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A SIGNIFICANCE TEST FOR TIME SERIES ANALYSIS* 

BY W. ALLEN WALLIS AND GEOFFREY H. MooRE 
Stanford University and Rutgers University 

National Bureau of Economic Research N O KNOWN SIGNIFICANCE TEST is entirely appropriate to economic 
time series. One shortcoming of tests in common use is that they 

ignore sequential or temporal characteristics; that is, they take no ac- 
count of order. The standard error of estimate, for example, implicitly 
throws all residuals into a single frequency distribution from which to 
estimate a variance. Furthermore, the usual tests cannot be applied 
when series are analyzed by moving averages, free-hand curves, or 
similar devices frequently resorted to in economics for want of more 
adequate tools. This paper presents a test of an opposite kind, one de- 
pending solely on order. Its principal advantages are speed and 
simplicity, absence of assumptions about the form of population, and 
freedom from dependence upon "mathematically efficient" methods, 
such as least squares. This test is based on sequences in direction of 
movement, that is, upon sequences of like sign in the differences be- 
tween successive observations (or some derived quantities, e.g., resid- 
uals from a fitted curve). In essence, it tests the randomness of the 
distribution of these sequences by length. 

Each point at which the series under analysis (either the original 
or a derived series) ceases to decline and starts to rise, or ceases to 
rise and starts to decline, is called a turning point. A turning point is a 
"peak" if it is a (relative) maximum or a "trough" if a (relative) mini- 
mum. The interval between consecutive turning points is called a 
"phase." A phase is an "expansion" or a "contraction" according to 
whether it starts from a trough and ends at a peak, or starts from a peak 
and ends at a trough. For the purposes of the present test, the in- 
complete phase preceding the first turning point and that following the 
last turning point are ignored. The length or duration of a phase is the 
number of intervals (hereafter referred to as "years," though they may 
represent any system of denoting sequence) between its initial and 
terminal turning points. Thus, a series of N observations may contain 
as few as zero or as many as N- 2 turning points; and a phase may be as 
short as one year (when two consecutive observations are turning 

* Presented (in slightly different wording) before the Nineteenth Annual Conference of the Pacific 
Coast Economic Association, Stanford University, December 28, 1940, and based on research carried 
out at the National Bureau of Economic Research, 1939-40, under Research Associateships provided 
by the Carnegie Corporation of New York. A fuller account of the method and its uses will be published 
soon by the National Bureau of Economic Research as the first of its new series of Technical Papers. 
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402 AMERICAN STATISTICAL ASSOCIATION 

points) or as long as N -3 years (when only the second and penultimate 
observations are turning points). 

The greater the number of consecutive rises in a series drawn at 
random from a stable population, the less is the probability of an ad- 
ditional rise; for the higher any observation may be the smaller is the 
chance of drawing one which exceeds it. To calculate the expected fre- 
quency distribution of phase durations, only one weak assumption need 
be made about the population from which the observations come, 
namely that the probability of two consecutive observations being 
identical is infinitesimal-a condition met by all continuous popula- 
tions, hence by virtually all metric data. 

Without further postulates about the form of the population, it is 
possible to conceive a mathematical transformation of it leading to a 
known population, but leaving unaltered the pattern of rises and falls 
of the original observations. For example, if each observation is re- 
placed by its rank according to magnitude within the entire series, the 
ranks have exactly the same pattern of expansions and contractions as 
the original observations; and their distribution is simple and definite, 
each integer from 1 to N having a relative frequency of 1/N. The dis- 
tribution of phase durations expected among random arrangements of 
the digits 1 to N is, therefore, comparable with the distribution 
observed in any set of data. A little mathematical manipulation reveals 
that in random arrangements of N different items the expected number 

2(d2+3d+1)(N-d-2) 
of completed phases of d iS- (d+3)! . The expected 

mean duration of a phase 'is 2N 
- 

7 - 
6 

essentially 1 2. 

To test the randomness of a series with respect to phase durations, 
the first step is to list in order the signs of the differences between 
successive items. Thus the sequence 0, 2, 1, 5, 7, 9, 8, 7, 9, 8 becomes 
+,-, +, +, +, -, -, +, -. The signs are, of course, one fewer than 
the observations. The second step is to make a frequency distribution 
of the lengths of runs in the signs. There are four completed runs in the 
example just given (the first and last being ignored as incomplete), of 
lengths, 1, 3, 2, and 1. The frequency distribution thus shows two 
phases of one year, one of two years, and one of three years. In case 
consecutive items are equal but it can be assumed that sufficiently 
refined measurement would reveal at least a slight difference (an as- 
sumption valid whenever the test is applicable), the phase lengths are 
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* A SIGNIFICANCE TEST FOR TIME SERIES ANALYSIS 403 

tabulated separately for each possible sequence of signs of differences 
between tied items; and the resultant distributions are averaged, each 
being weighted by the probability of securing that distribution if each 
difference observed as zero is equally likely to be positive or negative. 
Third, the expected frequency for each length of phase is calculated 
from the formula above, taking as N the number of items in the se- 
quence being tested-in this case, 10. Next, the observed and expected 
frequency distributions are compared by computing chi-square in the 
usual way for testing goodness-of-fit: that is, by squaring the differ- 
ences between actual frequencies and corresponding theoretical fre- 
quencies, dividing these squares by the respective theoretical fre- 
quencies, and summing the resultant ratios. In nearly all applications 
of the present test, avoidance of expected frequencies that are too small 
necessitates restricting the distribution of phase durations to three 
frequency classes, namely one year's duration, two years' duration, and 
over two years' duration, the theoretical frequencies for these classes 
being 5(N-3)/12, ll(N-4)760, and (4N-21)/60, respectively. 

The sum of the three ratios of squared deviations to expectations is, 
then, similar to chi-square for two degrees of freedom, one degree of 
freedom being lost because a single linear constraint is imposed on the 
theoretical frequencies by taking the value of N from the observations. 
It is advisable, however, to distinguish chi-square for phase duratiolns 
by a subscript p (denoting phase), because it does not quite conform to 
the Pearsonian distribution function ordinarily associated with the 
symbol X2. The phase lengths in a single series are not entirely inde- 
pendent of one another; as a result, very large and very small values of 
xp2 are a little more likely than is shown by the x2 distribution, and the 
mean and variance of Xp2 generally exceed those of X2. We have not 
determined the sampling distribution of Xp2 mathematically, but have 
secured empirically a substitute that appears satisfactory. In the first 
place, a recursion formula enabled us to calculate the exact distribution 
of xp2 for small values of N. Table I gives the exact probability of ob- 
taining a value as large as or larger than each possible value of xp2 for 
values of N from 6 to 12, inclusive. As a second step toward determining 
the sampling distribution, an empirical distribution of xp2 was secured 
from 700 random series, 200 for N = 25, 300 for N = 50, and 200 for 
N = 75. The three distributions for separate values of N were not homo- 
geneous with one another nor with the exact distribution for N=12; 
but the differences among them were unimportant for the present 
purposes, occurring chiefly at the higher probabilities rather than at the 
tail (the important region for a test of significance), and representing 
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404 AMERICAN STATISTICAL ASSOCIATION- 

TABLE I 

DISTRIBUTIONS OF xP2: EXACT FOR N=6 TO 12, AND APPROXIMATE 
FOR LARGER VALUES OF N 

(P represents the probability that an observed Xp2 will equal or exceed the specified value) 

N=6 N=9 N=11 N=12 N>12 

Xp2 P Xp2 P Xp2 P Xp2 P Xp2 P 

.467 1.000 .358 1.000 .479 1.000 0.615 1.000 6.448 .10 

.867 .869 1.158 .798 .579 .980 0.661 .984 5.50 .098 
1.194 .675 1.267 .631 .817 .934 0.748 .896 6.674 .09 
1.667 .453 1.630 .605 .917 .844 0.794 .891 5.75 .087 
2.394 .367 2.067 .489 .979 .730 0.837 .850 5.927 .08 
2.867 .222 2.430 .452 1.088 .723 0.971 .786 6.00 .077 

19.667 .053 2.758 .381 1.279 .655 1.015 .720 6.163 .07 
3.158 .374 1.317 .576 1.061 .685 6.25 .069 

N=7 3.267 .321 1.588 .537 1.415 .585 6.50 .061 
3.667 .215 1.700 .473 1.461 .583 6.541 .06 

Xp2 P 4.030 .164 1.800 .472 1.637 .569 6.75 .054 
.552 1.000 4.067 .144 2.079 .468 1.683 .533 6.898 .05 
.733 .789 4.758 .110 2.200 .467 1.933 .487 7.00 .048 
.752 .703 5.667 .078 2.309 .466 1.948 .486 7.25 .043 
.933 .536 6.067 .064 2.409 .440 2.067 .428 7.401 .04 

1.733 .493 7.485 .020 2.417 .403 2.156 .427 7.50 .038 
2.152 .370 15.666 .005 2.500 .392 2.203 .407 7.75 .034 
2.333 .302 2.579 .384 2.289 .344 8.00 .030 
3.933 .277 N=10 2.688 .304 2.333 .333 8.009 .03 
5.606 .169 2.809 .274 2.556 .331 8.25 .027 
7.504 .117 Xp2 P 3.026 .261 2.615 .303 8.50 .024 
8.904 .055 .328 1.000 3.109 .230 2.661 .303 8.75 .021 

.614 .941 3.213 .201 2.733 .300 8.886 .02 
N=8 .728 .917 3.300 .147 2.837 .300 9.00 .019 

1.055 .813 3.779 .147 2.870 .287 9.25 .017 
Xp2 P 1.341 .693 3.800 .147 2.883 .246 9.50 .015 
.284 1.000 1.419 .606 3.909 .133 2.956 .216 9.75 .013 
.684 .843 1.585 .601 4.117 .128 3.267 .211 10.00 .012 
.844 .665 1.705 .594 4.313 .126 3.415 .207 10.25 .010 
.920 .590 1.772 .592 4.388 .099 3.489 .149 10.312 .01 

1.320 .560 1.814 .526 4.726 .091 3.933 .127 10.50 .009 
1.480 .506 1.819 .419 5.000 .077 4.070 .127 10.75 .008 
2.364 .495 2.313 .407 5.609 .077 4.156 .114 11.00 .007 
2.680 .471 2.577 .374 5.700 .076 4.348 .113 11.25 .006 
2.935 .392 2.676 .327 6.013 .055 4.394 .113 11.50 .006 
3.000 .299 2.743 .327 8.200 .050 4.571 .112 11.756 .005 
4.375 .293 2.863 .274 8.635 .032 4.616 .109 12.00 .004 
4.455 .235 2.905 .242 9.468 .022 4.733 .101 13.00 .003 
4.935 .194 2.977 .220 9.735 .018 5.667 .092 14.00 .002 
5.000 .133 3.242 .181 10.214 .009 5.803 .092 15.085 .001 
5.819 .064 3.834 .179 11.435 .004 5.889 .090 
6.455 .033 3.970 .165 6.025 .090 

4.333 .158 6.733 .085 
4.400 .158 6.842 .072 
4.676 .139 6.956 .060 
4.858 .107 7.504 .050 
5.128 .072 7.622 .041 
5.491 .059 8.576 .029 
6.515 .054 8.822 .026 
7.133 .042 9.237 .019 

11.308 .014 9.267 .014 
12.965 .006 10.556 .003 

19.667 .000 
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* A SIGNIFICANCE TEST FOR TIME SERIES ANALYSIS 405 

local irregularities rather than basic differences in form. It appears, 
therefore, that when N is as large as 12 a single sampling distribution 
Of Xp2 is sufficient. 

The mean of the 700 values of Xp2 is 2.3049, and the variance 5.0458. 
As an approach to the distribution of Xp2, it seems reasonable simply 
to reduce Xp2 by approximately one-seventh and refer it to the x2 dis- 
tribution for two degrees of freedom, which has a mean of two and 
tables for which are readily available; and such a comparison does in- 
dicate good conformity. That the variance of the observed values is 
less than that of (7/6)X2 for two degrees of freedom suggests, however, 
that a more satisfactory fit at the tails can be secured by using a dis- 
tribution having a variance of 5, e.g., x2 for "two and one-half degrees 
of freedom." For xp2 above about 5.5 and P below about .10, the agree- 
ment of this distribution with the observations is very satisfactory. In 
the main body of the distribution the function whose mean value is 
equated to the sample mean gives a somewhat better fit. 

In practice, therefore, the procedure for interpreting Xp2, assumed 
always to be calculated from three frequency classes, is as follows: 
If xp2 is less than 6.3 (the point of intersection between the ogives of 
(7/6)x2 for two degrees of freedom and x2 for two and one-half degrees 
of freedom), reduce it by one-seventh and refer to the usual x2 tables 
for two degrees of freedom. This procedure is satisfactory for all values 
Of xp2, but for values above 6.3 somewhat more accurate results are ap- 
parently secured by referring Xp2 to the last column of Table I, which 
gives the distribution of x2 for two and one-half degrees of freedom. 
When N < 13 the exact distributions should, of course, be used. 

A simpler test of the same nature may be based on the fact that in a 
random sequence of N observations (where N is not too small-not less 
than 10, say) the total number of completed phases is normally dis- 
tributed about a mean of (2N-7)/3 with variance of (16N-29)/90. (In 
using this test, the difference between the observed and expected num- 
bers of phases should be reduced in absolute value by one-half unit, in 
order to allow for discontinuity.) This test of the total number of 
phases, which is essentially equivalent to a test of the mean phase 
duration, is normally less sensitive than the xp2 test, which takes ac- 
count of the lengths of the phases, though the superiority of the xp2 test 
in this respect is limited by the necessity of confining the frequency 
distribution to three classes. Advantages of the test of the total number 
of phases are that it is even simpler to apply than the xp2 test, that its 
sampling distribution is known exactly and is readily available, and 
that it is adaptable to cases where the hypothesis alternative to the null 
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406 AMERICAN STATISTICAL ASSOCIATION* 

hypothesis is either that the phases are abnormally long or that they 
are abnormally short. 

Application of the x%2 test to an economic problem may be illustrated 
by an analysis of sweet potato production, yield per acre, and acreage 
harvested in the United States, 1868-1937, as recorded on page 243 of 
Agricultural Statistics, 1939. The frequency distributions of phase dura- 
tions in these series have been compared with those to be expected in a 
random sequence. From the values of Xp2 and their corresponding 
probabilities, it appears that the fluctuations in production conform 
with what would be expected in a random series; while of the two com- 
ponents of total production, yield per acre conforms well and acreage 
harvested does not conform at all. 

The figures on total production do not, of course, constitute a ran- 
dom series, for there is a marked upward trend in the data. In general, 
the method here presented is not very sensitive to primary trend. The 
removal of trend from a series, or its introduction into a trendless 
series, can change the sign of the difference between consecutive items 
only if the trend factor for a single year is greater than the difference 
between the items in trend-adjusted form. If, therefore, the residuals 
from trend are such that their first differences are rarely as small as the 
trend factor for a single year, as is frequently the case in economic time 
series, the distribution of phase lengths will not be much affected by the 
presence or absence of trend. Another factor tending to minimize the 
effect of trend on the test is that expansions are lengthened and con- 
tractions shortened if the trend is upward, and vice versa if it is down- 
ward, leaving the total number of phases of a given duration relatively 
unaffected. In such cases the existence of trend may be revealed by 
separate distributions for expansions and contractions. In the case of 
sweet potato production, both distributions conform well to the chance 
distribution and to one another; but for acreage the two distributions 
differ markedly, suggesting that the non-randomness evidenced in the 
acreage series may be at least partly attributable to trend. 

Lack of sensitivity to primary trend is a limitation of the technique 
from the point of view of detecting the existence of such a trend. On the 
other hand, it is not difficult to determine by other methods whether a 
primary trend exists-the rank correlation between the variate and the 
date often affords a convenient test. And for determining whether the 
systematic variation contains secondary components, e.g., cyclical or 
seasonal variations, it is a decided advantage of the present method 
that it frequently gives satisfactory results regardless of the presence of 
trend, thus avoiding the complexities of trend elimination. It is possible, 
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of course, for secondary fluctuations also to be concealed if their year 
to year magnitude is definitely less than year to year random move- 
ments; this is not so likely as in the case of a primary trend, but is a 
real possibility in the case of gradual movements-e.g., long waves. 

A second example illustrates the use of Xp2 as a criterion of the fit of 
moving averages, and for selecting the proper period for a moving 
average. If a moving average, or any other curve, describes adequately 
the systematic variation in a series, the residuals should constitute a 
random sequence. If the period is too long, waves or cycles may appear 
in the residuals, and if it is too short the residuals will cluster too closely 
about the line. To illustrate this application, ten moving averages 
having spans from 2 to 11 years have been fitted to the data on sweet 
potato acreage, and the residuals tested for randomness. Each moving 
average uses equal weights; the necessity of centering each average at 
an observation, however, means an implicit increase of one year in the 
span of averages based on an even number of points, with the first and 
last observations receiving half weight. The last two columns of Table 
II show the values of Xp2, and the corresponding probabilities, obtained 
by testing the residuals for randomness. The moving averages based 
on even numbers of years give notably better results than those based 
on the corresponding odd numbers of items; the tapering of the weight 
diagram implicit in the even averages evidently improves the fit. An- 
other striking feature is that the probabilities first rise and then decline. 
Thus, the odd averages attain a maximum probability of .24 at seven 
years while the even averages give the best result at six years, when 
the probability is .61. Had other weight diagrams been tested still 
better results might have been obtained. 

It should be noted that a "better" result is not necessarily one in 
which the curve gives a closer fit, but one in which the residuals behave 
more like a series of independent, random observations, as judged by 
sequences in signs of first differences. The closest fits to the original 
observations are given by the shortest moving averages; but these 
describe not only the systematic variation but also a portion of the 
random fluctuations. If the moving average is either too short or too 
long, Xr2 will be significantly large; but in the former case its magnitude 
results from an excess of short phases and a deficiency of long ones, 
while in the latter case the reverse is true. Table II includes the actual 
frequency distributions of residuals from the ten curves. 

In order to compare this new test with a more elaborate procedure 
frequently employed in time series analysis, a power series y=a+bx 
+cx2+dx3+ ... was fitted by the method of least squares to the series 
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TABLE II 

FREQUENCY DISTRIBUTIONS OF PHASE DURATIONS IN RESIDUALS FROM MOVING 
AVERAGES FITTED TO SWEET POTATO ACREAGE HARVESTED 

UNITED STATES, 1868-1937 

Duration of phase 
Span of 
moving One Two Over Total x 2 p 
average Oe To two (frequency) X 
(years) year years years 

(frequency) (frequency) (frequency) 

2 Expected 27.083 11.733 4.183 43 16.823 .0004 
Observed 46 8 1 55 

3 Expected 27.083 11.733 4.183 43 16.823 .0004 
Observed 46 8 1 55 

4 Expected 26.25 11.367 4.05 41.667 1.857 .45 
Observed 31.25 8.25 4.5 44 

5 Expected 26.25 11.367 4.05 41.667 5.740 .09 
Observed 19.25 9 7.75 36 

6 Expected 25.417 11 3.917 40.333 1.141 .61 
Observed 25.5 8.25 5.25 39 

7 Expected 25.417 11 3.917 40.333 3.287 .24 
Observed 28.5 6 5.5 40 

8 Expected 24.583 10.633 3.783 39 2.547 .34 
Observed 25 7 6 38 

9 Expected 24.583 10.633 3.783 39 4.634 .14 
Observed 18.75 7.5 6.75 33 

10 Expected 23.75 10.267 3.65 37.667 3.175 .26 
Observed 23 5.5 5.5 34 

11 Expected 23.75 10.267 3.65 37.667 9.861 .01 
Observed 22 2 7 31 

on sweet potato acreage harvested. The calculations were carried as far 
as the ninth degree term, using the technique of orthogonal polynomials, 
but none beyond the third effected a significant reduction in the 
residual variance. According to the usual criterion, therefore, a third 
degree curve would be regarded as fitting adequately. The residuals 
from the third degree curve were then submitted to the present test. 
There were 24 one-year phases, 3 two-year phases, and 9 phases of more 
than two years, producing a Xp2 of 12.47, from which it is clear that the 
fit of the third degree polynomial is quite inadequate. The fault, of 
course, lies in inferring that a third degree power series gives an ade- 
quate fit because no other power series gives a significantly better fit 
as judged by the standard error of estimate. 
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xp2 can also be used to test the independence of two variates, and in 
some circumstances is superior for this purpose to the rank correlation 
coefficient. The procedure is to arrange the pairs according to the order 
of magnitude of one variate and tabulate the distribution of phase 
durations in the other variate. If the two series are independent, the 
resulting value of xp2 will not be significant. A difficulty, however, is 
that the conclusion occasionally depends upon which variate is chosen 
for arranging in order and which for counting the phase durations. 

It is perhaps advisable to emphasize explicitly that the present test 
by no means utilizes all of the information in the data. In particular, it 
ignores the magnitude of the year to year fluctuations, treating the 
smallest as equivalent to the largest. A serial correlation coefficient 
computed from ranks may retrieve some of this information on magni- 
tude. Another consideration in interpreting the test is that a set of 
phase durations which appears random when viewed only as a fre- 
quency distribution may not have been arranged at random in time. 
An additional point, obvious but worthy of mention, is that the time 
unit used may affect conclusions derived from the Xp2 test; for example, 
year to year movements may appear random and month to month 
movements non-random, or vice versa. 
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