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Abstract. In this paper we propose a simple way of significantly im-
proving the performance of the Softassign graph-matching algorithm of
Gold and Rangarajan. Exploiting recent theoretical results in spectral
graph theory we use diffusion kernels to transform a matching problem
between unweighted graphs into a matching between weighted ones in
which the weights rely on the entropies of the probability distributions
associated to the vertices after kernel computation. In our experiments,
we report that weighting the original quadratic cost function results in a
notable improvement of the matching performance, even in medium and
high noise conditions.

1 Introduction

Energy-minimization approaches to graph matching [4][5][8] rely on transform-
ing the discrete search space into a continuous one and then exploiting opti-
mization techniques to find a, typically approximate, solution. One of the first
algorithms, Softassign, the well-known graduated assignment method introduced
by Gold and Rangarajan [4], optimizes a quadratic cost function through a low-
order computational complexity process which updates the assignment variables
encoding the matching proposals. However, it has been reported that the perfor-
mance of the algorithm decays significantly at mid and high levels of structural
corruption, and also that such a decay can be attenuated by optimizing an al-
ternative non-quadratic energy function [5]. In this paper we report comparable
results by weighting the quadratic cost function properly. This is due to the fact
that we transform the original matching problem between two non-attributed
graphs into a matching problem between attributed ones and then these at-
tributes are used to weight the original cost function. The practical effect of this
weighting is that it yields a good characterization of the local structure, which
in turn helps to choose the proper attractor in a context of high ambiguity.

We address the key point of extracting good attributes for the nodes of the
non-attributed graphs by exploiting recent theoretical results in spectral graph
theory [1]: the definition of diffusion kernels on graphs [6] and their general-
ization to other families of kernels [13]. These latter works have transferred to
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the discrete domain of graphs the concept of a kernel, originally defined in the
vector domain (see [3] for a survey on kernels for structures like strings, trees
and graphs). Kernels, are key concepts in the context of statistical learning the-
ory[2][12][7] which capture the structure of a domain by defining a similarity
measure between two input elements in the domain. Such a similarity measure
relies on the inner product of the results of mapping both inputs to a, usually
higher dimensional, Hilbert space. Due to the so-called kernel trick such a map-
ping is implicitly defined once the kernel is specified, and the benefit of such a
transformation consists on transforming non-linear relations between the inputs
in the original domain into linear relations after the mapping. For instance, in
the context of support-vector machines (in general we can talk about kernel ma-
chines), the task of classifying two non-linearly separable inputs is accomplished
by using a suitable kernel to map them to another space in which these inputs
are linearly separable (it works in the well-known two-spirals example).

When applied to graphs, kernels provide a similarity measure between the
vertices of the same graph. In the case of diffusion kernels, such a similarity can
be seen as the sum of probabilities of all paths connecting such vertices, and it
is computed from the matrix exponentiation of the Laplacian of the adjacency
matrix (section 2). As the Laplacian encodes information about the local struc-
ture of the graph, the global structure emerges in the kernel. However, we do
not use directly the probabilities of connecting paths because they may change
very easily when the graph is edited or corrupted, and, consequently, they are
not useful for finding corresponding vertices. What we do is to is to compute
a characteristic measure of the distribution of probabilities associated to paths
emanating from a given vertex, the entropy of such a distribution, and use it as
attribute for that vertex. The entropy of the probabilities associated to connect-
ing paths is more stable and allows us to find correct matches (section 3). In
section 4 we present the kernelized version of the quadratic cost function and its
implications in the Softassign process. Our results are showed in section 5 and
in 6 we present our conclusions and future work.

2 Diffusion Kernels on Graphs

Given a undirected and unweighted graph G = (V, E) with vertex-set V of size
m, and edge-set E = {(i, j)|(i, j) ∈ V ×V, i �= j}, its respective adjacency matrix
is defined as usual:

Aij =
{

1 if (i, j) ∈ E
0 otherwise

and the diagonal degree matrix is defined by

Dij =
{∑n

j=1 Aij if i = j

0 otherwise .

Then, the Laplacian of G is defined as L = D − A, that is,
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Lij =




−1 if (i, j) ∈ E
Dii if i = j
0 otherwise .

Following [6] the associated diffusion kernel K is the result of the matrix
exponentation

K = e−βL = lim
n→∞

(
1 − βL

n

)n

, (1)

and after solving the latter limit we obtain

e−βL = Im + L +
1
2!

L2 +
1
3!

L3 + . . . , (2)

where Im is the m × m identity matrix. Moreover, e−βL is the solution of the
heat equation [1]

d

dβ
Kβ = −LKβ. (3)

As L is symmetric, the solution K = e−βL, the Gram matrix, satisfies the
positive semi-definiteness condition for kernels. Although in this paper we will
focus on diffusion kernels, this framework is generalized in [13] where a family
of graph kernels is proposed in the context of regularization.

3 Diffusion Kernels and Node Entropy

On behalf of the so-called kernel trick the m × m matrix K defines a real-
valued function between pairs of vertices, and Kij can be interpreted as the
inner product of the mappings of both vertices to a Hilbert space [12]. This
means that such a inner product encodes the similarity between pairs of vertices
in a possibly high-dimensional space. But, from the point of view of discrete
structures what is interesting of such similarity is that as L encodes the local
structure of V in G, the global structure emerges in K.

More precisely, and due to the fact that K is the solution of the heat equation,
the diffusion kernel K is the version for discrete spaces of the Gaussian kernel
for IRm with variance σ2 = 2β, that is, the value of Kij decays exponentially
with the distance between i and j. But, how to apply this idea to a graph?
From the point of view of random fields, the diffusion kernel K relies on the
covariance matrix of a stochastic process in which each vertex has attached a
random variable of zero mean an variance σ2 and each variable sends a small
fraction of its value to its neighbors. In this regard, Kij can be interpreted as the
amount of substance accumulated at vertex j after a given amount of time after
injecting the substance at i and let it diffuse through the edges of the graph.
The more distant are i and j the less amount we have.

In terms of random walks, Kij can be regarded as the sum of probabilities
that a lazy random walk takes each path from i to j [6]. A lazy random walk over
the undirected graph G and with parameter β is a stochastic process which will
take each of the edges emanating from i with a fixed probability β and will remain



A Significant Improvement of Softassign with Diffusion Kernels 79

in i with probability 1− βDii, being β ≤ 1/(maxiDii). From this point of view,
the final value of Kij depends on the edge distribution and branching process
between i and j. If j is an isolated node, then Kij = 0 ∀i �= j and Kjj = 1.
Moreover, as each row i of K satisfies that 0 ≤ Kij ≤ 1 ∀j and

∑m
j=1 Kij = 1,

then we can consider each row as a probability distribution associated to vertex
i. This allows us to build a proper attribute for each vertex in terms of the shape
of the corresponding distribution. In our initial experiments we have found that
as edit operations or noise addition on the graph will give a different kernel in
terms of the number of nodes and edges, and obviously in terms of the diffusion
process, building attributes in the properties of the distributions yields more
stability that building such attributes in individual values of Kij . This is why
we retain as attribute for node i the entropy of the distribution

HK
i = −

m∑
j=1

Kij log Kij . (4)

As we will see in the following sections, although this attribute does not provide
a good discrimination between vertices it is very helpful in the continuation
process in which Softassign relies. In fact, the kernel approach is closely related
to the use of distance matrices in matching and tests for isomorphism [11], and,
more recently, to the use of powers of the adjacency matrix [14].

In order to clarify the concept of kernel and node entropy, in Fig. 1 we show
two graphs in which the smaller one X is a subgraph of the other, Y . We show
the kernels of both of them and the distribution of the vertex 1 of Y .

4 Kernelizing Softassign

Given two graphs GX = (VX , EX), with nodes a ∈ VX and edges (a, b) ∈ EX ,
and GY = (VY , EY ), with nodes i ∈ VY and edges (i, j) ∈ EY , their adjacency
matrices X and Y are defined by

Xab =
{

1 if (a, b) ∈ EX

0 otherwise and Yij =
{

1 if (i, j) ∈ EY

0 otherwise .

A feasible solution to the graph matching problem between GX and GY is en-
coded by a matrix M of size m × n, being m = |VX | and n = |VY |, with binary
variables

Mai =
{

1 if a ∈ VX matches i ∈ VY

0 otherwise

satisfying the constraints defined respectively over the rows and columns of M

m+1∑
i=1

Mai = 1, ∀a and
n+1∑
a=1

Mai = 1, ∀i , (5)

where equality comes from introducing slack variables for registering outliers.
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(a)

(b)

KY =




.5237 .3082 .1200 .0259 .0074 .0074 .0074

.3082 .3356 .2140 .0645 .0259 .0259 .0259

.1200 .2140 .2800 .1369 .0830 .0830 .0830

.0259 .0645 .1369 .1906 .1940 .1940 .1940

.0074 .0259 .0830 .1940 .4752 .1073 .1073

.0074 .0259 .0830 .1940 .1073 .4752 .1073

.0074 .0259 .0830 .1940 .1073 .1073 .4752




(c)

KX =

[
.5256 .3167 .1577
.3167 .3665 .3167
.1577 .3167 .5256

]

(d)

Fig. 1. Illustrating graph kernels and entropy. Example graphs X and Y where nodes
are labelled with their entropies (a). Kernel values and distribution for vertex 1 of
graph Y , and kernel values for all vertices in graph X (b). Kernel KY (c) and kernel
KX (d).

Following the Gold and Rangarajan formulation we are interested in finding
the feasible solution M that minimizes the following cost function,

F (M) = −1
2

m∑
a=1

n∑
i=1

m∑
b=1

n∑
j=1

MaiMbjCaibj , (6)

where typically Caibj = XabYij , that is, when a ∈ VX matches i ∈ VY , it is
desirable that nodes b adjacent to a (with Xab �= 0) and nodes j adjacent to
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i (with Yij �= 0) also match, that is Mai = Mbj = 1. This is the well known
rectangle rule (in maximization terms we want to obtain as more rectangles as
possible). Furthermore, considering the entropies defined in the previous section
a simple way of kernelizing the latter energy function is to redefine Caibj as

CK
aibj = XabYij exp−[(HKX

a − HKY

i )2 + (HKX

b − HKY

j )2] , (7)

where the entropies HKX and HKY are associated to the kernels

KX = e−
β
m LX and KY = e−

β
n LY ,

that is, we normalize the decays by the number of nodes in each graph in order
to make both diffusion processes, and consequently both kernels, comparable.
This normalization is useful in big graphs, where it contributes to avoid the
tendency of the diffusion process towards uniform distributions, but makes no
sense in small graphs. But, normalization apart, the latter definition of CK

aibj

ensures that CK
aibj ≤ Caibj , and the equality is only verified when nodes a and i

have similar entropies, and the same for nodes b and j. In practice, this weights
the rectangles in such a way that rectangles with compatible entropies in their
opposite vertices are preferred, and otherwise they are underweighted.

Paying now attention to the deterministic annealing process implemented by
Softassign, the assignment variables are updated by

Mai = exp
[
− 1

T

∂F

∂Mai

]
= exp

[
1

2T

m∑
i=a

MbjC
K
aibj

]
,

where T is the temperature control parameter. Then, these assignments feed a
Sinkhorn process [10], which iteratively normalizes rows and columns. After this
process we obtain a doubly stochastic matrix, decrease T and a new iteration
begins. The final doubly stochastic matrix is transformed into a permutation
matrix by a proper clean-up process.

To see intuitively the difference between the classical Softassign and the ker-
nelized one, in Fig. 2 we show the evolution of both algorithms for the two
example graphs showed in Fig. 1. The classical Softassign prefers clearly the as-
signment (b, 4) which is consistent with the cardinality heuristic(notable vertices
in X prefer notable vertices in Y . However, a and c can be assigned either with
3, 5, 6 or 7 (ambiguity). On the other hand, in the kernelized case, the assign-
ment (b, 2) is clearly preferred and a and c may be assigned either to 1 or 3. The
cardinality heuristic is inhibited in favor of a structural compatibility heuristic.

5 Experiments

We have performed several matching experiments with graphs of 50 nodes, and
considering two levels of edge density: 25% and 50%. These levels of edge density
are relatively high because we want to study the performance of the kernelized
Softassign which it is assumed to have more problems in this context, because
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β = 0.5

Softassign Kernelized softassign

β = 2.8364

β = 7.2625

β = 9.6988

Fig. 2. Evolution of the algorithm for a simple matching problem. Matching matrices
for many values of β for the classical Softassign and the kernelized version.

the difussion processes tend to generate uniform distributions. In all cases we use
the classical initialization of Softassign. Each point corresponds to the averaged
result for 100 graphs randomly generated. We have considered different noise
levels: from 0% (isomorphism) to 50%. We have registered both the fraction
of complete graphs successfully matched and the fraction of nodes successfully
matched. In all cases the kernelized version outperforms significantly the classical
one. Moreover, the kernelized version is also better than an attributed one with

Caibj = XabYij exp


−

∣∣∣∑m
b=1 Xab −

∑n
j=1 Yij

∣∣∣
min(m, n)


 ,

that is, a Softassign version relying on node cardinality.
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(a) (b)

(c) (d)

Fig. 3. Matching results. Graphs (a) and nodes (b) successfully matched with an edge
density of 25%. Graphs (c) and nodes (d) successfully matched with an edge density
of 50% (b).

6 Conclusions and Future Work

In this paper we have introduced a simple way of improving the performance
of the Softassign graph-matching algorithm through the kernelization of the
classical quadratic cost function. Our experimental results indicate that such an
improvement is significant even in medium and high noise levels. Current and fu-
ture work in this context includes the kernelization of other energy minimization
and state-space algorithms, the formalization of the edit distance in terms of ker-
nels, and the comparison with other approaches relying on node-neighborhood
attributes.
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