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Abstract 

 For many thin-film applications substrate imperfections such as particles, pits, 

scratches, and general roughness, can nucleate film defects which can severely detract 

from the coating’s performance.  Previously we developed a coat-and-etch process, 

termed the ion beam thin film planarization process, to planarize substrate particles up to 

~ 70 nm in diameter. The process relied on normal incidence etching; however, such a 

process induces defects nucleated by substrate pits to grow much larger.  We have since 

developed a coat-and-etch process to planarize ~70 nm deep by 70 nm wide substrate 

pits; it relies on etching at an off-normal incidence angle, i.e., an angle of ~ 70
o
 from the 

substrate normal. However, a disadvantage of this pit smoothing process is that it induces 

defects nucleated by substrate paticles to grow larger. Combining elements from both 
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processes we have been able to develop a silicon-based, coat-and-etch process to 

successfully planarize ~70 nm substrate particles and pits simultaneously to at or below 1 

nm in height; this value is important for applications such as extreme ultraviolet 

lithography (EUVL) masks. The coat-and-etch process has an added ability to 

significantly reduce high-spatial frequency roughness, rendering a nearly perfect 

substrate surface. 
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I. Introduction 

 For a number of thin-film applications substrate imperfections such as 

particles, pits, scratches, and general roughness, can nucleate film defects which can 

severely detract from the coating’s performance.  An example of a cutting-edge 

technology requiring nearly perfect substrate surfaces is Extreme Ultraviolet Lithography 

(EUVL) 1. EUVL is the leading candidate technology to enable Moore’s law
2
 to continue 

beyond the 2009 timeframe
3
. Moore’s law is very important for many areas of science 

and technology which depend on accessing more computational power at flat or lower 

costs. EUVL mask blanks are fabricated by depositing reflective Mo/Si multilayer thin 

films on glass substrates and these reflective mask blanks, which need to be defect-free, 

are a significant departure from conventional transmission masks
1,4

. Simulations indicate 

that substrate pits only several tens of nm in depth and width could perturb the reflective 

multilayer enough to print as critical defects in extreme ultraviolet lithography tools
5
. 

Because a single mask would be used to produce many microprocessor chips, even a few 

mask defects could decrease the yield significantly and have an enormous economic 

impact, potentially jeopardizng the viability of EUVL. Consequently, it is very important 

to develop methods to minimize the effect of small substrate pits and scratches on the 

reflective multilayer film, particularly since no repair technique has even been envisioned 

for pit-induced coating defects. 

 One promising approach to eliminating such defects is to develop a thin-film 

process that sufficiently planarizes the substrate asperities to render them harmless.  We 

have previously shown that by integrating the film deposition process and the direct 

etching of the film/substrate at normal incidence, the growth of multilayer defects 
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nucleated by particles can be significantly suppressed
6-9

. This is likely due in part to the 

strong dependence of the etch rate on the local angle of incidence; the etch rate has a 

peak around an angle of 45 - 50 degrees from the normal as shown in Figure 1.  

Consequently when etching a defect nucleated by a particle, the sides of the defect etch 

faster than the top. Figure 2a shows schematically how the defect profile could evolve. 

The enhanced etching at the sides can cause the profile to narrow until the sides meet and 

the defect essentially collapses.  

 Unfortunately, this process is not very effective for the planarization of 

concave substrate defects such as pits and scratches. The problem is illustrated in Figure 

2b. In this case, the enhanced etch rate at the sides of the pit or scratch causes the profile 

to broaden, which essentially increases the size of the defect. We have observed 

experimentally that our process, which effectively planarizes particle defects, does not 

work well on pit defects, as shown in Figure 3.  The coating defect nucleated by the pit 

gets much wider, making it much more difficult to planarize.  A technique is therefore 

needed for planarization of substrate pits and scratches in addition to particles. If one can 

develop a thin-film-based technique to remove substrate pits and particles 

simultaneously, as well as surface roughness, it will also have applicability in areas in 

addition to that of EUVL masks, since nearly-perfect substrate surfaces are desirable for a 

number of applications, such as reflective optics which are being increasingly used for 

applications such as short-wavelength telescopes. Such a technique to render nearly 

perfect substrate surfaces has been developed and is described and demonstrated in this 

paper. 
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II. Procedure and Process Improvement 

a) Fabricating substrates with programmed defects 

In order to investigate the smoothing of pits we first needed to produce pits with 

the proper depths and widths.  Since we have a significant amount of experience
9
 

smoothing ~70 nm particles we chose ~70 nm deep pits to begin our investigation. We 

also aimed for an aspect ratio of  ~1 (i.e., ~ 70 nm wide pits) although we have less 

accuracy and control of the exact width than we do over the depth. The pit defects were 

synthesized by electron beam lithography on Si substrates using a process described in 

detail elsewhere
10

. A spin-on-glass resist (HSQ) process was employed and the pits were 

formed in a highly robust silicon oxide.  For this study we also utilized lithographically-

patterned particles with the proper heights and widths. The separate particle and pit defect 

substrates consisted of defects having the same depth but a variety of widths. Prior to 

planarization these programmed substrate defects were characterized on a Digital 

Instruments Atomic Force Microscope (AFM).  We targeted a depth/height value of ~ 70 

nm and came close to this according to the AFM measurements; the mean depth of the 

pits was ~ 68 nm and the mean height of the particles was ~ 71 nm.  To simplify the 

discussion we will be focusing on substrate defects with an aspect ratio of 1 and will be 

referring to substrate defects ~70 nm deep or high by ~ 70 nm wide as “70 nm pits” or 

“70 nm particles”. While the pit defects are new, the particle-like substrate defects are 

very similar to those used and described previously
9
. The surface roughness of the 

samples with the pit substrate defects was ~ 0.7 nm rms, which is rougher than the < 0.2 

nm rms generally obtained for the particle defect samples. Since the work that is 
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described in this paper the  roughness of the pit substrate defect samples has been 

reduced further 
10

 by using a different process. 

 

b.) Improving the Ion beam Thin Film Planarization Process. 

 

As described previously
7,9

, the ion beam thin film planarization process uses a 

multilayer-based coat-and-etch process shown schematically in Figure 3. Alternating 

layers of molybdenum (Mo) and silicon (Si) layers are deposited each several nm thick.  

For the Si layers, ~1-2 nm more Si is deposited and then etched away.  This process was 

successfully used to smooth particles up to ~80 nm in diameter; however, this process 

was limited for pit smoothing, as shown in Figure 3. One possibility to enhance the 

performance of the smoothing process was to deposit much more Si and etch it away, but 

there are disadvantages with this approach. The pitfalls include argon incorporation, 

larger errors in the multilayer period, potential interface roughening, and a longer process 

time. The first three are issues only if the Mo/Si is to be used as the reflective layer for 

EUV lithography applications. An alternative approach is to eliminate the Mo layers 

altogether and use a Si-only ion beam thin film planarization process to smooth surface 

defects prior to the deposition of a reflective Mo/Si multilayer film. This frees one to 

develop and apply a more potent smoothing process since most (or all) of the Si can be 

etched away. A potential negative consequence of this approach is the potentially higher 

stress of the Si versus Mo/Si
11

; however, the fact that one could conceivable leave a 

smaller amount of residual film at the end of the process mitigates the effect of the higher 
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Si stress. All of results described in this paper derive from this improved version of the 

ion beam thin film planarization process. 

Unless noted otherwise, approximately 8.7 nm of Si was deposited and different 

amounts were etched, as will be described when the results are presented and discussed.  

The deposition flux was directed at approximately normal incidence for all runs; the etch 

angle was varied, as will be described when the results are presented and discussed. 

The primary ion source beam energy was 600 eV; these are the ions used to 

generate the deposition flux from the target. The energy of the secondary ion source,  

used for etching of the Si in the smoothing process was 250 eV. Argon was used as the 

source gas for both ion sources. A schematic diagram of the deposition system is shown 

elsewhere
7,9

. 

 

c) Characterization of substrate defects after planarization 

 

After the application of the Si coat-and-etch process the samples were measured 

again with AFM to characterize the depth (for pits) and height (for particles) and width of 

the defects at the film surface. The values were determined by averaging over a number 

of defects, and the quoted error is the standard deviation of the values. Specifics about 

process parameters for particular coating runs, when and where appropriate, are listed 

throughout the tables and text.  

Cross-sectional transmission electron microscopy (XTEM) samples were made by 

locating and sectioning the area of interest with a FEI 835 dual beam focused ion beam 

tool and then imaging the section in a JEOL 2010 TEM.  Fiducial marks are located with 

the SEM and a thin, electron-transparent slice is milled out of the sample at the position 



 

 10

of the defect. A sacrificial layer of platinum is deposited on the sample surface before 

milling in order to prevent staining of the sample by the gallium ion beam. A final 

cleaning takes place using a low voltage ion beam to remove any material that may have 

re-deposited during sectioning.  The section is placed on a copper grid and imaged in the 

TEM at a voltage of 200 kV.  

 

III. Results and Discussion 

A.) Planarization of pits 

 We discovered that the key element in a process to successfully smooth pit 

defects was to conduct the etching at angles well away from normal incidence  The initial 

layer was deposited with an etch angle of ~ 70° and ~ 7.6 nm of the Si was removed for 

each coat-and-etch cycle; this process was repeated for 25 cycles. Characterization of the 

pits showed that the pits had been smoothed below the detectability threshold, which is 

estimated to be ~1 nm due primarily to the roughness of the surface; this process, not 

including mechanical motion, took ~ 82 minutes. The roughness after this process step 

was 0.88 nm rms, from the original ~0.68 nm rms. Thus unlike normal incidence 

etching
7,9,12

, more oblique etch angles tended to increase the surface roughness (at least 

for the off-normal angles that we sampled). This is not a significant issue since to reduce 

the surface roughness we can apply a  Si-only coat and etch process with a normal 

incidence etch angle. This was performed followed by the deposition of a standard Mo/Si 

multilayer with a bilayer period thickness of 6.9 nm; the roughness was reduced to 0.29 

nm after these process steps were applied. The EUV reflectivity of the coating was 

measured; the peak reflectivity of 65.3% that was obtained is only slightly lower than the 
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peak reflectivity of 67.6% obtained from a sample produced in the same deposition run 

on a smooth Si substrate.   

 The key planarization mechanism in this process is expected to be shadowing, 

as illustrated in Figure 5. Due to shadowing, the etch rate at the bottom of the pit or 

scratch is essentially zero. The large difference between the etch rates at the surface of 

the film and the bottom of the defect causes the depth of the defect to rapidly decrease. 

Another potentially important contributor to the filling of the pits and the planarization 

process is redeposition of the etched material within the pit. The planarization model
8
, 

which relies on surface relaxation and the dependence of the etch rate as a function of 

angle (Figure 1), has done a good job of describing particle planarization, but did not 

perform well when first applied to the planarization of pit defects. Incorporating the 

effects of shadowing and redeposition into the model produced simulations which were in 

good agreement with experimental results for pit smoothing at a 250 eV etch. These 

calculations and results may be discussed in more detail in a future publication.   

 

 B.) Planarization of Pits: Comparison of processes which etch during deposition     

versus after deposition. 

 The ion beam thin film planarization process
9 7 uses a sequential coat-and-

etch process as described in section II. One wonders if similar planarization performance 

could be obtained by etching during deposition, as opposed to etching inbetween 

deposition steps. We performed a side-by-side comparison to evaluate this. Due to the 

inherent etch and deposition rates it was not possible to etch 7.6/8.7, or 87% of the silicon 

as was done in section IIA. We instead etched ~5.5 nm of the ~9 nm thick layers of 
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silicon and repeated this for 16 cycles. This yielded an equivalent amount of deposition 

and etching to a sample that was etched during deposition. We did not do 25 cycles as in 

section IIA since a side-by-side comparison might be problematic if both processes 

completely removed the pits; with a reasonable amount of the defect left unplanarized 

one could more effectively gauge any differences in the planarization performance of the 

two processes. 

 The mean depth and full-width-at-half-maximum (FWHM) of the ~ 70 nm 

substrate pits after planarization with the process that etches during deposition was -13 

nm and 41 nm respectively. This is a little lower but reasonably close to the mean depth 

and FWHM values of -11 nm and 35 nm obtained for the ~70 nm substrate pits after 

planarization with the standard coat-and-etch process. The surface roughness of 0.47 nm 

rms for the etch-during-deposition process was a little higher than the roughness of 0.36 

nm rms from the coat-and-etch process. Overall the results suggest that the planarization 

of substrate pits and the resulting surface roughness is slightly better with the coat-and-

etch process. One item to note is that the coat-and-etch process will also take a little more 

time than the etch-during-deposition process.  

 

C.) Planarization of Pits/Scratches and Particles Simultaneously  

 

 A key component of the pit planarization technique described above is to use 

an incidence etch angle that is significantly off-normal (e.g., about 70 degrees from normal). 

While excellent pit/scratch planarization occurred under these conditions, there were two 

drawbacks. The first, which is by far the most important drawback, is that substrate particles 
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are not planarized since they actually nucleate larger defects under these conditions. The 

second drawback is that the roughness of the surface was increased, requiring an additional 

step designed to reduce the high-spatial frequency roughness, as discussed above. An 

improved process which enables pits and particles to be smoothed simultaneously and which 

results in a low surface roughness is described below.  

 A key component of the improved process was the fact that the design of the 

first process step should emphasize pit planarization without causing the substrate particle 

induced defects to get too large. This entails using an etch angle closer to normal incidence 

that the 69 degree values used previously. Modeling suggested that a 45 degree etch angle 

could be a good compromise between pit smoothing and particle enlargement, since the  

widths of the defects nucleated by particles generally increase with increasing etch angle. A 

secondary consideration was that the roughness, particularly the mid-spatial frequency 

roughness, increased for etch angles > 45 degrees. For the first step of this new process, 

about 7.4 nm of the 8.7 nm of Si deposited per cycle was etched away.  This sequence was 

repeated 15 times. 

 The second and subsequent planarization process steps were designed to 

emphasize particle planarization but to also have a beneficial effect on pit and scratch 

planarization. For this an etch angle of 0 degrees was used (normal incidence). For most of 

these process steps about 7.4 nm of the 8.7 nm of Si deposited per cycle was etched away; 

however, for a small fraction of the cycles, about 1.2 nm more was etched away than was 

deposited per cycle, i.e., 9.9 nm, which was found to enhance the planarization. To do this 

for more than several cycles can results in turning the particle into a significant crater in the 
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substrate, which can be undesirable. Table 1 lists all of the process steps that were used in the 

demonstration.  

 

 The particle and pit samples used in the Table 1 process sequence had a 

standard Mo/Si reflective multilayer film deposited on them. Figure 6a shows a cross-

sectional AFM scan of the planarized pit defect along with the profile of the pit before 

planarization. Figure 6b is a close-up of the smoothed pit; the pit shape is difficult to see due 

to the higher surface roughness of the pit samples prior to planarization (as discussed in 

section IA). Figure 7a shows a cross-sectional AFM scan of the planarized particle defect 

along with the profile of the particle before planarization. Figure 7b is a close-up of the 

smoothed particle. Smoothing the particles (or pits) to ~ 1 nm or lower is important since this 

is where the defects begin to be noncritcal
5,13

.  

  Cross-sectional transmission electron microscopy was performed on the 

samples and the images are shown in Figure 8 and 9 below for smoothed lines and trenches 

respectively. These images, coupled with the AFM profiles shown in Figure 6 and 7, 

convincingly demonstrate the effectiveness of the planarization process. It should be noted 

that the process time (not including mechanical motion) for the Table 1 process is ~ 7.5 

hours. For EUVL mask blank fabrication it is important that this time be reduced; this work 

is underway and will be reported in a future publication. Also for EUVL mask applications it 

is important that the planarization process not add significant numbers of particles
14

 and 

future work is planned in this area on an ultraclean deposition tool located at another 

institution
15

. 
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D.) Planarizing Substrate Roughness  

 The reflectivity of EUV multilayer films is highly dependent on the high 

spatial frequency roughness of the underlying substrate.
16

 For an EUVL lithography tool the 

throughput (i.e., how many wafers containing integrated circuits a tool can process per hour) 

is very dependent on the reflectivity of the reflective optics and mask in the tool (although 

the optics have more importance since they represent several reflections versus one for the 

lone mask). One can planarize roughness by etching the Si layers in a Mo/Si multilayer film 

or by etching the Si layers in a pure Si planarization layer and then deposit the (unetched) 

Mo/Si multilayer on top of the planarization layer.  One disadvantage of the former process is 

that with heavy etching one can entrap a significant amount of inert gas (such as Ar) into the 

film from the ion source, and this will reduce the EUV reflectivity of the multilayer film. One 

may also increase the roughness of the Mo-Si interfaces with heavy etching as well as 

increase thickness errors, increasing wavelength errors in the reflected EUV light . By 

employing the present technique, one can coat and etch (and etch significantly) to planarize 

substrates with large roughness values and the multilayer needs to only be deposited after this 

process is completed, so there is no resulting damage to the multilayer.  

 As a demonstration this new process has been used to smooth a substrate 

having an initial roughness of 0.75 nm rms to a roughness of 0.20 nm rms. This process 

makes such a substrate smooth enough to use it for reflective optics in an EUVL stepper 

without the need for super-polish. Figure 10 shows the surface of the substrate before and 

after applying the present coat-and-etch planarization process. Figure 11 shows the power 

spectral density before (black) and after planarization (red, dashed).  The measured EUV 

reflectivity after a standard Mo/Si multilayer film was deposited on the planarized substrate 



 

 16

was 65.5%; to the best of our knowledge this is a record EUV reflectivity for deposition on 

such a rough (0.75 nm rms) substrate.   

 

IV.  Conclusions 

 Our previous coat-and-etch process which successfully planarized ~70 nm 

substrate particle defects
9
and relies on normal incidence etching induces substrate pit defects 

to grow larger. We have developed a process to planarize ~70 nm substrate pits; it relies of 

utilizing etching at an off-normal angle. It also requires only silicon be used, i.e., not Mo/Si 

as was previously employed
6,7,9

. A disadvantage of this pit smoothing process is that it 

induces defects nucleated by substrate particles to grow larger. Combining some of the 

elements from both processes we have been able to successfully planarize ~70 nm substrate 

particles and pits simultaneously to at or below 1 nm in height, a value important for 

applications such as extreme ultraviolet lithography masks. The silicon-based coat-and-etch 

process has an added ability to significantly reduce high-spatial frequency roughness, 

generating a nearly perfect substrate surface.  
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                                                             Tables 

 

 

Table 1.  The process sequence for planarizing ~70 nm substrate pits and particles 

simultaneously. In each cycle ~ 8.7 nm of Si was deposited before being etched by the 

amount denoted in the Table. 

Sample 

# 

# of 

cycles 

Amount of Si 

etched per 

cycle (nm) 

Pit 

depth 

(nm) 

Pit 

FWHM 

(nm) 

Particle 

depth 

(nm) 

Particle 

FWHM 

(nm) 

Etch 

angle 

(deg) 

V1799   15    7.4 - 12.1  51.1  62.8   151.7     45 

V1800   20    7.2 - 2.1  155.3  5.86   193.4      0 

V1801    5    9.9 - <1      -      -        -      0 

V1808   40    7.4 - 0.3      -  1.39   376.3      0 

V1816   60    7.2  -0.3      “  1.03   387.2       0 
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Figure captions 

Figure 1. The Si etch rate, normalized to the normal-incidence etch rate (0
o
), as a function of 

incident angle for argon ions with an average energy of 250 eV. 

Figure 2.  Illustration of the progressive effect of normal incidence etching on a film defect 

nucleated by (a) a particle and (b) a pit.  

Figures 3.  Cross-sectional surface profile as measured by AFM for a ~70 nm deep by ~70 

nm wide pit (far left), the pit after deposition of a standard Mo/Si coating (~350 nm thick) 

and after application of our planarization process which successfully smoothed ~ 80 nm 

diameter particles to less than 1 nm in height
9
.  

Figure 4.  Illustration of the silicon coat-and-etch process used to planarize the substrate 

surface. 

Figure 5.  Illustration of how off-normal incidence etching can planarize substrate pits. 

Figure 6.  Cross-sectional surface profile as measured by AFM for (a) a ~70 nm deep by ~70 

nm wide pit before and after application of the planarization process and (b) close-up of the 

smoothed pit. This pit was smoothed in the same experimental run as the particle shown in 

Figure 7. 

Figure 7.  Cross-sectional surface profile as measured by AFM for (a) a ~70 nm deep by ~70 

nm wide particle before and after application of the planarization process and (b) close-up of 

the smoothed particle.  

Figure 8. Cross-sectional TEM image of a substrate trench which was successfully planarized 

with the silicon coat-and-etch process described in Table 1 and then overcoated with a 
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reflective Mo/Si multilayer film. This planarization was accomplished in the same 

experimental runs as the substrate line shown in Figure 7. 

Figure 9. Cross-sectional TEM image of a substrate line which was successfully planarized 

with the silicon coat-and-etch process described in Table 1 and then overcoated with a 

reflective Mo/Si multilayer film. This planarization was accomplished in the same 

experimental runs as the substrate trench shown in Figure 6. 

Figure 10.  Surface topography, as measured by AFM, for zerodur substrates before and after 

planarization.  

Figure 11.  Power spectral density curves, extracted from AFM measurements, for a zerodur 

substrate before and after planarization. The integrated roughness of 0.75 nm rms was 

reduced to 0.20 nm rms. 
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