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similarity-based search. In this paper, we adapt this framework to the specialized do-main of real-valued sequences. (Although some of the ideas we present are applicableto other types of data as well). In particular we focus on whole-match queries. Bywhole-match query we mean the case where the user has to specify the whole sequence(e.g., in a collection of 2-second voice clips with the phrase \good-morning" �nd theones that are similar to my own utterance).Similarity-based search can be computationally very expensive. The computationcost depends heavily on the length of sequences being compared. To make such sim-ilarity testing feasible on large data sets, we propose the use of a signature basedtechnique. In a nutshell, our approach is to \shrink" the data sequences into signa-tures, and search the signatures instead of the real sequences, with further comparisonbeing required only when a possible match is indicated. Being shorter, signatures canusually be compared much faster than the original sequences. In addition, signaturesare usually easier to index. For such a signature-based technique to be e�ective onehas to assure that(1) the signature comparison is fast, and(2) the signature comparison gives few false alarms, and no false dismissals.We study these issues below, and present conditions under which these requirementsare satis�ed. Our goal is to show that this general framework �ts many real-lifeapplications and leads to e�cient searching. The techniques we suggest have beenimplemented and tested. At least in one application of interest, these techniques didlead to a signi�cant improvement in performance.2 BasicsIn this section we present the basic framework on sequences, similaritymeasurements,and signature extraction.2.1 Sequences, Distance Functions, and Transformation Lan-guagesReal-valued sequences, like stock-market or electro-cardiogram data, can be viewedas strings of numbers. For example, a possible data sequence could be the string~x = f10:2; 12:5; 3:0g.We use the following notational conventions:� xi denotes the i-th entry of the sequence ~x� xi:j denotes the sub-sequence fxi; xi+1; : : : ; xjg of the sequence ~xFollowing the framework of [16], the dissimilarity between two objects can be mea-sured as the cost of transforming one into another by means of a transformationsequence selected from a transformation language T . Thus the distance betweentwo sequences measures the cost to transform the �rst sequence to the second, or



both to a common, third sequence, given an application dependent set of allowabletransformations and their associated costs. Given a set of transformations T and atransformation T 2 T , and a sequence ~x in some set of sequences S (e.g., S = <n,n = 1; 2; : : :), T (~x) is the sequence in S that results from applying transformation Tto ~x. The cost of this transformation is cost(T ).We extend [16] by allowing the possibility that, after all allowable transformationsare exhausted, the two sequences are still di�erent, in which case we measure thedistance between the transformed strings using a traditional distance function, de-noted by D0(), such as the Euclidean distance or the city-block (Manhattan or L0)distance function. The D0() distance will be called the base distance. The distancebetween two strings ~x; ~y is de�ned as the cost of transforming each of the stringsto two strings that are as close as possible in base distance, plus the base distancebetween the transformed strings. Formally,D(~s;~t) = minT1;T22T (cost(T1) + cost(T2) +D0(T1(~x); T2(~y))) (1)Often, the allowable transformations consist of a sequence of basic building blocks.In this case, let T0 be the set of these basic, atomic transformations. For example, forthe string-editing distance, the set of atomic transformations could be T0 = f 'insert','delete', 'substitute' g. A composite transformation is an allowed sequence of suchatomic transformations with cost that is the sum of the individual costs, then we canexpress the distance function recursively as follows:D(~x; ~y) = min( minT1;T22T0 (cost(T1) + cost(T2) +D(T1(~x); T2(~y)))D0(~x; ~y) (2)As we show in Appendix 7, several practical distance functions follow this model.The Euclidean distance readily obeys the model, if no transformations are allowed,and D0() is the Euclidean distance.De�nition 2.1 A base distance function D0() is said to be additive if for sequences~x; ~y of equal length lD0(~x; ~y) = �i=1:::ld(xi; yi), where d() is some non-negative function, and D0(~x; ~y) isunde�ned otherwise.We require in this paper that the base distance function used be additive. Thisis not an onerous requirement since every example we are aware of in practice doessatisfy this requirement. Observe that one cannot compute the base distance betweentwo sequences of unequal length.2.2 SignaturesGiven a database containing sequences and a query sequence to be matched withina certain distance, a naive evaluation strategy is to iterate over the sequences inthe database and for each one compute the distance from the given sequence. Thecomplexity of each such test is determined by the length of the sequence and the



notion of similarity being used (that is, the class of transformations allowed). Sinceindividual sequences in the comparison can often be large, approximate matching canbe computationally intensive.We wish to reduce the computation cost by using short representative signaturesto perform the matching instead of the real sequences. Signatures are scanned se-quentially and matched against the signature of the given query. Due to their smallsize, this scan can take place orders of magnitude faster than a full scan and matchon the entire database. In some applications, if the signatures are short enough, itmay even be possible to build index structures on the signatures.A signature is a word in a selected description language. We associate a determin-istic Turing machine TL with a given description language L. We say that a sequence~x is (exactly) represented by a word w in a description language L, if ~x is the outputof TL on the input w. Note that no two sequences are represented by the same word;we often refer to the sequence represented by word w as seq(w). We extend the seqmapping from words to sub-words by saying that a subsequence ~x0 of ~x is representedby a sub-word w0 of w when ~x0 is the output of TL on w0.A sequence may be represented in many di�erent ways in a given description lan-guage. Even when a sequence does not have a compact signature, it may be possibleto use a compact signature that represents a \similar" sequence. An example of suchan approximate signature is the representation of a sequence by its �rst few Fouriercoe�cients [1].De�nition 2.2 Given a sequence ~x, a base-distance measure D0(:), and a descriptionlanguage L, the �-complexity of ~x is the smallest integer K such that there exists aword wx 2 L with jwxj = K and D0(~x; seq(wx)) � �. If there is no such word in L,the �-complexity of ~x is unde�ned. Such a word wx, which is not necessarily unique,is called an �-signature of ~x in L.Although not every sequence will have an exact representation in the descriptionlanguage L, we will choose L and � in each application to ensure that every sequencehas an �-signature. For brevity we will omit the � and just use the word signature.A signature of a sequence ~x will be denoted by wx. Sequences that have an exactrepresentation in a description language L will be called canonical. For a signature w,the sequence seq(w), is the canonical sequence represented by w. If wx is a signatureof ~x, the canonical sequence represented by wx will be called a canonical form of ~xand denoted ~x.In general, �nding a good representation for a sequence is di�cult. Given a descrip-tion language L (with associated Turing machine TL), a base distance function D0, aset of transformations T , a distance bound �, a sequence s, and a number k, we callthe problem of testing whether s has �-complexity of k, the signature testing problem.Note that the problem of determining the Kolmogorov complexity of a sequence [17]is a special case of this problem, from which it follows that:Theorem 2.1 The signature testing problem is undecidable.



The undecidability comes from the power of having an arbitrary Turing machineTL to compute sequences from descriptions; in practice, people do not use arbitrarydescription languages. They use Fourier transform, piece-wise linear approximations,regular expressions, etc. For such languages it is easy to devise a simple grammar todetermine whether a description word is valid in that it describes some sequence. Andfor such words the mapping usually takes time that is at most linear in the length ofthe sequence.Figure 1 gives an example, where the transformation T is what we call \regionaladd": A regional add transformation R < i; j;� > of magnitude � at positions ithrough j of a sequence adds � to every entry of the sequence, starting from positioni until position j, included. We assume that the description language L uses piece-wise constant (i.e., zero-th order polynomial) approximations to obtain canonicalsequences. Speci�cally, Figure 1 shows (a) a sequence (light line) and (the canonicalrepresentation of) its signature (bold line), and (b) the e�ect of a transformation(`regional add') on the sequence and the signature. The heavy line with the doublearrows stand for the 'jump' of magnitude � at position i.
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j(a) sequence and canonical form (b) a `regional add' transformationFigure 1: (a) Illustration of a sample sequence, and its signature (piece-wise atapproximation (b) example of a transformation (`regional add', of magnitude � atinterval i-j and its e�ect on a sequence and its signature3 Similarity Retrieval - Conditions for E�ciencyand Correctness3.1 Lower BoundingWe need to ensure that the process of matching signatures of the database stringsagainst the query signature does not lead to false dismissals. For this we show that,under realistic conditions, the distance between two signatures provides a lower bound



on the distance between the pairs of strings that map to them. Thus, if two signaturesare far apart, we know the corresponding strings must also be far apart.De�nition 3.1 Let CL be the set of all canonical sequences with respect to languageL: CL = fseq(w) j w 2 Lg (3)We need to know how the transformations in T distort distances, and to �ndbounds on these distortions. First, we de�ne the maximum distortion of the distancebetween a sequence ~x and any of its canonical forms ~x that can be introduced by atransformation T 2 T .De�nition 3.2 Given a set S of sequences, T a transformation language, L a de-scription language and D0() a base distance function, let ~x 2 S and T 2 T . Wede�ne the transformed signature error for ~x and T to beKx;T � maxfD0(T (~x); T (~x)) j ~x is a canonical form of ~x g (4)Let Kx � maxT2T (D0(T (~x); T (~x)) (5)be the maximum distortion that any transformation can introduce between a sequence~x and any of its canonical forms ~x. Finally, we maximize over all sequences in S:K � max~x2S (Kx) (6)Theorem 3.1 If the base distance measure D0() satis�es the triangular inequality,then D(~x; ~y) � D(~x; ~y)�Kx �Ky � D(~x; ~y)� 2K (7)The proof is omitted.In other words, one can �nd the distance between (canonical representations of)signatures and use it to bound the distance between the original sequences, even ifthe transforms to be applied in the matching process are di�erent in the two cases.An issue that now arises is that T (~x) might not be a canonical form, that is T (~x) =2CL. For example, if L keeps the �rst few DFT coe�cients of the sequence ~x, nocanonical form ~x can have high frequencies; thus, if we apply to a canonical form~x a transformation T that introduces high frequencies (e.g., a regional add with alarge \jump"), the result T (~x) cannot possibly belong to CL. It is desirable to �nd arelated transform T 0, so that T 0(~x) 2 CL, while not too far away from T (~x), and withcost similar to the cost of T . When this holds, we say the description language iscorrespondence-bounded with respect to the transformation language. More precisely:De�nition 3.3 A description language L is said to be �-correspondence-bounded withrespect to a transformation language T if there is a constant � such that for every pairof transformations T1 and T2 in L and for every pair of canonical sequences ~x and ~y



in CL there exist two other transformations T 01 and T 02 in T such that T 01(~x); T 02(~y) arecanonical sequences andD0(T1(~x); T2(~y)) + cost(T1) + cost(T2) � D0(T 01(~x); T 02(~y)) + cost(T 01) + cost(T 02) + �(8)The quantity � is called the correspondence error bound.De�nition 3.4 A description language L is said to be closed with respect to a trans-formation language T if for all T 2 T and for all w 2 L we have that T (seq(w)) 2 CL.That is, all transformations in L map canonical sequences to canonical sequences.So, we have bounds on the two sources of error: the error introduced by matchingsignatures instead of the original sequences, bounded by K, and the error introducedby using transformations that preserve canonical forms, instead of the transformationsthat we would use on the original strings; this one is bounded by �.In the rest of this extended abstract we consider only cases where � is zero. Thecase of arbitrary � is considered in the full version of the paper [7]. For lack of spacewe omit it here. This leaves us with two tasks | one is to compute the distancebetween (the canonical representations of) two signatures, by looking only at thesignatures. The other is compute the bound K, for speci�ed transformation anddescription languages. We pursue both in turn.3.2 Match E�ortThe reason to use signatures is that the comparisons of query and data can proceedrapidly { much faster than if the longer actual sequences were to be compared. Isthis always true?All that one can say in general is that it is asymptotically no more expensiveto compute the distance between two sequences represented as signatures than tocompute the distance between the original sequences themselves. The reason is thatthe complexity of obtaining the distance between two sequences is at least linear inthe length of the sequences, since an additive distance function will at least requirereading each point in the sequence once. The complexity of expanding a signatureinto a full sequence is also typically proportional to the length of the full sequence.Of course, the whole point of using signatures is that these comparisons be signif-icantly faster. Ideally, we would like comparisons to require time that is a functiononly of the length of the signature, independent of the length of the original sequenceand of the canonical representation of the signature.De�nition 3.5 We say that a description language L, closed w.r.t. T , is T -compare-polynomial if the distance between (the canonical sequences of) two signatures can becomputed in time polynomial in the length of the signatures, that is, for all wx, wy inL, D(~x; ~y) can be computed in time polynomial in the lengths of wx and wy.



Note that, in the presence of transformations, the distance between two sequencesmay be hard to compute, even in the case of fully expanded sequences. For carefullychosen transformation languages, this computation can be done in polynomial time.Consequently, achieving polynomial time computation of the distance between twosignatures is a good objective. We present such a case below. We need the followingauxiliary de�nitions.It is often the case that a signature wx of a sequence ~x is a list of numbersw1w2 : : : w�. For example, a signature extraction algorithm would be to replace every10 samples of ~x with their average: w1 = avg(x1; x2; : : : ; x10), w2 = avg(x11; : : : ; x20)etc. The value of each wi in this example depends only on 10 contiguous symbolsof ~x. In general, if every symbol wi of the signature depends exclusively on a smallsubsequence of ~x, then the description language L is called modular. The formalde�nition is as follows:De�nition 3.6 A description L is said to be modular if there is a function hL suchthat for every sequence ~x and every signature wx of ~x, there exist subsequences ~xi of~x, with ~x = ~x1 : : : ~xm, such that for each symbol wxi of wx, hL(~xi) = wxi. We de�nethe module bound � to be the length of the longest such substring of ~x.De�nition 3.7 A transformation language T is said to be local if for any two se-quences ~s and ~s0 that agree on the i-th symbol, T (~s) and T (~s0) also agree on the i-thsymbol. That is, the value of T (~s)i only depends on the value of ~si. Furthermore, thecost cost(T ) is the sum of the costs of all transformations Ti that transform the i-thsymbol of their input as T does and leave the rest of the input unchanged.We are now ready to present the theorem. The proof (omitted) relies on the abilityto compute the distance between pairs of (transformed) subsequences represented inthe modular description language in time independent of sequence length, and thenuses dynamic programming to deal with overlaps of subsequences and constraints ontransformations.Theorem 3.2 If T is a local transformation language, and L is a modular descriptionlanguage closed w.r.t. T , then L is T -compare polynomial.A special case of particular interest is when the transformation language speci�ed isempty. In this case, we use the name simple-compare-linear/polynomial/exponential,etc. For example, a Fourier series description of a sequence, with an inverse Fouriertransform as the signature inverting function, is simple-compare-linear for the Eu-clidean (L2) distance measure (because \energy" is preserved in the transform do-main), but is not simple-compare-polynomial for other distance measures. A piece-wise linear description of a sequence, with a zero order or �rst order interpolationas the inverse, is simple-compare-linear for all Lp distance measures. In fact we canshow the following:Theorem 3.3 Every modular description language is simple-compare-linear.



3.3 Finding the BoundsOn the basis of the previous section, the basic question to ask now is how do we�nd the bound K. (Recall that we foccus in this extended abstract on the case were� = 0). We show in this section that for selected classes of transformations anddescription languages, such bound K can indeed be found.It is often the case that a transform T cannot amplify an existing di�erence toomuch. For example, it may be the case that, if two sequences ~x and ~y di�er by �, anytransform T 2 T might amplify this di�erence by a predictable amount. Formally,for a given transformation language T , let f() be a function such that ifD0(~x; ~y) = � (9)then D0(T (~x); T (~y)) � f(�) 8 T 2 T (10)It is easy to see the following.Theorem 3.4 Let f() be a function such that for every two sequences ~x; ~y and ev-ery transformation T 2 T , D0(T (~x); T (~y)) � f(D0(~x; ~y)). Then the transformedsignature error bound is K = f(�) (11)In particular, if f() is the identity function, that is, the base distance is invariantunder the same transformation, then K = �. This is the case for all add (to y axis)transformations and Lp distance measures. On the other hand, for a uniform scalingtransformation, f() is clearly the scaling factor.4 A Comprehensive ExampleTo place all the concepts of the preceding sections in perspective, we work through anexample in this section. We consider a transformation language that allows \RegionalAdds". In other words, we permit the sequence level to shift abruptly. There is a costCostOfTransform associated with each such shift in level. Such distance functionswith regional adds have been used in the past [27]; other distance functions go evenfurther, including time-shifts, scaling etc. [2]. Note that no straightforward basedistance functions can accommodate such changes. Therefore most of the currentlypublished retrieval techniques cannot be used e�ectively.Such \regional adds" often occur in sequences as a result of sudden changes inenvironment or other catastrophes. One is often interested in �nding sequences thatare similar, modulo a few such level shifts. For example, consider companies X andY , whose stocks move similarly because the companies belong to the same marketsegment. Suppose that something unexpected happens to company X only (e.g., itwins a major contract) - this unexpected change boosts the stock price by, say, �.Thus, if we could factor-out this \catastrophe", the two stock prices would look verysimilar. Based on this example, we show how our approach works.



4.1 Problem de�nition - our inputSuppose that a domain expert, trying to take these \catastrophe" events into account,furnishes us with the following distance functionD(): For two sequences ~x and ~y, their(squared) distance is the sum of squared errors plus the cost of \catastrophes", afterthe optimal number of \catastrophes" has been placed at the optimal points, withcost �2 for each \catastrophe" of magnitude �.This is the only input to us { it is up to us to decide how to bring this problem withinour framework, which description language L to choose, how to obtain signatures, andwhich signature-to-sequence function seq() to choose. However, if we manage to doall that, we will have (a) a potentially fast access method (\shrink-and-search") and(b) the guarantee that our method will not have false dismissals.4.2 Customization of our frameworkTransformation language To match the given function, we only need the \re-gional add" R transformation:Such a transformation R < p1; p2;� > (~x), gives < x1; x2; :::; xp1 + �; xp1+1 +�; :::; xp2�1+�; xp2; xp2+1::: >.Thus, our set of atomic transformations is T0 = fR < i; j;� > j1 � i � j � n;� 2<g.According to the speci�cation of the problem, the cost is cost(R < p1; p2;� >) =(�)2Formalization of the Distance function The distance function D() can be de-�ned recursively as follows:D2(~x; ~y) = minpe�1;�2< CostOfTransform + peXi=1(xi +�� yi)2 + D2(xpe+1:n; ype+1:n)!(12)Description language We choose as the description language L the list of pairs(value, duration) or (v, d), for short. Thus, a valid word w in this language would bew = f(3:5; 2); (5:25; 4)g.As the seq(w) function, that operates on a word w and generates the canonicalrepresentation, we select piece-wise constant interpolation. Thus, for each pair (v, d)of the word w, seq() will \stutter" d times the value v. For example, the canonicalrepresentation of the previous example word would beseq(w) = seq(f(3:5; 2); (5:25; 4)g)= f3:5; 3:5; 5:25; 5:25; 5:25; 5:25gTransformations Over Signatures Before we can compute distances betweensignatures, we have to agree upon what the equivalent of our transformation is in thesignature domain. If we choose to have steps permitted to take place at any arbitrary



position, including points in the middle of substrings represented by single symbols inthe signature, then the resulting transformed sequence will have a di�erent numberof piecewise constant regions, and will not be a canonical sequence of the �-signaturelanguage selected as our description language L.Instead, we require steps to be added only at substring boundaries. With thisrestriction to the transformation language, our description language is closed w.r.t.the transformation language.Bounding Error and Match E�ort It is not hard to show [7] that the correspon-dence error � introduced here is 0. (Omitted here for lack of space) Our frameworkalso satis�es the requirements of Thm 3.4. Therefore the transformed signature errorbound, K, is simply �.Since � is zero, and K is �, performing the match with signatures is no worse thanperforming the match with the canonical sequences represented by the signatures.The description language we have here is modular, the transformation language islocal, and the description language is closed with respect to the (restricted) transfor-mation language. Therefore, all conditions of Thm 3.2 are satis�ed. Thus we knowthat we can match in the signature domain, in time that is polynomial in signaturelength.4.3 The Steps To FollowSignature Extraction We choose to work with �xed-length signatures of length�, that is �-signatures. With the above choices of L and seq(), the problem of �ndingthe �-signature of a sequence ~x is the classic problem of piece-wise constant sequenceapproximation, constrained on the number of segments �, where the cost functionis the sum of squared errors. The solution is based on Dynamic Programming; thedetails are omitted for brevity.We can show that the running time of the algorithm is O(n2 � �).Comparing Full Sequences A dynamic programming algorithm suggests itself,and indeed one has been proposed for a variant of this problem in [27]. Eq. 12 isalready in a recursive form - the dynamic programming works as follows:There is one \stage" in the algorithm for each discrete sample point. At eachstage, a step has to be taken, and its duration pe has to be selected. No additionalsteps are permitted until the end of this duration. The magnitude of the step canthen be obtained by solving a very simple optimization: for our setting (the Euclideandistance and the cost of a step being �2), we have to maximize a quadratic polynomialon �. Further transitions then compute the distance between sequences, taking intoaccount the chosen step.Thus, there are n stages in a dynamic programming algorithm to compute thedistance between two sequences of length n. At each stage, there are O(n) possiblestates. Computing the cost of transition (based on optimization performed for stepsize) is O(1), by careful book-keeping: we can keep the partial sum Ppe�1i=1 from the



previous step, and update it in constant time. Multiplying these, this algorithm hascomplexity O(n2).Computing Distance Between Signatures For this speci�c case, one can workthrough the details of the dynamic programming formulation to show that the timerequired is actually O(�22), where �2 is the sum of the lengths of the query and datasignatures.5 Experimental Veri�cationWe implemented our searching method on a database of stock price movements, fromftp://ftp.ai.mit.edu /pub/stocks/results. We used 7 stocks; for each stock, wetook its �rst n days (n=150-300), and considered the closing prices only. As querieswe used the very same stocks.We used �-signatures. and implemented the searching algorithms in nawk. Wealways 'diff'ed the output of the two methods, to verify that there were no falsedismissals.Our �rst set of experiments was to try to �nd a good value for �. Figure 2(a)shows the results: It gives the logarithm of the response time of our method, as afunction of the � parameter, for several values of the tolerance �, for n=150 days-longstocks. We varied � from 10-50. For a careful choice of �, the proposed methodachieves 50% savings in response time. These savings increase with the length n ofthe sequences. Notice that (a) the higher the tolerance, the less useful the signatures,as expected and (b) for small tolerances, the optimal value of � is approximately 30.We conjecture that the optimal value of � will be related to the square-root of thelength n. We also plot the response time of the 'naive' method, which was around 370seconds. The speci�c plot corresponds to �=4. As expected, it is roughly constant,the � and the tolerance � have no e�ect on its strategy.Figure 2(b) examines how the speedup will scale for longer sequences. It gives thefraction of response times (our method over the naive) as a function of the sequencelength n. We have chosen the tolerance to be �=0 and � to be 30, 40 and 50,respectively, for n=150, 212 and 300. Notice that the gains of our method increasedrastically with the sequence length.6 Another ExampleConsider uniform scaling as the similarity transform of interest. That is T = fTaja 2<g where Ta(~x) = a~x. That is, a constant scale factor a can be used to multiply allobservations in one sequence to better make it match the other. Simple calculus willshow the desired scale factor a to be Pi xiyi=Pi x2i . The cost cost(Ta) is determinedby the application: it could be zero, or a2, or j log jajj.Consider a description language L, obtained as the Fourier coe�cients of the origi-nal sequence. A short signature is obtained by discarding the higher frequency coe�-
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(a) (b)Figure 2: (a) sum of response times in seconds, versus �, for tolerance�=0,1,2,4,8,16,32 (b) ratio of response time (ours over naive) vs sequence length ncients and retaining only the �rst few. The canonical representation of the signatureis obtained by applying the inverse Fourier transform to the coe�cients retained,assuming that the remaining coe�cients are all zero. Obtaining the signature of asequence is easy { standard Fourier transform techniques are used.The error in the signature is the sum of squares of the truncated coe�cients. Thiserror can be bounded by retaining enough coe�cients.The equivalent transformation in the signature domain is also multiplication by thesame scaling factor as in the original sequence domain. The optimum scaling factorcan be computed in the signature domain using the same calculus formulation as inthe original domain. The error is bounded by the product of the error before scalingand the scaling coe�cient. Therefore K = scaling � �. Since the transformationsin the signature domain are identical to those in the full sequence domain, we knowthat the correspondence error is identically zero.This is not a modular description language, yet signature matching is possible inpolynomial time, through a parametric optimization.7 Related Work7.1 Approximate MatchingApproximate matching for numerical time sequences ('signals') include the work onvoice matching (see [20] for a textbook), where time-warping is considered. When thedistance is the Euclidean metric, we have proposed an indexing method using the �rstfew Discrete Fourier Transform (DFT) coe�cients, for matching full sequences [1], aswell as for sub-pattern matching [6]. This technique has been extended by Goldin andKanellakis [11] for matching time sequences, so that it allows for shifts and scalings.



Approximate matching of signals in general are discussed in [30], [28], with a recentsurvey in [4]. There, the idea is to allow some elastic deformations (ie., space warp-ings), before matching the two signals. Signals can be, eg., 2-d gray-scale images, or3-d MRI brain scans.Closely related is the work on string matching. An excellent starting point is thebook by Sanko� and Kruskal [25], which examines strings, signals and DNAmolecules,along with popular distance functions. The survey by Hall and Dowling [14] examinesmatching of typed English strings, along with the basic, dynamic programming algo-rithm, that computes the editing distance. The book by Frakes and Baeza-Yates [9]examines Information Retrieval applications, including approximate matching there.7.2 Distance MetricsWe list some popular distance functions. They are all encompassed within our frame-work, and they use zero or more of the following transformations. The transforma-tions accept a sequence ~s as input and return another sequence. They also take someparameters, within angle-brackets (<>)� drop < p > (~s): drops ~s[p] and shifts the elements left, to close the gap.� stutter < p > (~s): repeats ~s[p] once, and shifts the elements to the right.Lp Metrics and Euclidean distance: For two sequences x = x1 : : : xn, y =y1; : : : yn this distance is de�ned by the formulaDp(x; y) = Xi=1:::n jx[i]� y[i]jp (13)For p = 1 the Lp metric reduces to the `Manhattan' or `city-block' distance; forp = 2 it becomes the popular Euclidean distance.Editing distance in strings: This is the minimumnumber of insertions, deletionsand substitutions that are needed to transform a string s into another string t [25, 18].D(s; t) = min8><>: cost(Del(t[1])) +D(s;Rest(t))cost(Del(s[1])) +D(Rest(s); t)cost(Sub(s[1]; t[1])) +D(Rest(s); Rest(t)) (14)where Del(t[1]) (Del(s[1])) stands for deleting the �rst character of t (s), and(Sub(s[1]; t[1])) for substituting the �rst character of s by the �rst character of t,cost is the cost of the deletion/substitution, and Rest(t) (Rest(s)) is the string t (s)without its �rst character.As shown in Table 1, our framework includes the string editing distance, by choos-ing: T0 to have only one transformation, the drop < p > transformation, with cost=1and by setting D0() to be the Hamming distance.The distance can be computed in time O(NxNy), where Nx, Ny are the number ofsamples in each string [14], [18].



operator Euclidean string-edit time-warpingdrop < p > 1 1 1stutter < p > 1 1 0D0 Euclidean Hamming city-blockTable 1: Cost of operators of our framework, for popular distance functionsDistance functions with time-warping: Such functions are used for example indigitized voice signals, where there are uctuations in the rate of speech.A typical distance function is [20]:D(x; y) = D0(Head(x);Head(y)) + min8><>: D(x;Rest(y)) = � x� stutter � =D(Rest(x); y) = � y � stutter � =D(Rest(x); Rest(y)) = � no stutter � =(15)where Head(x) returns the �rst element of x, and Rest(x) returns the remainder.Table 1 shows that the above distance is a special case of our framework, by setting(a) the `basic' transformation language T0 to consist of only the stutter transforma-tion, with cost = 0 and (b) the D0() distance function to be the L1 metric, that is,the city-block distance.Figure 3 shows two time sequences, before and after the time-warping. The se-quences are mixtures of similar harmonics: x(t) = 10 sin(0:5t) + 5sin(:25t) andy(t) = 11 sin(:55t) + 4:5 sin(:26t) respectively.
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"input.spectra_warped"(a) before (b) afterFigure 3: Illustration of two similar sequences, before and after time-warping7.3 Alternative Signature languagesIn our main example, we used sub-sampling with piece-wise constant interpolation todepict a sequence. Additional signature languages include any piece-wise polynomialfunctions (see Sidiropoulos [27] for a survey of optimal algorithms to achieve suchapproximations), as well as techniques from Digital Signal Processing (DSP) [19], for



optimal function approximation. The most popular techniques from there includethe Discrete Fourier Transform (DFT), the Discrete Cosine Transform (DCT) (whichis the basis of the JPEG image compression standard [29]), and, recently, the verypromising Discrete Wavelet Transform (DWT) [23, 24].The DWT is, in principle, a 'short window' Fourier transform; the major di�erenceis that the length of the window takes several values (typically, powers of 2). Thus,it leads to multi-resolution analysis, which seems to be promising for real signals.Natural signals seem to require few wavelet coe�cients to be described with smallerror [8]; this is exactly the reason that a wavelet decomposition is useful for com-pression, feature extraction and searching. Figure 4 shows some of the basis functionsfor the very well-known Daubechies-4 DWT. The basis functions are translations ordilations of each other: Eg., #5 is a dilation of #9, which is a dilaton of #17 etc.
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"dwbasis.17"Figure 4: DWT basis functions (1, 5, 9, 17)8 ConclusionIn this paper we described a generic signature-based technique that can be usede�ectively for retrieval based on many di�erent, application-speci�c, notions of simi-larity. For a variety of general conditions, we obtained measures of goodness for ourtechnique. We illustrated our technique with a couple of very di�erent examples.While the work in this paper focused on sequence data, we believe that the basicframework developed here is equally applicable to other contexts such as image, video,or text data.References[1] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. E�cient similaritysearch in sequence databases. In Fourth Int. Conf. on Foundations of DataOrganization and Algorithms (FODO), pages 69{84, Evanston, Illinois, Octo-ber 1993. also available through anonymous ftp, from olympos.cs.umd.edu:ftp/pub/TechReports/fodo.ps.
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