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ABSTRACT  

Glasses based on borophosphate with the formula 42.5P2O5 – 42.5B2O3 – (15-x) Li2O – xMoO3 

mol% where 𝑥 = (0 ≤ 𝑥 ≥ 15) were manufactured using the melt-quenching methodology. 

The status of prepared samples was identified by (XRD). The temperature of the glass transition 

Tg, the temperature of onset glass crystallisation Tc and the temperature of the crystallisation 

Tp were evaluated using a differential thermal analyser (DTA). The energy gap (𝐸𝑜𝑝𝑡), Urbach 

(𝐸𝑢), and parameters of dispersion were calculated through the data of optical spectra. Physical 

properties were determined and calculated, such as molar refractivity, metallization, electron 

polarizability, electronegativity, loss of reflection and dispersion parameters. Raising MoO3 at 

the expense of Li2O was used to assess the level of protection. For radiation protection 

applications, the glasses under investigation had superior characteristics. 
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1. Introduction 

 B2O3-P2O5 glasses with superior efficiency can be used in a variety of different 

settings. Solid-state batteries, and nonlinear optics borophosphate glasses are appropriate. Due 

to its obvious advantages, lithium borophosphate is classical glass that has become recognized 

in storage batteries. These glasses are used as storage batteries in optical and electronic 

instruments. The addition of modifiers such as Li2O influences of these characteristics. Li2O 

will be combined instead of B-change BO4 to BO3 [1-8]. The characteristics of the combined 

glass (B2O3+P2O5) networks vary from those of the single glass B2O3 and P2O5 networks. 

Transition metal oxides (TMOs) are a fascinating group of semiconductor materials 

because of their technological advantages for use in microelectronics and display systems. 

MoO3 among (TMOs), due to its excellent use in optical materials and electrochemical 

devices has received increasing attention in recent years. There is a goal that support in 

manufacturing these glasses regarding the MoO3 used in these implementations. Different 

MoO3 preparation glasses were developed and investigated in response to this broad range of 

applications [9-16]. 

 Due to the existence of MoO4 and MoO6 in the glass network, MoO3 appears as the 

former non-conventional network. The existence of MoO3 in glass systems does have a 

modifier impact on UV spectra [9-16]. There are increasingly diverse technologies for 

molybdenum borophosphate-based glasses, such as laser host fibers and superconducting 

switches. 

Both scientifically and technologically, the significant advances of alkaline 

borophosphate glasses are considerable.  The existence of PO4 & BO4 structural units, this 

consequence approaches from the structural issues connected with covalent links. In several 

fields, B2O3-P2O5 - Li2O - MoO3 glasses possess high applications because of their radiation 

shielding and good FT-IR transmission [17-33]. The object of this study is to assist you in the 
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preparation of B2O3-P2O5 - Li2O - MoO3 glasses and investigating their optical and neutron 

shielding using Phy-X/PSD [34] properties. 

2. Methodology 

Table 1 shows how we formed the glasses in our published articles using the melt-

quenching methodology. By melting together of B2O3 in its H3BO4 (Merck), Li2O in it Li2CO3 

(Aldrich), P2O5 in it (NH4)2HPO4 (Merck) and MoO3 (Merck) in an o pen ceramic crucible. 

With the evaporation of CO2, NH3 and H2O, Li2CO3, (NH4)2HPO4 and H3BO4 and are 

converted into Li2O, P2O5 and B2O3. The furnace temperature was changed at a melting 

temperature of 1050 °C. At 350 °C the prepared samples are annealed. 

 The Philips X-ray diffractometer (model PW / 1710) checked the condition of these 

glasses and glass-ceramics. The spectrophotometer was used to measure the optical spectra of 

the investigated glass system (type JASCO V- 670). The thermal investigation was carried out 

with a DTA-50 (Shimadzu-Japan). Phy-X / PSD can calculate a variety of shielding 

considerations [34]. Electron density (Neff) was predictable as: Neff = N  Zeff∑ FiAii  ,. Effective 

cross-section of removal (ΣR) projected as: (ΣRρ ) =  ∑ wi (ΣRρ )ii    and R =  ∑  ρi  (Rρ)ii  ,. G–P 

fitting parameters has been predictable as 𝑃 =  P1(logZ2−logZeq)+Z2(logZeq−logZ1)logZ2−logZ1 . EABF and 

EBF were predictable using G–P fitting 𝐵(𝐸, 𝑋) = 1 + 𝑏 −1𝐾−1(𝐾𝑥 − 1) for K≠  1, 𝐵(𝐸, 𝑋) =
1 + (𝑏 − 1)𝑥 K=  1 where 𝐾(𝐸, 𝑋) = 𝑐𝑥𝑎 + 𝑑 𝑡𝑎𝑛ℎ( 𝑥𝑋𝑘 −2)−𝑡𝑎𝑛ℎ(−2)1−𝑡𝑎𝑛ℎ (−2)  

3. Results and Discussion 

3.1. XRD 

Figure 1 depicts the glass system's X-ray features. In the glass samples, XRD revealed 

no discrete lines or sharp peaks, indicating a high degree of glass status. 

3.2 Optical spectra 



4 

 

The absorption (A), transmittance (T), and reflectance (R) of glass samples are shown 

in Figures 2 and 3. Spectral UV according to reports, increasing. As a result, MoO3 is to blame 

for the slight increase in BO [35-44]. Figure 4 shows the absorption coefficient of the glasses. 

3.2.1 band gap 𝐸𝑜𝑝𝑡 

Glass spectrum in the UV and VIS areas were used for the estimated of the band gap 

energy 𝐸𝑜𝑝𝑡 is estimated by (𝛼. ℎ𝜈)1/2 = 𝐵(ℎ𝜈 − 𝐸𝑜𝑝𝑡.)  where B is an energy independent 

constant and ℎ𝜈 is photon energy. By intrigue the (𝛼. ℎ𝜈)1/2 versus ℎ𝜈  as Fig.5. Plot 

of (𝛼. ℎ𝜈)1/2 against photon energy (ℎ𝜈) to evaluate the indirect 𝐸𝑜𝑝𝑡from the intercept. 𝐸𝑜𝑝𝑡increases with increasing MoO3, as revealed in Table 2, due to oxygen bridges (BO) form 

and bind excited electrons more tightly than non-bridging oxygen electrons (NBO).  Urbach 

energy has been calculated ∝0 𝑒𝑥𝑝 (ℎ𝜐𝐸𝑢 ),  Fig. 6 and table 2 show that their Eopt values have 

an inverse relationship. The values of Eopt and 𝐸𝑢 

 was shown in Fig.7. 

The refractive index was calculated using:  𝑛 =  (1− 𝑅)2+𝑘2(1+ 𝑅)2+ 𝑘2        where k = /4. The 

refractive index presented in Fig.8 for fabricated glasses. It has already been stated that density 

increase, the refractive index of these samples increased. As a result, it can be directly 

compared to reflectance and density, and opposite to molar volume. 

3.2.2 Dispersion parameters 

As approximated, molar polarization and polarizability of glasses were computed ∶
 𝑅𝑚 = ⟨𝑛2 − 1|𝑛2 + 2⟩𝑉𝑚, ∝𝑚= (3|4𝜋𝑁)𝑅𝑚, and ∝02−= [ 𝑉𝑚2.52(𝑛2  −1𝑛2+2 )−∑∝𝑐𝑎𝑡]𝑁𝑜2−   [45-49]. 

Polarization was linked with the optical basicity; 𝛬 =  1.67 (1 −  1∝02−). Figs. 9,10& 11 

exemplifies the polarizabilities, Molar Polarizability ∝𝑚 and optical basicity separately of the 
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samples. The refractive index is trending in the same direction with MoO3 content has been 

reported to enhance. 

The molar refractivity as 𝐸𝑜𝑝𝑡.  𝑅𝑚 =  𝑉𝑚(1 − √𝐸𝑔/20) and molar polarizability 

(∝𝑚)  ∝𝑚= ( 34𝜋𝑁) 𝑅𝑚. Reflection loss  𝑅𝐿 = (𝑅𝑚𝑉𝑚). Because the molar volume decreases with 

Mo+, these values of (𝑅𝑚) (∝𝑚) and (𝑅𝐿) decline. The criterion for metallization is predicted 

as 𝑀 = 1 − 𝑅𝑚𝑉𝑚 , the metallization value increase with Mo+. The electronegativity (χ) is 

predicted as   𝜒 = 0.2688𝐸𝑜𝑝𝑡.. where 𝐸𝑜𝑝𝑡. bandgap. Thus, with Mo+ increasing, the 

electronegativity (χ) values increase. The electron polarizability is predicted as, ∝ ° =−0.9 𝜒 + 3.5 and optical basicity  ∧= −0.5𝜒 + 1.7. ∝ ° and ∧ have the opposite value of (χ) 

so, ∝ ° and ∧ decrease with Mo+. These items are obtainable in Table 2. 

The dispersion was calculated by Wemple and Didomenico Eo and Ed [50-53]. The 

hypnosis designates explained by   𝑛2  −  1 =  𝐸0  𝐸𝑑𝐸0 2 − 𝐸2 [64-70]. The plotting of, (n2-1)-1 with 

(hυ)2 Eo and Ed predictable from the slope and intercept as shown in Figs. 12 & 13. It mentioned 

that with increasing MoO3, Eo and Ed were slightly enhanced. The optical energy Eopt that 

represent   𝐸𝑜𝑝𝑡 = 𝐸𝑑2 . Refractive Static index at infinite wavelength (no) was estimated by 

𝑛0 =  √1 + 𝐸𝑑𝐸0   and the static dielectric 𝜀∞ = 𝑛02. The oscillator's wavelength (λo) and strength 

(So) were calculated using the following formula 𝑛2  −  1 =  𝑆0  𝜆021−(𝜆0𝜆  )2 . These items are 

obtainable in Table 3. 

3.3 DTA 

 The thermal analysis (DTA) of glass samples demonstrated in Fig. 14. The temperature 

of the glass transition, Tg, is 493-532 ±3 °C. The temperature of the glass crystallisation Tc 

starts at 537-580 ±3 °C. The temperature of the glass crystallisation Tc ends at 606-645 ±3 °C. 

According to DTA observations, Tg increases from 493 into 532 °C, Tc increases from 537 
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into 580 °C and Tp increases from 606 into 645 °C with the increase of MoO3 content. The 

transformation of Li-O to Mo-O linkages is significantly associated with this behaviour. Hence, 

Li−Li (137.3±6.3 KJ/mol) dissociation energy is weaker than Mo−Mo (449.4±1 KJ/mol) 

dissociation energy and adding MoO3 variations the basic B units from BO3 to BO4. Thermal 

stability estimated by ∆𝑇 = (𝑇𝑐 − 𝑇𝑔), weighted thermal stability 𝐻𝑔 =  𝛥𝑇/𝑇𝑔 and 𝑆 = (𝑇𝑝 − 𝑇𝑐) 𝛥𝑇/𝑇𝑔. It observed that all thermal stability of samples improved as MoO3. The 

Tg, Tc, Tp and thermal stability values are obtainable in Table 4. 

3.4 Photon Shielding Features 

The level of protection was assessed in this article by increasing MoO3 at the expense 

of Li2O with the composition 42.5B2O3 – 42.5P2O5 – (15 − 𝑥)Li2O – 𝑥MoO3,  (0 ≤  𝑥 ≥ 15). The mean free path (MFP) is depicted in Fig.15. It was stated that as photon energy 

increases, the values of (MFP) increase. This insight revealed that as the photon's energy 

increases, it becomes capable of transmitting samples on purpose. Because the lower value of 

the (MFP) sample has a higher MoO3 content, good radiation attenuation glasses are available. 

[54-71].  

Figure 16 demonstrations the (Neff) of fabricated glasses. It is demonstrated that (Neff) 

decreases and then rises as energy increases. This significant decrease can be attributed to the 

interaction of Compton scattering. The effect of forming pairs at higher energy levels as MoO3 

is linked to the increasing in (Neff). 

 The ASC of fabricated glasses are presented in Fig. 17. The ASC and ESC values are 

expected to decrease as energy rates increase. This decrease occurs due to the Compton 

scattering interaction. The Ceff of fabricated glasses depicted in Figure 18. With the increase in 

photon energy, it is predicted that Ceff will decrease. The impact of pair-creation was reflected 

in the increase in Ceff. 
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The EBF & EABF of fabricated glasses were characterized by Figs. 19&20. EBF and 

EABF values are determined by the lower energy and concentration of the glass samples. At 

lower energy levels, EBF and EABF values are low, but they rise as energy levels rise. After 

that, gradually decrease as energy level rises. So, we can divide the energy scale into three parts 

low, medium, and high. The first part (low energy): the typical phase is the photoelectric effect, 

and the relationship is reversed with light, and the glasses will absorb the energy photons. The 

photons are therefore not allowed to build-up. In the second part (medium energy): the common 

process is the Compton scattering, the values of EBF and, EABF is increased in all samples 

independent from the MFP. Through this part, the photons stay in the samples for a long time, 

as these processes lead to high accumulation value due to multiple scattering processes. Third 

parts (high energy): the common process is the pair production. In this process, EBF and, EABF 

is decreased with energy. Therefore, these data helped in the determination of maximum 

radiation intensity occur. In this research, highest radiation occurs on the surface of the sample. 

In Fig. 21, fast cross section neutron removal (FNRCS) is shown. It was stated that MoO3 

improved FNRCS. 

4. Conclusions 

In the existing research, molybdenum lithium borophosphate glasses 42.5P2O5 – 42.5B2O3 – 

(15-x) Li2O – xMoO3 where 𝑥 = (0 ≤ 𝑥 ≥ 15) were fabricated with conventional melt-

quenching procedures. The optical, thermal, and shielding factors were observed. The findings 

showed the following objects: 

1-  Because of the increase in MoO3, the metallization of these glasses was improved. 

2-  The 2.23 for G 1, 2.32 for G 2, 2.38 for G 3, 2.41 for G 4, and 2.49 for G 5 were 

identified as the indirect optical bands that were collected. 

3- Urbach energies of these samples were reduces as the content of MoO3 increase. 

4-  As the density of the investigated glasses rises, the refractive index rises as well. 
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5-  These glasses were investigated for molar polarization, polarizability, and optical 

basicity. 

6- Tg, Tc, Tp and thermal stability values are enhanced with MoO3. 

7-  The fabricated samples' gamma shielding features were predictable. The impact of 

adding MoO3 to the glasses on their shielding ability was mentioned. 

8-   Lower value of the (MFP) sample has more MoO3 are good radiation attenuation 

glasses are available. 

9- As the concentration of MoO3 increased, these glasses have a high cross section 

neutron removal rate.  

The findings discovered that as MoO3 increase the glass system can result in significant 

improvements in attenuation and optical characteristics. Furthermore, it is possible to use this 

glass in optoelectronic, optical devices, and a radiation shield for use in x-ray centers. 
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Figures

Figure 1

XRD of the studied glasses.



Figure 2

The absorbance (A) and Transmittance (T) of the prepared glasses.

Figure 3

The re�ectance (R) of the prepared glasses.



Figure 4

The absorption coe�cient of the prepared glasses.

Figure 5

Plot of (α hυ)1/2 against photon energy (hυ) to calculate the indirect optical band gap from the intercept
of the curves.



Figure 6

Dependence of ln(α) upon the photon energy (hυ) for the prepared glasses.

Figure 7

Optical band gap and Urbach energy versus concentration of MoO3.



Figure 8

Refractive index of the prepared glasses.

Figure 9

Molar refractivity of the prepared glasses.



Figure 10

Electronic polarizability of the prepared glasses.

Figure 11



Optical basicity of the prepared glasses.

Figure 12

Variation of (n2-1)-1 with (hυ)2 for the prepared glasses.



Figure 13

Variation of (n2-1)-1 with 1/(hυ) for the prepared glasses.

Figure 14

DTA of the prepared glasses.



Figure 15

The MFP for the prepared glasses as a function of photon energy.

Figure 16



The (Neff) for the prepared glasses as a function of photon energy.

Figure 17

The ASC for the prepared glasses as a function of photon energy

Figure 18



The Ceff for the prepared glasses as a function of photon energy.

Figure 19

Variation of EBF versus the gamma ray energy for the prepared glasses as a function of photon energy.



Figure 20

Variation of EABF versus the gamma ray energy for the prepared glasses as a function of photon energy.



Figure 21

FNRCS for the prepared glasses comparison with standard materials.


