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A Silicon Monoxide Lithium‑Ion Battery Anode 
with Ultrahigh Areal Capacity
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HIGHLIGHTS

• The large-sheet holey graphene framework/SiO (LHGF/SiO) composite displays notably high recoverable strain, suggesting consider-
ably improved mechanical flexibility and robustness

• The LHGF/SiO anode with a mass loading of 44 mg  cm−2 delivers a high areal capacity of 35.4 mAh  cm−2 at current density of 
8.8 mA  cm−2 and retains a capacity of 10.6 mAh  cm−2 at 17.6 mA  cm−2

• The LHGF/SiO anode with an ultra-high mass loading of 94 mg  cm−2 delivers an extraordinary areal capacity up to 140.8 mAh  cm−2, 
about 1–2 order of magnitude higher than those in typical commercial devices

ABSTRACT Silicon monoxide (SiO) is an 
attractive anode material for next-generation 
lithium-ion batteries for its ultra-high theoreti-
cal capacity of 2680 mAh  g−1. The studies to 
date have been limited to electrodes with a rela-
tively low mass loading (< 3.5 mg  cm−2), which 
has seriously restricted the areal capacity and its 
potential in practical devices. Maximizing areal 
capacity with such high-capacity materials is 
critical for capitalizing their potential in practi-
cal technologies. Herein, we report a monolithic 
three-dimensional (3D) large-sheet holey gra-
phene framework/SiO (LHGF/SiO) composite 
for high-mass-loading electrode. By specifically 
using large-sheet holey graphene building blocks, we construct LHGF with super-elasticity and exceptional mechanical robustness, which 
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is essential for accommodating the large volume change of SiO and ensuring the structure integrity even at ultrahigh mass loading. Addi-
tionally, the 3D porous graphene network structure in LHGF ensures excellent electron and ion transport. By systematically tailoring 
microstructure design, we show the LHGF/SiO anode with a mass loading of 44 mg  cm−2 delivers a high areal capacity of 35.4 mAh  cm−2 
at a current of 8.8 mA  cm−2 and retains a capacity of 10.6 mAh  cm−2 at 17.6 mA  cm−2, greatly exceeding those of the state-of-the-art 
commercial or research devices. Furthermore, we show an LHGF/SiO anode with an ultra-high mass loading of 94 mg  cm−2 delivers an 
unprecedented areal capacity up to 140.8 mAh  cm−2. The achievement of such high areal capacities marks a critical step toward realizing 
the full potential of high-capacity alloy-type electrode materials in practical lithium-ion batteries.

KEYWORDS Silicon monoxide; Large-sheet holey graphene; Lithium-ion batteries; High mass loading; Ultra-high areal capacity

1 Introduction

The graphite anode has shown tremendous success in com-
mercial lithium-ion batteries (LIBs), but faces fundamental 
capacity limitations (372 mAh  g−1) for the next generation 
of energy storage devices [1–3]. To this end, the search for 
electrode materials with higher specific capacity is drawing 
increasing attention. Silicon monoxide (SiO) represents an 
attractive anode material for high-energy density LIBs for its 
high theoretical capacity (2680 mAh  g−1, assuming all the Si 
in SiO can be converted into  Li4.4Si during lithiation) [3, 4]. 
However, SiO anodes are generally plagued with inherently 
poor charge (electrons and ions) transport properties and the 
large volume change that leads to rapid pulverization during 
cycling, both of which limit the achievable mass loading and 
contribute to poor cycling performance with rapidly fading 
capacity [5–7].

Considerable efforts have been exerted in adopting SiO 
into LIBs anode to realize high reversible capacity [8, 9]. 
However, the studies to date have been largely limited to 
proof-of-concept demonstrations with a relatively low mass 
loading of SiO (0.8–3.5 mg  cm−2), which limits the overall 
areal capacity and poses a serious challenge for practical 
technologies [10, 11]. In today’s LIBs, the graphite anodes 
with mass loading of ~ 10 mg  cm−2 typically deliver an areal 
capacity of ~ 3 mAh   cm−2 [12, 13]. For next-generation 
LIBs, the areal capacity should reach up to ~ 6 mAh  cm−2 
in order to minimize the mass contribution associated with 
electrode area-dependent passive components (e.g., current 
collectors and separators) [14, 15]. To this end, it is highly 
desirable to implement high capacity materials in high mass 
loading electrodes [14]. The fabrication of such high-mass-
loading electrodes can not only simplify manufacture steps 
to lower the cost but also boost the overall cell-level energy 
density [15].

However, there are considerable fundamental challenges 
in implementing high-capacity alloy-type materials with 
high mass loading using the conventional slurry-based elec-
trode architecture. First, the high-capacity alloy-type elec-
trodes typically feature a very large volume change during 
the charge/discharge process. When implemented in high 
mass loading, such large volume change could result in 
serious physical disintegration, pulverization and delami-
nation from the current collector (Cu or Al foil). Second, 
the implementation of high-capacity electrode materials 
with high mass loading requires an unusually high charge 
transport capability for both electrons and ions to supply 
sufficient charge to fully utilize the storage capacity of the 
high capacity-material, which is beyond the limit of cur-
rent slurry electrode design [10, 15]. Therefore, the imple-
mentation of high capacity electrode in high mass loading 
electrode remains a persistent challenge for the field, and a 
critical roadblock towards the realization of the full potential 
of high-capacity materials.

Here, we report a monolithic three-dimensional (3D) 
large-sheet holey graphene framework/SiO (LHGF/SiO) 
composite with several distinguished advantages for ultra-
high areal capacity electrode. First, the assembly of 3D 
hierarchical porous structure with large sheet graphene and 
extended-interaction ensures exceptional mechanical robust-
ness and flexibility to accommodate the large volume change 
of SiO and ensures the structure integrity even at ultrahigh 
mass loading. Second, the continuous graphene network 
structure ensures excellent electron conductivity, while the 
hierarchical 3D porous structure with fully interconnected 
microscale and nanoscale channels greatly promote the 
ion transport, both of which are critical for efficient charge 
delivery necessary for ultra-high mass loading. Together, 
we show the LHGF/SiO electrodes with an ultra-high mass 
loading of 94 mg  cm−2 deliver an ultra-high reversible areal 
capacity up to 140.8 mAh  cm−2, and the full-cells energy 
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density reaches up to 393 Wh  kg−1, greatly exceeding those 
in the advanced research or commercial devices. The study 
represents a critical step forward toward implementing high-
capacity SiO-based electrode materials in practical devices.

2  Experiment Section

2.1  Preparation of Large‑Sheet Holey Graphene 
Aqueous Solution

Large-sheet graphene oxide (LGO) was prepared by oxida-
tion of crystalline flake graphite (50 mesh; XFNANO Tech. 
Co., Ltd, Nanjing, China) following a modified Hummers’ 
method, and the large-sheet holey graphene oxide (LHGO) 
was prepared by the previous method [12, 16]. Briefly, 
50 mL of 2 mg  mL−1 LGO aqueous dispersion was mixed 
with 5 mL 30%  H2O2 aqueous solution and then heated at 
90 ℃ under stirring for 2 h. According to the previous stud-
ies, the oxidative-etching process initiates from the chemi-
cally more active oxygenic defect sites and propagates in 
the basal plane of LGO to form increasingly larger pores 
with increasing etching time. Then, the in-plane pores in the 
holey graphene sheet function as ion transport shortcuts in 
the hierarchical porous structure to facilitate rapid ion trans-
port throughout the entire 3D electrode and greatly improve 
ion access to the surface of the SiO [12, 16]. The as-prepared 
LHGO was purified by repetitive centrifuging and washed 
to remove the residual  H2O2 and then re-dispersed in deion-
ized (DI) water.

2.2  Preparation of LHGF/SiO Composite

The LHGF/SiO composite anode was prepared using a two-
step process. Firstly, the large-sheet graphene/SiO (LG/SiO) 
composite was prepared by mixing SiO powder (99.9%, 
Sigma-Aldrich) and LGO solution with a mass ratio of 2:1. 
The product was freeze-dried (KRSYQ-10A, Changsha 
China) and annealed at 850 ℃ under argon flow for 4 h. Sec-
ondly, the LG/SiO sample was dispersed into HGO with a 
mass ratio of 5:2 and then experienced a thorough magnetic 
stirring. After that, excess ascorbic acid (VC) (mVC:mLHGO, 
4:1) was added into this aqueous mixture and heated at 
90 ℃ for 6 h to synthesize LHGF/SiO composite hydrogel 
with 75% SiO (LHGF/SiO-75%). The LHGF/SiO compos-
ite hydrogel with 50% SiO (LHGF/SiO-50%) was obtained 

using the same method by controlling the mG/SiO:mLHGO as 
2:1. The as-prepared LHGF/SiO composites were washed by 
DI water for three times to remove needless impurities. After 
freeze-drying, the samples were annealed at 850 ℃ under 
argon flow for 4 h. As a comparison, the large-sheet gra-
phene framework/SiO (LGF/SiO) composite without holey 
structure was obtained using the same two-step process by 
replacing LHGO with LGO aqueous solution.

2.3  Preparation of Pure Slurry SiO Electrode

The SiO powder, conductive carbon and polyvinylidene 
fluoride (PVDF) with a mass ratio of 20:3:4 were dispersed 
in a mixed N-methyl pyrrolidone (1.2 mL) under magnetic 
stirring. Then, the slurry was painted onto a Cu foil and 
vacuum-dried at 60 ℃ for 24 h as anode. The mass loading 
of the SiO electrode was about 11 mg  cm−2.

2.4  Material Characterization

The morphology and structure of materials were character-
ized by scanning electron microscopy (SEM, Mira3 TES-
CAN, Czech Republic), transmission electron microscopy 
(TEM, Titan S/TEM FEI, America), X-ray diffraction 
patterns (XRD, SmartLab 3 kW Rigaku, Japan), inVia-
reflex confocal Raman spectrometer with a 633-nm laser 
as the excitation source (Renishaw, UK). The mechani-
cal properties of the HGF/SiO and LHGF/SiO were stud-
ied using an Instron 3365 universal testing machine with 
100-N load cells at a strain rate of 10 mm  min−1 (Instron, 
3365, America). Nitrogen adsorption–desorption isotherm 
at 77 K was measured on an ASAP 2020 absorption ana-
lyzer (Micromeritics, America). The specific surface area 
and the pore size distribution of the samples were deduced 
using the Brunauer–Emmett–Teller (BET) and the Bar-
rett–Joyner–Halenda (BJH) analysis method, respectively. 
Thermogravimetric analysis (TGA, HTG-1, Beijing China) 
was conducted in the air atmosphere from room temperature 
to 800 ℃ at a heating rate of 10 ℃  min−1.

2.5  Electrochemical Characterization

The free-standing LGF/SiO and LHGF/SiO composites 
were mechanically compressed and served as the working 
electrode without any binder or conductive additive with 
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lithium metal as counter and reference electrode to assem-
ble 2032-type half-cell in an argon-filled glove box under 
water and oxygen content below 0.5 ppm. The lithium hex-
afluorophosphate  (LiPF6) dissolved in a mixture of ethylene 
carbonate (EC), dimethyl carbonate (DMC), diethyl carbon-
ate (DEC) and fluoroethylene carbonate (FEC) was used as 
the electrolyte (1.0 M  LiPF6 in EC/DMC/DEC + 5% FEC, 
VEC:VDMC:VDEC = 1:1:1, Nanjing Mojiesi Energy Tech., 
Co., Ltd., Nanjing, China). The typical areal mass loadings 
of the electrode materials were controlled to 11, 21, and 
44 mg  cm−2 for the studies of mass loading dependence. The 
compacted density of the electrodes is around 1.3 g  cm−3. 
The galvanostatic charge/discharge cycling and alternating-
current impedance tester (in a frequency range between 
100 kHz and 0.01 Hz at potentiostatic signal amplitude of 
10 mV) were conducted in a multichannel battery testing 
system (LAND CT2001A, LANDTE Co., Wuhan, China) 
and Vertex.One.EIS electrochemical station (IVIUM Tech-
nologies BV, Eindhoven, Netherlands), respectively. The 
simulation of the experimental impedance was conducted 
with IVIUM software. The equivalent circuit for the fit-
ting of impedance spectra at the SOC of 0% was conducted 
by the generalized finite length Warburg element (W) for 
descriptive purposes [17, 18].

3  Results and Discussion

3.1  Synthesis and Characterization 
of the Hierarchically Porous Composites

The LHGF/SiO composites were prepared as a freestand-
ing electrode via typical freeze-drying, annealing, reduction 
(self-assembly) and another high-temperature annealing pro-
cess (Fig. 1a). Scanning and transmission electron micros-
copy studies show SiO particles are uniformly distributed 
within 3D graphene network structure and with an average 
size around 3 μm (Figs. 1b and S1). Since the mechanical 
flexibility is essential for accommodating the large volume 
change and retaining the structure integrity at high mass 
loading (thick electrode), we have carefully tailored the 
starting graphene sheets to ensure extraordinary mechani-
cal robustness.

Previous efforts on HGF typically use relatively small 
graphene sheets (0.5–2.0 μm in lateral dimension), which 
often shows insufficient mechanical robustness for ultrahigh 

mass loading composite electrode [19, 20]. To address this 
challenge, we specifically used large-sheet (30–40 μm in lat-
eral dimension) holey graphene oxide (LHGO) as the start-
ing materials for constructing large-sheet holey graphene 
framework (LHGF) with considerably increased mechanical 
flexibility and robustness (see Method for details) [20–22]. 
The LHGF features the well-interconnected scaffolds with 
strong extended π–π interactions among large graphene 
sheets to endow super-elasticity and exceptional mechanical 
robustness [20–22]. We investigated the mechanical proper-
ties of HGF/SiO and LHGF/SiO with uniaxial quasi-static 
compression. As shown in Fig. 1c, the stress–strain curve 
demonstrates LHGF/SiO exhibits an extremely large com-
pressibility with strain up to 95% and corresponding stress 
of 70 MPa. The compressed stress and recoverable strain of 
LHGF/SiO is obviously higher than that of the HGF/SiO, 
indicating considerably improved mechanical flexibility and 
robustness of LHGF due to larger stacking interfaces with 
robust π–π interactions. From the viewpoint of the Young’s 
modulus, in mathematics, the Young’s modulus is calculated 
by Eq. (1):

where σ is the uniaxial stress and ε is the strain [20, 21]. The 
LHGF/SiO (1.5 MPa) exhibited higher Young’s modulus 
than the HGF/SiO (1.2 MPa) indicating that the designed 
hierarchical LHGF/SiO can easily resist expansion of SiO 
under charge/discharge cycling. Meanwhile, the tensile 
strength test for composites is based on Eq. (2):

where F is the maximal uniaxial stress and S is cross-sec-
tional area of the sample [20, 21]. The σb value of LHGF/
SiO is 4 kPa higher than that of HGF/SiO (Fig. S2), which 
demonstrates the monolithic LHGF is hard to be deformed, 
thus suggesting the positive effect to resist volume change of 
SiO [20–22]. In addition, the volume variation observed at 
lithiation results from the partial accommodation of particle 
expansion by the electrode porosity. Actually, compared to 
the HGF/SiO, the cross-sectional SEM images of LHGF/
SiO illustrate that the cellular walls of LHGF are quite stable 
even though volume expansion of the SiO can reach ~ 200% 
(average size around 6 μm) during discharge process (Figs. 
S3 and S4).

It is interesting to note that the cylindrical LHGF/SiO 
sample demonstrates typical hyperboloid-shaped shrinkage 
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in the macrostructure configuration under longitudinally 
applied compression (upper inset in Fig. 1c), suggesting 
a peculiar negative Poisson’s ratio (PR) behavior, which 
has been observed in similar graphene aerogel structure 
and is beneficial for retaining the structural stability upon 
compression [20, 21]. In contrast, the HGF/SiO sample 
shows slightly biconvex (indicating typical positive PR 
behaviors [20]) instead of hyperboloid-shaped shrinkage 
under longitudinally applied compression, with apparent 
cracks and some pieces breaking off from the cylindrical 
composite (low insets in Fig. 1c). Indeed, when a thick 
composite (with equivalent mass loading of ~ 30 mg  cm−2) 
was compressed for 95% for battery assembly, the LHGF/

SiO composite well maintains the structural integrity 
(upper images in Fig. 1d), while the HGF/SiO composite 
with a similar mass loading shows apparent pulveriza-
tion (lower images in Fig. 1d) cannot be used for battery 
assembly. Such an elaborate mechanical design with large 
sheet holey graphene is essential for retaining the struc-
tural stability at an ultrahigh mass loading.

For comparison purpose in battery performance, we have 
prepared LHGF/SiO composite as well as the non-holey 
counterpart (LGF/SiO) using a similar process, with two 
mass fractions of SiO of 50 and 75 wt% (Fig. S5). The as-
synthesized LHGF/SiO before annealing is amorphous as 
indicated by XRD studies (Fig. S6) and remains amorphous 
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BJH pore size distribution for LHGF/SiO and LGF/SiO composites
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after calcination at 850 ℃ in argon [23]. TEM and selected 
area electron diffraction (SAED) studies also confirm the 
micrometer-scale SiO particles are amorphous (Fig. S1d) 
[24, 25]. High-resolution TEM studies confirm the porous 
structure of holey graphene sheets obtained by etching in 
 H2O2 solution, with pore sizes of about 2–4 nm (Fig. 1e). 
The in-plane pores in the holey graphene sheet function as 
ion transport shortcuts in the hierarchical porous structure 
to facilitate rapid ion transport throughout the entire 3D 
electrode and greatly improve ion access to the surface of 
the SiO extending the reaction time which would lead to a 
more aggressive etching of LGO, enlarging the pore size. 
The Raman spectroscopy shows the D (~ 1340  cm−1) and G 
(~ 1590  cm−1) bands of graphene, and a characteristic band 
of SiO (500  cm−1) (Fig. 1f) [26]. The LHGF/SiO shows 
more pronounced D-band signal than that of LGF/SiO com-
posite due to more disorders and defects in the nanoporous 
structure of the holey graphene sheets [27]. The  N2 adsorp-
tion/desorption isotherms indicate the four different com-
posites with various cumulative volumes of pores (Fig. S7). 
The total surface area calculated by BET method decreases 
from 52 to 28  m2  g−1 with the increase in the weight per-
centages of SiO for LHGF/SiO-50% and LHGF/SiO-75%. 
Similarly, the surface area of LGF/SiO-50% and LGF/SiO-
75% decreases from 39 to 16  m2  g−1 (Table S1). Meanwhile, 
the Barrett–Joyner–Halenda (BJH) analysis reveals that the 
total pore quantity in the LHGF/SiO is more than twice of 
that in the LGF/SiO composite (Fig. 1g).

3.2  Evolution of Kinetic Properties 
and Electrochemical Characteristics with Porosity

The hierarchical porous structure of LHGF/SiO provides 
a rapid interpenetrating pathway for efficient transport of 
both electrons and ions [28]. In particular, with the unique 
design of LHGF architecture,  Li+ can rapidly pass through 
the in-plane nanopores in the holey graphene, thus greatly 
shortening its conduction pathway compared with non-holey 
graphene framework, leading to more efficient ion transport 
(Fig. 2a) [12, 29]. To this end, we have conducted the elec-
trochemical impedance spectroscopy (EIS) measurements 
using a symmetric cell with two identical electrodes to probe 
the effect of structural features on the ion transport kinetics. 
Compared to the conventional EIS tests of half-cells with 
the issue of overlapping profiles for the anode and cathode, 

symmetric cells using identical electrodes were adopted to 
decouple the internal resistance. Electrochemical processes 
in porous electrodes include the electrolyte bulk resistance 
(Rsol), the ionic resistance in pores (Rion), an electric double 
layer at the electrode/electrolyte interface (Cdl), and charge 
transfer resistance (Rhigh, the Rhigh is equaled to Rct in the 
impedance theory for pores based on the transmission line 
model (TLM)). All of them can be interpreted by the TLM 
(Fig. 2b) [30].

The Nyquist plots describe a non-faradaic process when 
the state of charge (SOC) is at 0% (Fig. 2c). Mathemati-
cally, the real axis projection length values are defined as 
Rion/3, where Rion is the ionic resistance of the electrolyte-
filled pores inside the 3D electrode architecture (see Sup-
plementary Text for more details), which is a determining 
factor for the rate capability (Fig. S8) [31]. This projection 
is defined as Rion/3, as derived from a TLM for cylindrical 
pores. The gradual changes in projection length values for 
the different electrodes show a decrease in ionic resistance 
(Rion) from 24.8 to 9.6 Ω  cm2, with increasing pore size in 
the LHGF scaffold [30]. Significantly, the Rion values in the 
holey LHGF/SiO composites are notably lower than that in 
the non-holey LGF/SiO composites (Fig. 2e), highlighting 
the critical role of the in-plane pores in facilitating the effi-
cient ion transport in the 3D composites. Previous reports 
have shown Rion is the major factor influencing the electro-
chemical properties, particularly in thick electrodes [29, 31]. 
We have also used the TLM to simulate the EIS and obtained 
resistance values for various electrodes (Table S2).

Ion transfer behavior during the non-faradaic process can 
be also evaluated by complex capacitances (see Supplemen-
tary Text). In the theory of EIS, the imaginary capacitance 
(Cim) displays a normal distribution curve with regard to 
frequency (Fig. 2d). The reciprocal of the peak frequency 
corresponds to the relaxation time constant of the electric 
double-layer, which is an important parameter in character-
izing the ion-transfer rate or responsiveness time [29–31]. 
Again, the optimized holey LHGF/SiO composites show 
a much shorter time constant (1.26 and 1.58 s for LHGF/
SiO-50% and LHGF/SiO-75%, respectively) than that of 
non-holey composites (2.50 and 3.16 s for LGF/SiO-50% 
and LGF/SiO-75%, respectively) (Fig. 2f) [29, 31]. Overall, 
in this system, these studies illustrate that the ion transport 
kinetics can be greatly boosted by tailoring the in-plane 
pores in the large holey graphene sheets that form the 3D 
graphene scaffold [31].
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In the literature, the following lithiation mechanism of 
SiO has been proposed to occur during the charge/discharge 
process that has been widely accepted [3, 31]:

During reaction (3), an active/inactive composite phase 
is formed, in which the active Si phase can be reversibly 
cycled within the inactive  Li4SiO4 matrix. Here,  Li4SiO4 has 
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been reported to be a Li-ion conductor [32]. And the active 
phase can combine with approximate four times Li-ions to 
deliver high capacity (2680 mAh  g−1) in theory [3]. All of 
these factors permit the ultrahigh mass loading and thick 
electrode performance.

To elucidate the roles of SiO and graphene in the LHGF/
SiO for Li storage, we used cyclic voltammetry experiments 
to analyze the capacity contribution mainly from the dif-
fusion-controlled process (Fig. S9 and supplementary text) 
[12]. For scan rates from 0.1 to 0.5 mV  s−1, b ~ 0.24 indicates 
that charge storage is largely controlled by semi-infinite dif-
fusion, which is beneficial to high-energy density devices 
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(Fig. S9b–c). The data for the LHGF/SiO-75% electrode and 
the fast surface-controlled process can only be exceeded up 
to 20 mV  s−1 (Fig. S9d). Generally, inside of the hierarchi-
cal 3D structure with a large number of new surfaces would 
generate several electric double-layers during the charge/
discharge process. We used microparticles (not nanoparti-
cles) to fill in 3D structure interlamination to separate the 
electric double-layer structure. Therefore, the charge storage 
is predominantly controlled by diffusion, which is benefi-
cial to high-energy density devices. Together, these studies 
further establish that LHGF with optimized in-plane pores 
is essential for electrolyte transport throughout the entire 
electrode for the full utilization of the active materials and 
realization of high areal capacity properties at high levels of 
mass loading [12, 13].

3.3  Effects of Mass Loading on Electrochemical 
Characteristics

With well-designed 3D hierarchical structure of LHGF/
SiO, superior electrochemical performance can be 
obtained. A series of galvanostatic charge/discharge curves 
of LGF/SiO and LHGF/SiO with different SiO ratio and 
current densities at the mass loading of 11 mg  cm−2 were 
investigated. The results indicate that the LHGF/SiO-75% 
electrode presents higher areal capacity than that of LGF/
SiO-75%, LHGF/SiO-50% and LGF/SiO-50% at given 
current densities (Fig.  3a, b and S10). The optimized 
LHGF/SiO-75% electrode shows a relatively high areal 
capacity at different current densities (Fig. 3c). For exam-
ple, the LHGF/SiO-75% electrode with mass loading of 
11 mg  cm−2 presents high areal capacity of 13.3 mAh  cm−2 
at a current density of 2.2 mA  cm−2, which is 50% higher 
than that of the LGF/SiO-75% electrode (8.8 mAh  cm−2). 
Compared with LGF/SiO electrode, the LHGF/SiO elec-
trode clearly shows an enhanced  Li+ storage property at 
a given rate, which is attributed to the in-plane nanopo-
res on graphene sheets that provide adequate ions transfer 
channels to reduce the internal resistance and the associ-
ated potential drop. As current density is increased to a 
higher level of ~ 5.5 mA  cm−2, the areal capacity fades 
rapidly, which is mainly limited by the penetration depth 
of ionic current in thick electrode and signifies the ion 
transport limit of this electrode architecture design [33]. 
In other words, the LHGF/SiO-75% and LGF/SiO-75% 

display similar transportation performance of electron at 
high current densities, leading to slightly different between 
LHGF/SiO-75% and LGF/SiO-75% in rate performance, 
especially at a current density of 6.6–9.9 mA  cm−2. After 
that, as an important parameter of flexible device, the 
folding endurance was also evaluated by typical voltage 
profiles of the flexible battery devices after being bended 
from vertical direction for 20 times. No remarkable change 
of the charge/discharge profiles is observed from 2nd to 
50th continuous cycles, indicating outstanding mechanical 
flexibility (Fig. S11).

Subsequently, three levels of mass loadings were 
investigated, corresponding to practical levels of loading 
(11 mg  cm−2), and representative of future high levels 
of loading of 21 and 44 mg  cm−2. The LHGF/SiO-75% 
electrode shows a significant increase in capacity with 
increasing mass loading (Fig. 3d). Impressively, at the 
mass loading of 44 mg  cm−2, the LHGF/SiO-75% deliv-
ers a high areal capacity of 35.4 mAh  cm−2 at a current 
of 8.8 mA  cm−2, and retains a capacity of 10.6 mAh  cm−2 
at the ultra-high current of 17.6  mA   cm−2. Both the 
areal capacity and the current density are much higher 
than those of the state-of-the-art commercial anodes 
(~ 3.5 mA  cm−2 and 4.0 mAh  cm−2). To further explore 
ultimate limit of the areal mass loading, battery perfor-
mance of LHGF/SiO-75% electrode with a mass loading 
of 94 mg   cm−2 is investigated (Fig. 3e). Significantly, 
the electrode exhibits an exceptional areal capacity of 
140.8 mAh  cm−2 under a current density of 4.7 mA  cm−2, 
and a high areal capacity of 10.3 mAh  cm−2 even at an 
ultra-high current density up to 28.2 mA  cm−2.

These results indicate that the highly interconnected 
interpenetrating network in the LHGF promotes the rapid 
transfer of ions/electrons, and thus enables ultra-high areal 
capacity at various current densities well beyond the cur-
rent state of the art [34]. With the monolithic 3D architec-
ture, the LHGF shows excellent mechanical robustness to 
accommodate the repeated volume change during charge/
discharge process and thus ensures cycling stability. The 
LHGF/SiO-75% electrode could deliver a reversible 
areal capacity of 15.6 mAh  cm−2 at a mass loading of 
21 mg  cm−2, and a capacity retention of 79% at the current 
density of 2.1 mA  cm−2 after 120 cycles, representing an 
excellent cycling stability among high areal capacity elec-
trodes (Fig. 3f). Besides, the initial Coulombic efficiency 
(ICE) of LHGF/SiO-75% is as high as 74%.
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3.4  Effect of Mechanical Reinforcement on Achievable 
Thickness

To further probe the impact of LHGF in accommodating and 
buffering the volume changes, we have analyzed the elec-
trode structure after charge and discharge process. For a typ-
ical SiO-based slurry electrode, the volume expansion and 
contraction during the charge/discharge process could cause 
notable irrecoverable pulverization, physical disintegration, 
generating considerable porosity, leading to macroscopic 
volume expansion (Fig. 4a). Indeed, the cross-sectional 

SEM images of a conventional slurry SiO electrode clearly 
show extensive pore/crack formation along with a thickness 
increase from 108 to 255 µm after the first lithiation process 
(Fig. 4c, d), corresponding to ~ 126% volume expansion. The 
thickness shrinks back to 172 µm after delithiation (Fig. 4e), 
indicating ~ 60% irreversible volume change. Such a large 
change would inevitably lead to electrical disconnection and 
rapidly capacity fading.

In contrast, with encapsulation by the mechani-
cally strong monolithic LHGF framework, the vol-
ume change in SiO particles in LHGF/SiO electrode is 
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microscopically accommodated by the built-in porosity 
within the 3D LHGF, with little impact to the overall 
electrode structure, and little volume change during the 
lithiation and delithiation process (Fig. 4b). In particular, 
the LHGF/SiO electrode shows a relatively small thick-
ness increase from 144 to 178 µm after lithiation (Fig. 4f, 
g). After delithiation process, the thickness decreased 
back to 155 µm (Fig. 4h), with only 8% increase over the 
original electrode, confirming the physical integrity of 
the electrode are well retained in LHGF/SiO, which is 
essential for ensuring the electrical integrity to stabilize 
cycling performance of the electrode.

3.5  Implications of High Mass Loading

In principle, the areal capacity scales linearly with mass 
loading in the ideal case. However, the inherent charge 
transfer limitation generally results in a nonlinear relation-
ship in most electrode design, particularly at high mass 
loading or high rate when the charge transport limitation 
worsens [35]. Figure 5a compares the areal capacity ver-
sus mass loading for LHGF/SiO-75% and LGF/SiO-75% 
electrode at the same current density of 100  mA   g−1. 
Importantly, the areal capacity of LHGF/SiO-75% elec-
trode shows a nearly linear scaling relationship with mass 
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loading, and the highest areal capacity reaching up to 
140.8 mAh  cm−2 is achieved at the highest mass loading 
of 94 mg  cm−2. It is noted the slope decreases slightly at 
high mass loading regime. In contrast, the LGF/SiO-75% 
electrode shows much slow increase and the areal capacity 
peak at 26.8 mAh  cm−2 at the mass loading is 44 mg  cm−2. 
Further increasing the mass loading leads to an even lower 
areal capacity, indicating charge transport limitation plays 
a dominant role in thick electrode. Such capacity fading is 
attributed to concentration effects at high current density 
(from 8.09 to 11.55 mA  cm−2) [12]. The resulted con-
centration gradient further restricts rapid charges transfer, 
resulting in capacity decrease [12, 36, 37].

Figure 5b shows the dependence of the areal capacity 
of LHGF/SiO-75% electrode at different current densities. 
When the current density of LHGF/SiO-75% is beyond 
2–5 mA  cm−2, the areal capacity starts to deviate from lin-
earity and eventually reach a plateau at 11.0 mg  cm−2. The 
plateau-like behavior at ~ 10 mA  cm−2 has been interpreted 

as reaching a limiting condition, indicating the ionic current 
reaches a maximum limitation of penetration depth [36–39].

To further illuminate  Li+ storage capacity of SiO at differ-
ent current densities, Fig. 5c shows the relationship between 
areal capacity and areal current density of LHGF/SiO elec-
trodes at different mass loadings. Notably, the electrode with 
a mass loading of 94 mg  cm−2 reaches an unprecedented 
areal capacity of 140.8 mAh  cm−2, which is much higher 
than those of previously reported anode materials [20–25]. 
The curve shape is sigmoidal for every mass loading level. 
The areal capacity tends to saturate at a maximum value at 
low current density, and the electrodes with different mass 
loadings exhibit a quite sharp decrease in areal capacity 
when the current density exceed ~ 10–20 mA  cm−2, indicat-
ing that the charge delivery is the main limiting factor at 
such high current density [38]. These analyses suggest that 
the charge transport is a major limiting factor to realize  Li+ 
storage at ultra-high current density. In other words, with-
out sufficient efficient delivery of the ion current, the active 
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material cannot be fully utilized for  Li+ storage. Further-
more, we have compared the areal capacity with the com-
mercial graphite anodes and other representative anodes 
(such as Si and  SnO2) at different current densities (Fig. 5d) 
[1, 3, 12, 33–36]. With an ultra-high intrinsic capacity and 
an unprecedented high mass loading, the optimized LHGF/
SiO-75% electrode displayed an ultra-high areal capacity 
when compared with other state-of-art research and com-
mercial devices.

Together, the LHGF/SiO-75% composite without addi-
tional current collector, conductive additive and binder, 
presents considerably higher areal capacity than that of 
other Si-based electrodes normalized by the total mass 
of the electrodes (Table 1). Moreover, the advantage of 
freestanding electrodes becomes more apparent when the 
mass of the inactive components (such as current collec-
tors ~ 10 mg  cm−2) are taken into account. We have esti-
mated the gravimetric energy density of our full cell to be 
393 Wh  kg−1 at 1 C. By comparison, this value is ~ 31% 
higher than that of the state of the art (< 300 Wh  kg−1), 
demonstrating the superlative cell-level performance 
enabled by LHGF/SiO-75% (Fig. S12). When consider-
ing the mass of inactive components, the advantages of 
high-mass-loading electrodes become even more obvious 

because of much smaller mass fraction of passive compo-
nents (Table S3). For example, assuming an area-dependent 
overhead of ~ 10 mg  cm−2 (for the current collectors and 
separators), the capacity and current density of the electrode 
with mass loading of 94, 44, and 21 mg  cm−2 will only be 
reduced by about 9.7%, 18.5%, and 32.3%, respectively. In 
comparison, the practical capacity of a lower mass loading 
electrode (~ 1 mg  cm−2) will decrease by more than 90%. 
Therefore, the LHGF/SiO-75% electrode with 3D freestand-
ing graphene scaffold offers a promising pathway for realiz-
ing the potential high-capacity materials for practical energy 
storage devices.

4  Conclusions

In conclusion, a mechanically robust LHGF/SiO composite 
was designed as a free-standing, binder-free anode for high-
performance LIBs. The fully interconnected 3D graphene 
network serves as excellent conductive skeleton for electron 
conduction, and hierarchical 3D porous structure within the 
LHGF/SiO provides an ideal architecture for electrolyte per-
meation and efficient ion transport. Additionally, the specifi-
cally designed and elaborately engineered LHGF ensures 
excellent mechanical flexibility/robustness to accommodate 

Table 1  Comparison of LHGF/SiO composite electrodes with other silicon-based electrodes

Bold indicates the excellent battery performance (better than that of other electrodes)

Electrode Mass fraction 
(%)

Active materials 
(%)

Loading (mg  cm−2) Rate capacity
(mAh  cm−2) @ (mA  cm−2)

Refs

LHGF/SiO 75.0 100 21 21.8 (2.1) 10.8 (10.5) This work
75.0 100 44 51.6 (4.4) 35.4 (8.8)
75.0 100 94 89.1 (9.4) 9.7 (28.2)

SiMP@Gr 91 80 0.8–2.5 1.5 (1.7) [2]
SiOx/C-CVD 68.2 80 1.5–2.0 1.5 (2.0) [6]
Y-S Si/C 78.0 80 2.0–3.5 2.1 (1.2) [9]
AMPSi@C 91.5 80 2.9 4.1 (1.2) [12]
p-Si/C 82.7 70 2.1 3.0 (5.5) [33]
Si@CNT/C 85 50 2.2 5.6 (0.5) [36]
SiOx/C 70 90 3.5 1.9 (11.4) [40]
Si/TiO2/C 67.2 70 1.0–1.5 1.3 (2.0) [41]
d-SiO@vG 97.5 75 1.5 3.3 (0.2) [42]
NL-Si@C – 80 1.0 0.97 (0.2) [43]
void@SiOx@C 68.3 80 1.0 0.7 (0.5) [44]
mpSi-Y 90 80 1–2.0 2.2 (0.2) [45]
HNCSi 90 60 1.9–2.0 3.16 (0.4) [46]
Si/C 60 20 3.3 2.0 (12.6) [47]
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the large volume expansion of SiO and maintain physical 
integrity and electrical connectivity of the electrode struc-
tures during the repeated charge/discharge process, and thus 
ensuring robust battery operation at ultra-high mass load-
ing. Importantly, an optimized LHGF/SiO-75% electrode 
with a mass loading of 94 mg  cm−2 delivers an exceptional 
areal capacity of 140.8 mAh  cm−2 under a high current 
density of 4.7 mA  cm−2 and retains a high areal capacity 
of 10.3 mAh  cm−2 even at an ultra-high current density 
of to 28.2 mA  cm−2, greatly exceeding the typical values 
observed in the state-of-the-art commercial or search anode 
(~ 3.5 mA  cm−2 and 4 mAh  cm−2). This work marks a criti-
cal step towards capitalizing high-capacity alloy-type elec-
trode materials for high density energy storage technologies.
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