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        An Intense and Memorable Collaboration!

   With substantial and unique  contributions from all four authors:

 Quarterback and cheerleader

Expert  in “elementary” theory
 

                                  Expert in “advanced” theory

    The closer:  pulled together the        
elementary and advanced views  into a coherent whole
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Overview

• Not a review, but instead some recent (unpublished work) on inference in the
lasso.

• Although this is “yet another talk on the lasso”, it may have something to
offer mainstream statistical practice.
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The Lasso

Observe n predictor-response pairs (xi , yi ), where xi ∈ Rp and yi ∈ R. Forming
X ∈ Rn×p, with standardized columns, the Lasso is an estimator defined by the
following optimization problem (??):

minimize
β0∈R, β∈Rp

1

2
‖y − β01− Xβ‖2 + λ‖β‖1

• Penalty =⇒ sparsity (feature selection)

• Convex problem (good for computation and theory)
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The Lasso
Why does `1-penalty give sparse β̂λ?

minimize
β∈Rp

1

2
‖y − Xβ‖2 subject to ‖β‖1 ≤ s

+β̂OLS

●

β̂λ β1

β2
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Prostate cancer example
N = 88, p = 8. Predicting log-PSA, in men after prostate cancer surgery
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Emerging themes

• Lasso (`1) penalties have powerful statistical and computational advantages

• `1 penalties provide a natural to encourage/enforce sparsity and simplicity in
the solution.

• “Bet on sparsity principle” (In the Elements of Statistical learning). Assume
that the underlying truth is sparse and use an `1 penalty to try to recover it.
If you’re right, you will do well. If you’re wrong— the underlying truth is not
sparse—, then no method can do well. [Bickel, Buhlmann, Candes, Donoho,
Johnstone,Yu ...]

• `1 penalties are convex and the assumed sparsity can lead to significant
computational advantages
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Old SSC logo
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New SSC logo? (Thanks to Jacob Bien)
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Setup and basic question

• Given an outcome vector y ∈ Rn and a predictor matrix X ∈ Rn×p, we
consider the usual linear regression setup:

y = Xβ∗ + σε, (1)

where β∗ ∈ Rp are unknown coefficients to be estimated, and the
components of the noise vector ε ∈ Rn are i.i.d. N(0, 1).

• Given fitted lasso model at some λ can we produce a p-value for each
predictor in the model? Difficult! (but we have some ideas for this- future
work)

• What we show today: how to provide a p-value for each variable as it is
added to lasso model
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Forward stepwise regression

• This procedure enters predictors one a time, choosing the predictor that most
decreases the residual sum of squares at each stage.

• Defining RSS to be the residual sum of squares for the model containing k
predictors, and RSSnull the residual sum of squares before the kth predictor
was added, we can form the usual statistic

Rk = (RSSnull − RSS)/σ2 (2)

(with σ assumed known for now), and compare it to a χ2
1 distribution.
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Simulated example- Forward stepwise- F statistic
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N = 100, p = 10, true model null

Test is too liberal: for nominal size 5%, actual type I error is 39%.
Can get proper p-values by sample splitting: but messy, loss of power
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Degrees of Freedom

Degrees of Freedom used by a procedure, ŷ = h(y):

dfh =
1

σ2

n∑
i=1

cov(ŷi , yi )

where y ∼ N(µ, σ2In) [?].

Measures total self-influence of yi ’s on their predictions.

Stein’s formula can be used to evaluate df [?].

For fixed (non-adaptive) linear model fit on k predictors, df = k.

But for forward stepwise regression, df after adding k predictors is > k.
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Degrees of Freedom – Lasso

• Remarkable result for the Lasso:

dflasso = E [#nonzero coefficients]

• For least angle regression, df is exactly k after k steps (under conditions).
So LARS spends one degree of freedom per step!

• Result has been generalized in multiple ways in (Ryan Tibs & Taylor) ?, e.g.
for general X , p, n.
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Question that motivated today’s work

Is there a statistic for testing in lasso/LARS having one
degree of freedom?
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Quick review of least angle regression

Least angle regression is a method for constructing the path of lasso solutions.

A more democratic version of forward stepwise regression.

• find the predictor most correlated with the outcome,

• move the parameter vector in the least squares direction until some other
predictor has as much correlation with the current residual.

• this new predictor is added to the active set, and the procedure is repeated.

• If a non-zero coefficient hits zero, that predictor is dropped from the active
set, and the process is restarted. [This is “lasso” mode, which is what we
consider here.]
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Least angle regression
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The covariance test statistic
Suppose that we want a p-value for predictor 2, entering at the 3rd step.
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Compute covariance at λ4: 〈y,Xβ̂(λ4)〉
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Drop x2, yielding active yet A; refit at λ4, and compute resulting covariance at λ4,
giving

T =
(
〈y,Xβ̂(λ4)〉 − 〈y,XAβ̂A(λ4)〉

)
/σ2
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The covariance test statistic: formal definition

• Suppose that we wish to test significance of predictor that enters LARS at λj .

• Let A be the active set before this predictor added

• Let the estimates at the end of this step be β̂(λj+1)

• We refit the lasso, keeping λ = λj+1 but using just the variables in A. This

yields estimates β̂A(λj+1). The proposed covariance test statistic is defined
by

Tj =
1

σ2
·
(
〈y,Xβ̂(λj+1)〉 − 〈y,XAβ̂A(λj+1)〉

)
. (3)

• measures how much of the covariance between the outcome and the fitted
model can be attributed to the predictor which has just entered the model.
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Main result

Under the null hypothesis that all signal variables are in the model:

Tj =
1

σ2
·
(
〈y,Xβ̂(λj+1)〉 − 〈y,XAβ̂A(λj+1)〉

)
→ Exp(1)

as p, n→∞.

More details to come
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Comments on the covariance test

Tj =
1

σ2
·
(
〈y,Xβ̂(λj+1)〉 − 〈y,XAβ̂A(λj+1)〉

)
. (4)

• Generalization of standard χ2 or F test, designed for fixed linear regression,
to adaptive regression setting.

• Exp(1) is the same as χ2
2/2; its mean is 1, like χ2

1: overfitting due to adaptive
selection is offset by shrinkage of coefficients

• Form of the statistic is very specific- uses covariance rather than residual sum
of squares (they are equivalent for projections)

• Covariance must be evaluated at specific knot λj+1

• Applies when p > n or p ≤ n: although asymptotic in p, Exp(1) seem to be a
very good approximation even for small p
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Simulated example- Lasso- Covariance statistic
N = 100, p = 10, true model null
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Example: Prostate cancer data

Stepwise Lasso

lcavol 0.000 0.000
lweight 0.000 0.052

svi 0.041 0.174
lbph 0.045 0.929

pgg45 0.226 0.353
age 0.191 0.650
lcp 0.065 0.051

gleason 0.883 0.978
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Simplifications

• For any design, the first covariance test T1 can be shown to equal
λ1(λ1 − λ2).

• For orthonormal design, Tj = λj(λj − λj+1) for all j ; for general designs,
Tj = cjλj(λj − λj+1)

• For orthonormal design, λj = |β̂(j)|, the jth largest univariate coefficient in
absolute value. Hence

Tj = (|β̂(j)|(|β̂(j)| − |β̂(j+1)|). (5)
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Rough summary of theoretical results

Under somewhat general conditions, after all signal variables are in the model,
distribution of T for kth null predictor → Exp(1/k)
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Theory for orthogonal case

Global null case: first predictor to enter

Recall that in this setting,

Tj = λj(λj − λj+1)

and λj = |β̂(j)|, β̂j ∼ N(0, 1)

So the question is:

Suppose V1 > V2 . . . > Vn are the order statistics from a χ1 distribution (absolute
value of a standard Gaussian).

What is the asymptotic distribution of V1(V1 − V2)?

[Ask Richard Lockhart!]
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Theory for orthogonal case
Global null case: first predictor to enter

Lemma

Lemma 1: Top two order statistics: Suppose V1 > V2 . . . > Vp are the order
statistics from a χ1 distribution (absolute value of a standard Gaussian) with
cumulative distribution function F (x) = (2Φ(x)− 1)1(x > 0), where Φ(x) is
standard normal cumulative distribution function. Then

V1(V1 − V2)→ Exp(1). (6)

Lemma

Lemma 2: All predictors. Under the same conditions as Lemma 1,

(V1(V1 − V2), . . . ,Vk(Vk − Vk+1))→ (Exp(1),Exp(1/2), . . .Exp(1/k))

Proof uses a uses theorem from ?. We were unable to find these remarkably
simple results in the literature.
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Heuristically, the Exp(1) limiting distribution for T1 can be seen as follows:

• The spacings |β̂(1)| − |β̂(2)| have an exponential distribution asymptotically,

while |β̂(1)| has an extreme value distribution with relatively small variance.

• It turns out that |β̂(1)| is just the right (stochastic) scale factor to give the
spacings an Exp(1) distribution.
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Simulations of null distribution

TABLES OF SIMULATION RESULTS ARE BORING !!!!

SHOW SOME MOVIES INSTEAD

Robert Tibshirani, Stanford University A significance test for the lasso



39

Proof sketch

We use a theorem from ? on the asymptotic distributions of extreme order
statistics.

1 Let E1,E2 be independent standard exponentials. There are constants an and
bn such that

W1n ≡ bn(V1 − an) −→W1 = log(E1)

2 For those same constants put W2n = bn(X2 − an). Then

(W1n,W2n) −→ (W1,W2) = (− log(E1),− log(E1 + E2))

3 The quantity of interest T is a function of W1n,W2n. A change of variables
shows that T −→ log(E2 + E1)− log(E1) = log(1 + E2/E1), which is Exp(1).
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General X results

Under appropriate condition on X, as p,N →∞,

1 Global null case: T1 = λ1(λ1 − λ2)→ Exp(1).

2 Non-null case: After the k strong signal variables have entered, under the
null hypothesis that the rest are weak,

Tk+1

n,p→∞
≤ Exp(1)

Jon Taylor: “Something magical happens in the math”
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Sketch of proof: k = 1

• Assume that y ∼ N(Xβ0, σ
2I ), and, for simplicity diag(XTX ) = 1. Let

Uj = XT
j y , R = XTX ,

• We are interested in T1 = λ1(λ1 − λ2)/σ2. Can show that
λ1 = ‖XT y‖∞ = maxj,sj sjX

T
j y and

λ2 = max
j 6=j1, s∈{−1,1}

sUj − sRj,j1 Uj1

1− ss1Rj,j1

. (7)

• Define
g(j , s) = sUj for j = 1, . . . p, s ∈ {−1, 1}. (8)

h(j1,s1)(j , s) =
g(j , s)− ss1Rj,j1 g(j1, s1)

1− ss1Rj,j1

for j 6= j1, s ∈ {−1, 1}. (9)

M(j1, s1) = max
j 6=j1, s

h(j1,s1)(j , s), (10)

Robert Tibshirani, Stanford University A significance test for the lasso



43

Sketch of proof— continued

• Key fact:{
g(j1, s1) > g(j , s) for all j , s

}
=
{

g(j1, s1) > M(j1, s1)
}
,

and M(j1, s1) is independent of g(j1, s1). Motivated from expected Euler
characteristic for a Gaussian random field [Adler, Taylor, Worsley]

• Use this to write

P(T1 > t) =
∑
j1,s1

P
(

g(j1, s1)
(
g(j1, s1)−M(j1, s1)

)
/σ2 > t, g(j1, s1) > M(j1, s1)

)
.

Condition on M, assume M →∞, and use Mill’s ratio applied to tail of
Gaussian to get the result.
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Conditions on X

• The main condition is that for each (j , sj) the random variable Mj,s(g) grows
sufficiently fast.

• A sufficient condition: for any j , we require the existence of a subset S not
containing j such that the variables Ui , i ∈ S are not too correlated, in the
sense that the conditional variance of any one on all the others is bounded
below. This subset S has to be of size at least log p.
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HIV mutation data
N = 1057 samples
p = 217 mutation sites (xij=0 or 1)
y = a measure of drug resistance
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The data were randomly divided 50 times into training and test sets of size (150,907).

Top row shows the training set p-values for forward stage regression and the lasso. The

bottom panels show the test set error for the models of each size.
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Case of Unknown σ

Let
Wk =

(
〈y ,X β̂(λk+1)〉 − 〈y ,XAβ̂A(λk+1)〉

)
. (11)

and assuming n > p, let σ̂2 =
∑n

i=1(yi − µ̂full)
2/(n − p). Then asymptotically

Fk =
Wk

σ̂2
∼ F2,n−p (12)

[Wj/σ
2 is asymptotically Exp(1) which is the same as χ2

2/2, (n − p) · σ̂2/σ2 is
asymptotically χ2

n−p and the two are independent.]

When p > n, σ2 miust be estimated with more care.
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Extensions

• Elastic Net: Tj is simply scaled by (1 + λ2), where λ2 multiplies the `2

penalty.

• Generalized likelihood models:

Tj = [S0I
−1/2
0 Xβ̂(λj+1)− S0

T I
−1/2
0 XAβ̂A(λj+1)]/2

where S0, I0 are null score and information matrices, respectively. Works e.g.
for generalized linear models and Cox model.

Robert Tibshirani, Stanford University A significance test for the lasso



51

Talk Outline

1 Review of lasso, LARS, forward stepwise

2 The covariance test statistic

3 Null distribution of the covariance statistic

4 Theory for orthogonal case

5 Simulations of null distribution

6 General X results

7 Example

8 Case of Unknown σ

9 Extensions to elastic net, generalized linear models, Cox model

10 Discussion and Future work

Robert Tibshirani, Stanford University A significance test for the lasso



52

Future work

• Generic (non-sequential) lasso testing problem: given a lasso fit at a knot
λ = λk , what is the p-value for dropping any predictor from model? We
think we know how to do this, but the details are yet to be worked out

• model selection and FDR using the p-values proposed here

• More general framework! For essentially any regularized loss+penalty
problem, can derive a p-value for each event along the path. [Group lasso,
Clustering, PCA, graphical models ...]

• Software: R library

covTest(larsobj,x,y),

where larsobj is fit from LARS or glmpath [logistic or Cox model (Park and
Hastie)]. Produces p-values for predictors as they are entered.
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Stepping back: food for thought

• Does this work suggest something fundamental about lasso/LARS, and the
knots λ1, λ2, . . .?

• perhaps LARS/lasso is more “correct” than forward stepwise?

In forward stepwise, a predictor needs to win just one “correlation contest” to
enter the model, and then its coefficient is unconstrained; − > overfitting

In LARS, a predictor needs to win a continuous series of correlation contests,
at every step, to increase its coefficient.

The covariance test suggests that LARS is taking exactly the right-sized step.
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