We need the following
auxiliary definitions.

It is often the case that a signature w, of a sequence ¥ is a list of numbers
wiws ... w)y. For example, a signature extraction algorithm would be to replace every
10 samples of ¥ with their average: w; = avg(x1,xa,...,210), W2 = avg(T11,...,T20)
etc. The value of each w; in this example depends only on 10 contiguous symbols
of Z. In general, if every symbol w; of the signature depends exclusively on a small
subsequence of #, then the description language £ is called modular. The formal
definition is as follows:

Definition 3.6 A description L is said to be modular if there is a function hy such
that for every sequence ¥ and every signature w, of T, there exist subsequences ¥; of
I, with ¥ = @1 ...%,,, such that for each symbol w,; of w,, he(Z;) = wy;. We define
the module bound p to be the length of the longest such substring of .

Definition 3.7 A transformation language T is said to be local if for any two se-
quences § and 8 that agree on the i-th symbol, T'(3) and T(3") also agree on the i-th
symbol. That is, the value of T'(3); only depends on the value of ;. Furthermore, the
cost cost(T') is the sum of the costs of all transformations T; that transform the i-th
symbol of their input as T does and leave the rest of the input unchanged.

We are now ready to present the theorem. The proof (omitted) relies on the ability
to compute the distance between pairs of (transformed) subsequences represented in
the modular description language in time independent of sequence length, and then
uses dynamic programming to deal with overlaps of subsequences and constraints on
transformations.

Theorem 3.2 [f7T is alocal transformation language, and L is a modular description
language closed w.r.t. T, then L is T -compare polynomial.

A special case of particular interest is when the transformation language specified is
empty. In this case, we use the name simple-compare-linear/polynomial /exponential,
etc. For example, a Fourier series description of a sequence, with an inverse Fourier
transform as the signature inverting function, is simple-compare-linear for the Eu-
clidean (Ly) distance measure (because “energy” is preserved in the transform do-
main), but is not simple-compare-polynomial for other distance measures. A piece-
wise linear description of a sequence, with a zero order or first order interpolation
as the inverse, is simple-compare-linear for all L, distance measures. In fact we can
show the following:

Theorem 3.3 Fuvery modular description language is simple-compare-linear.



3.3 Finding the Bounds

On the basis of the previous section, the basic question to ask now is how do we
find the bound K. (Recall that we foccus in this extended abstract on the case were
X = 0). We show in this section that for selected classes of transformations and
description languages, such bound K can indeed be found.

It is often the case that a transform 7' cannot amplify an existing difference too
much. For example, it may be the case that, if two sequences 7 and i differ by 4§, any
transform 7" € T might amplify this difference by a predictable amount. Formally,
for a given transformation language 7, let f() be a function such that if

Do(Z,y) = & (9)

then
Do(T (%), T(y)) < f(6) YT eT (10)

It is easy to see the following.

Theorem 3.4 Let f() be a function such that for every two sequences &,y and ev-
ery transformation T € T, Do(T(Z),T(y)) < f(Do(Z,y)). Then the transformed

signature error bound is

K = f(¢) (11)

In particular, if f() is the identity function, that is, the base distance is invariant
under the same transformation, then K = e. This is the case for all add (to y axis)
transformations and L, distance measures. On the other hand, for a uniform scaling
transformation, f() is clearly the scaling factor.

4 A Comprehensive Example

To place all the concepts of the preceding sections in perspective, we work through an
example in this section. We consider a transformation language that allows “Regional
Adds”. In other words, we permit the sequence level to shift abruptly. There is a cost
CostO fTransform associated with each such shift in level. Such distance functions
with regional adds have been used in the past [27]; other distance functions go even
further, including time-shifts, scaling etc. [2]. Note that no straightforward base
distance functions can accommodate such changes. Therefore most of the currently
published retrieval techniques cannot be used effectively.

Such “regional adds” often occur in sequences as a result of sudden changes in
environment or other catastrophes. One is often interested in finding sequences that
are similar, modulo a few such level shifts. For example, consider companies X and
Y, whose stocks move similarly because the companies belong to the same market
segment. Suppose that something unexpected happens to company X only (e.g., it
wins a major contract) - this unexpected change boosts the stock price by, say, A.
Thus, if we could factor-out this “catastrophe”, the two stock prices would look very
similar. Based on this example, we show how our approach works.



4.1 Problem definition - our input

Suppose that a domain expert, trying to take these “catastrophe” events into account,
furnishes us with the following distance function D(): For two sequences ¥ and ¥, their
(squared) distance is the sum of squared errors plus the cost of “catastrophes”, after
the optimal number of “catastrophes” has been placed at the optimal points, with
cost A? for each “catastrophe” of magnitude A.

This is the only input to us — it is up to us to decide how to bring this problem within
our framework, which description language £ to choose, how to obtain signatures, and
which signature-to-sequence function seq() to choose. However, if we manage to do
all that, we will have (a) a potentially fast access method (“shrink-and-search”) and
(b) the guarantee that our method will not have false dismissals.

4.2 Customization of our framework

Transformation language To match the given function, we only need the “re-
gional add” R transformation:
Such a transformation R < pl,p2, A > (&), gives < 1,22, ....,2p + A, 2p141 +
AL xpeir A T, Tpogre.. >
Thus, our set of atomic transformations is 7o = {R < 1,j,A > |1 <i:<j<n;A €
According to the specification of the problem, the cost is cost(R < pl,p2,A >) =
(A

Formalization of the Distance function The distance function D() can be de-
fined recursively as follows:

pSZLAe%

Pe
D2(§;’,y_’) = min (CostOfTransform + Z(“'HFA—%)Q + D2(:1;pe_|_1m,ype+1m)

=1

Description language We choose as the description language £ the list of pairs
(value, duration) or (v, d), for short. Thus, a valid word w in this language would be
w = {(3.5,2),(5.25,4)}.

As the seq(w) function, that operates on a word w and generates the canonical
representation, we select piece-wise constant interpolation. Thus, for each pair (v, d)
of the word w, seq() will “stutter” d times the value v. For example, the canonical
representation of the previous example word would be

seq(w) = seq({(3.5,2),(5.25,4)})
= {3.5,3.5,5.25,5.25,5.25,5.25}

Transformations Over Signatures Before we can compute distances between
signatures, we have to agree upon what the equivalent of our transformation is in the
signature domain. If we choose to have steps permitted to take place at any arbitrary

Juz



position, including points in the middle of substrings represented by single symbols in
the signature, then the resulting transformed sequence will have a different number
of piecewise constant regions, and will not be a canonical sequence of the A-signature
language selected as our description language L.

Instead, we require steps to be added only at substring boundaries. With this
restriction to the transformation language, our description language is closed w.r.t.
the transformation language.

Bounding Error and Match Effort It is not hard to show [7] that the correspon-
dence error x introduced here is 0. (Omitted here for lack of space) Our framework
also satisfies the requirements of Thm 3.4. Therefore the transformed signature error
bound, K, is simply e.

Since x is zero, and K is €, performing the match with signatures is no worse than
performing the match with the canonical sequences represented by the signatures.

The description language we have here is modular, the transformation language is
local, and the description language is closed with respect to the (restricted) transfor-
mation language. Therefore, all conditions of Thm 3.2 are satisfied. Thus we know
that we can match in the signature domain, in time that is polynomial in signature
length.

4.3 The Steps To Follow

Signature Extraction We choose to work with fixed-length signatures of length
A, that is A-signatures. With the above choices of £ and seq(), the problem of finding
the A-signature of a sequence 7 is the classic problem of piece-wise constant sequence
approximation, constrained on the number of segments A, where the cost function
is the sum of squared errors. The solution is based on Dynamic Programming; the
details are omitted for brevity.

We can show that the running time of the algorithm is O(n? x A).

Comparing Full Sequences A dynamic programming algorithm suggests itself,
and indeed one has been proposed for a variant of this problem in [27]. Eq. 12 is
already in a recursive form - the dynamic programming works as follows:

There is one “stage” in the algorithm for each discrete sample point. At each
stage, a step has to be taken, and its duration p. has to be selected. No additional
steps are permitted until the end of this duration. The magnitude of the step can
then be obtained by solving a very simple optimization: for our setting (the Euclidean
distance and the cost of a step being A?), we have to maximize a quadratic polynomial
on A. Further transitions then compute the distance between sequences, taking into
account the chosen step.

Thus, there are n stages in a dynamic programming algorithm to compute the
distance between two sequences of length n. At each stage, there are O(n) possible
states. Computing the cost of transition (based on optimization performed for step
size) is O(1), by careful book-keeping: we can keep the partial sum Y%27" from the



previous step, and update it in constant time. Multiplying these, this algorithm has
complexity O(n?).

Computing Distance Between Signatures For this specific case, one can work
through the details of the dynamic programming formulation to show that the time
required is actually O(Ay?), where ), is the sum of the lengths of the query and data
signatures.

5 Experimental Verification

We implemented our searching method on a database of stock price movements, from
ftp://ftp.ai.mit.edu /pub/stocks/results. We used 7 stocks; for each stock, we
took its first n days (n=150-300), and considered the closing prices only. As queries
we used the very same stocks.

We used A-signatures. and implemented the searching algorithms in nawk. We
always 'diff’ed the output of the two methods, to verify that there were no false
dismissals.

Our first set of experiments was to try to find a good value for A. Figure 2(a)
shows the results: It gives the logarithm of the response time of our method, as a
function of the A parameter, for several values of the tolerance ¢, for n=150 days-long
stocks. We varied A from 10-50. For a careful choice of A, the proposed method
achieves 50% savings in response time. These savings increase with the length n of
the sequences. Notice that (a) the higher the tolerance, the less useful the signatures,
as expected and (b) for small tolerances, the optimal value of A is approximately 30.
We conjecture that the optimal value of A will be related to the square-root of the
length n. We also plot the response time of the 'naive’ method, which was around 370
seconds. The specific plot corresponds to e=4. As expected, it is roughly constant,
the A and the tolerance € have no effect on its strategy.

Figure 2(b) examines how the speedup will scale for longer sequences. It gives the
fraction of response times (our method over the naive) as a function of the sequence
length n. We have chosen the tolerance to be e=0 and A to be 30, 40 and 50,
respectively, for n=150, 212 and 300. Notice that the gains of our method increase
drastically with the sequence length.

6 Another Example

Consider uniform scaling as the similarity transform of interest. That is 7 = {T,]a €
R} where T,(Z) = ai. That is, a constant scale factor a can be used to multiply all
observations in one sequence to better make it match the other. Simple calculus will
show the desired scale factor a to be 3; a;y;/ >°; #2. The cost cost(T,) is determined
by the application: it could be zero, or a?, or |log|al.

Consider a description language £, obtained as the Fourier coefficients of the origi-
nal sequence. A short signature is obtained by discarding the higher frequency coeffi-
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Figure 2: (a) sum of response times in seconds, versus A, for tolerance
€=0,1,2,4,8,16,32 (b) ratio of response time (ours over naive) vs sequence length n

cients and retaining only the first few. The canonical representation of the signature
is obtained by applying the inverse Fourier transform to the coefficients retained,
assuming that the remaining coefficients are all zero. Obtaining the signature of a
sequence is easy — standard Fourier transform techniques are used.

The error in the signature is the sum of squares of the truncated coefficients. This
error can be bounded by retaining enough coefficients.

The equivalent transformation in the signature domain is also multiplication by the
same scaling factor as in the original sequence domain. The optimum scaling factor
can be computed in the signature domain using the same calculus formulation as in
the original domain. The error is bounded by the product of the error before scaling
and the scaling coefficient. Therefore K' = scaling x €. Since the transformations
in the signature domain are identical to those in the full sequence domain, we know
that the correspondence error is identically zero.

This is not a modular description language, yet signature matching is possible in
polynomial time, through a parametric optimization.

7 Related Work

7.1 Approximate Matching

Approximate matching for numerical time sequences (’signals’) include the work on
voice matching (see [20] for a textbook), where time-warping is considered. When the
distance is the Fuclidean metric, we have proposed an indexing method using the first
few Discrete Fourier Transform (DFT) coefficients, for matching full sequences [1], as
well as for sub-pattern matching [6]. This technique has been extended by Goldin and
Kanellakis [11] for matching time sequences, so that it allows for shifts and scalings.



Approximate matching of signals in general are discussed in [30], [28], with a recent
survey in [4]. There, the idea is to allow some elastic deformations (ie., space warp-
ings), before matching the two signals. Signals can be, eg., 2-d gray-scale images, or
3-d MRI brain scans.

Closely related is the work on string matching. An excellent starting point is the
book by Sankoff and Kruskal [25], which examines strings, signals and DNA molecules,
along with popular distance functions. The survey by Hall and Dowling [14] examines
matching of typed English strings, along with the basic, dynamic programming algo-
rithm, that computes the editing distance. The book by Frakes and Baeza-Yates [9]
examines Information Retrieval applications, including approximate matching there.

7.2 Distance Metrics

We list some popular distance functions. They are all encompassed within our frame-
work, and they use zero or more of the following transformations. The transforma-
tions accept a sequence § as input and return another sequence. They also take some
parameters, within angle-brackets (<>)

e drop < p > (§): drops §[p] and shifts the elements left, to close the gap.

o stutter < p > (§): repeats §[p| once, and shifts the elements to the right.

L, Metrics and Euclidean distance: For two sequences x = zy...2,, ¥ =
Y1, ... Y, this distance is defined by the formula

Di(x, y)= Y, |zl =yl (13)
i=1...n
For p = 1 the L, metric reduces to the ‘Manhattan’ or ‘city-block” distance; for
p = 2 it becomes the popular Euclidean distance.

Editing distance in strings: This is the minimum number of insertions, deletions
and substitutions that are needed to transform a string s into another string ¢ [25, 18].

cost(Del(t[1])) + D(s, Rest(t))
D(s,t) = ming cost(Del(s[1])) + D(Rest(s),t) (14)
cost(Sub(s[1],t[1])) + D(Rest(s), Rest(t))

where Del(t[1]) (Del(s[l])) stands for deleting the first character of ¢ (s), and
(Sub(s[1],t[1])) for substituting the first character of s by the first character of ¢,
cost is the cost of the deletion/substitution, and Rest(t) (Rest(s)) is the string ¢ (s)
without its first character.

As shown in Table 1, our framework includes the string editing distance, by choos-
ing: 7o to have only one transformation, the drop < p > transformation, with cost=1
and by setting Dy() to be the Hamming distance.

The distance can be computed in time O(N,N, ), where N,, N, are the number of
samples in each string [14], [18].



operator Euclidean | string-edit | time-warping
drop < p > 00 1 00
stutter < p > o0 o0 0

‘ Do ‘ Euclidean ‘ Hamming ‘ city-block ‘

Table 1: Cost of operators of our framework, for popular distance functions

Distance functions with time-warping: Such functions are used for example in
digitized voice signals, where there are fluctuations in the rate of speech.
A typical distance function is [20]:

D(z, Rest(y)) [ *x — stutter* /
D(x,y) = Do(Head(x), Head(y)) + min< D(Rest(x),y) [ *y — stutter =/
D(Rest(x), Rest(y)) /| *no stutter x /
(15)
where Head(x) returns the first element of 2, and Rest(x) returns the remainder.
Table 1 shows that the above distance is a special case of our framework, by setting
(a) the ‘basic’ transformation language 7o to consist of only the stutter transforma-
tion, with cost = 0 and (b) the Dy() distance function to be the L; metric, that is,
the city-block distance.
Figure 3 shows two time sequences, before and after the time-warping. The se-
quences are mixtures of similar harmonics: x(f) = 10sin(0.5¢) + 5sin(.25t) and
y(t) = 11sin(.55t) + 4.58in(.261) respectively.

Amplitute
Amplitute

(a) before

Figure 3: Illustration of two similar sequences, before and after time-warping

7.3 Alternative Signature languages

In our main example, we used sub-sampling with piece-wise constant interpolation to
depict a sequence. Additional signature languages include any piece-wise polynomial
functions (see Sidiropoulos [27] for a survey of optimal algorithms to achieve such
approximations), as well as techniques from Digital Signal Processing (DSP) [19], for



optimal function approximation. The most popular techniques from there include
the Discrete Fourier Transform (DFT), the Discrete Cosine Transform (DCT) (which
is the basis of the JPEG image compression standard [29]), and, recently, the very
promising Discrete Wavelet Transform (DWT) [23, 24].

The DWT is, in principle, a 'short window’ Fourier transform; the major difference
is that the length of the window takes several values (typically, powers of 2). Thus,
it leads to multi-resolution analysis, which seems to be promising for real signals.

Natural signals seem to require few wavelet coefficients to be described with small
error [8]; this is exactly the reason that a wavelet decomposition is useful for com-
pression, feature extraction and searching. Figure 4 shows some of the basis functions
for the very well-known Daubechies-4 DWT. The basis functions are translations or

dilations of each other: Eg., #5 is a dilation of #9, which is a dilaton of #17 etc.

Figure 4: DWT basis functions (1, 5, 9, 17)

8 Conclusion

In this paper we described a generic signature-based technique that can be used
effectively for retrieval based on many different, application-specific, notions of simi-
larity. For a variety of general conditions, we obtained measures of goodness for our
technique. We illustrated our technique with a couple of very different examples.

While the work in this paper focused on sequence data, we believe that the basic
framework developed here is equally applicable to other contexts such as image, video,
or text data.

References

[1] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient similarity
search in sequence databases. In Fourth Int. Conf. on Foundations of Data
Organization and Algorithms (FODO), pages 69-84, Evanston, Illinois, Octo-
ber 1993. also available through anonymous ftp, from olympos.cs.umd.edu:

ftp/pub/TechReports/fodo.ps.



2]

[10]

[11]

[12]

[13]
[14]

[15]

Rakesh Agrawal, King-Ip Lin, Harpreet 5. Sawney, and Kyuseok Shim. Fast
similarity search in the presence of noise, scaling and translation in time-series

databases. Proc. of VLDB, pages 490-501, September 1995.

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. A basic local
alignment search tool. Journal of Molecular Biology, 215(3):403-410, 1990.

Lisa Gottesfeld Brown. A survey of image registration techniques. ACM Com-
puting Surveys, 24(4):325-376, December 1992.

L.S. Colby, E.L. Robertson, L.V. Saxton, and D. Van Gucht. A query language
for list based complex-objects. Proc. 15th ACM Symp. on Principles of Database
Systems, pages 179-189, May 1994.

Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subse-
quence matching in time-series databases. Proc. ACM SIGMOD, pages 419-429,
May 1994. ‘Best Paper’ award; also available as CS-TR-3190, UMIACS-TR-93-
131, ISR TR-93-86.

Christos N. Faloutsos, H.V. Jagadish, Alberto O. Mendelzon, and Tova Milo. Sig-
nature technique for similarity-based queries. Technical Report 112530-951110-
16TM, AT&T Murray Hill, NJ, November 1995.

D.J. Field. Scale-invariance and self-similar ‘wavelet’ transforms: an analysis
fo natural scenes and mammalian visual systems. In M. Farge, J.C.R. Hunt,
and J.C. Vassilicos, editors, Wavelets, Fractals, and Fourier Transforms, pages

151-193. Clarendon Press, Oxford, 1993.

W. Frakes and R. Baeza-Yates. [Information Retrieval: Data Structures and
Algorithms. Prentice-Hall, 1992.

S. Ginsburg and X. Wang. Towards a unified approach to querying sequenced
data. Proc. 11th ACM Symp. on Principles of Database Systems, pages 293-300,
1992.

Dina Q. Goldin and Paris C. Kanellakis. On similarity queries for time-series
data: Constraint specification and implementation. Int. Conf. on Principles and
Practice of Constraint Programming (CP95), September 1995.

G.H Gonnet, M.A. Cohen, and S.A. Benner. Exhaustive matching of the entire
protein sequence database. Science, 256(5), June 1992.

S. Grumbach and T. Milo. An algebra for pomsets. Proc. of ICDT, 1995.

P.A.V. Hall and G.R. Dowling. Approximate string matching. ACM Computing
Surveys, 12(4):381-402, December 1980.

H.V. Jagadish. A retrieval technique for similar shapes. Proc. ACM SIGMOD
Conf., pages 208-217, May 1991.



[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

28]

[29]

[30]

H.V. Jagadish, Alberto O. Mendelzon, and Tova Milo. Similarity-based queries.
Proc. ACM SIGACT-SIGMOD-SIGART PODS, pages 36-45, May 1995.

M. Li and P.M.B. Vitanyi. Kolmogorov complexity and its applications. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A, pages

188-254. MIT Press/Elsevier, 1990.

R. Lowerance and R.A. Wagner. An extension of the string-to-string correction

problem. JACM, 22(2):3-14, April 1975.

Alan Victor Oppenheim and Ronald W. Schafer. Digital Signal Processing.
Prentice-Hall, Englewood Cliffs, N.J., 1975.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition.

Prentice Hall, 1993.

Davood Rafiei and Alberto O. Mendelzon. Similarity-based queries for time series

data. to appear in Proc. ACM SIGMOD, 1997.

J. Richardson. Supporting lists in a data model (a timely approach). Proc. 18th
Intl. Conf. on Very Large Databases, August 1992.

Oliver Rioul and Martin Vetterli. Wavelets and signal processing. [EEE SP
Magazine, pages 14-38, October 1991.

Mary Beth Ruskai, Gregory Beylkin, Ronald Coifman, Ingrid Daubechies,
Stephane Mallat, Yves Meyer, and Louise Raphael. Wavelets and Their Ap-
plications. Jones and Bartlett Publishers, Boston, MA, 1992.

David Sankoff and Joseph B. Kruskal. Time Warps, String Fdits and Macro-
molecules: the Theory and Practice of Sequence Comparisons. Addison-Wesley
Publishing Company, Inc., Reading, MA, 1983.

Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. Sequence query pro-
cessing. Proc. Int. Conf. on Management of Data SIGMOD, pages 430441, May
1994.

Nikolaos Sidiropoulos. The viterbi optimal runlength-constrained approximation
nonlinear filter. IEFEE Trans. on Signal Processing, 1996. to appear.

Demetri Terzopoulos. Image analysis using multigrid relaxation methods. [FEFE

PAMI, 8(2):129-139, March 1986.

Gregory K. Wallace. The jpeg still picture compression standard. CACM,
34(4):31-44, April 1991.

A. Witkin, D. Terzopoulos, and M. Kaas. Signal matching through scale space.
Proc. am. Assoc. Artif. Intel., pages 714-719, 1986.



[31] Sun Wu and Udi Manber. Text searching allowing errors. Comm. of ACM
(CACM), 35(10):83-91, October 1992.



