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ABSTRACT 
Parameter quantization in convolutional neural networks (CNNs) 
can help generate efficient models with lower memory footprint 
and computational complexity. But, homogeneous quantization 
can result in significant degradation of CNN model accuracy. In 
contrast, heterogeneous quantization represents a promising 
approach to realize compact, quantized models with higher 
inference accuracies. In this paper, we propose HQNNA, a CNN 
accelerator based on non-coherent silicon photonics that can 
accelerate both homogeneously quantized and heterogeneously 
quantized CNN models. Our analyses show that HQNNA achieves 
up to 73.8x beer energy-per-bit and 159.5x beer throughput-
energy efficiency than state-of-the-art photonic CNN accelerators. 
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1. INTRODUCTION 

Artificial neural networks (ANNs), especially convolutional 
neural networks (CNNs), have gained popularity as alternatives to 
classic machine learning (ML) algorithms. CNNs have exhibited 
success across application domains such as image and video 
classification, object detection, and even sequence learning. As 
CNNs continue to be used for solving increasingly complex 
problems, they have in turn become even more compute and 
memory intensive. Research into exploring how to reduce the 
memory footprint of CNN models while retaining their inference 
accuracy has been an active area of research in recent years. Some 
examples of such research areas include exploiting sparsity in 
CNNs [1], where unnecessary model parameters are pruned, and 
inducing quantization in CNN models [2], [3], where the parameter 
bitwidths are reduced. Through quantization, both memory usage 
and energy requirement for CNN inference can be reduced. 
Increasing CNN model complexity also necessitates that the 
underlying hardware platform consistently delivers better 
performance while satisfying strict energy requirements. 
Therefore, CNN model optimizations, such as sparsity and 
quantization are being considered for emerging accelerator 
platform designs [4].  

But even with optimization at the hardware and software 
levels, electronic CNN accelerators are still prone to diminishing 
energy and throughput efficiencies, due to the slow-down of 
Dennard scaling. A potential solution to obtain better energy and 
throughput efficiency for CNN applications is to consider more 

efficient hardware technologies, such as silicon photonics, for the 
design of CNN accelerators. Silicon photonics not only enables 
low-latency and high bandwidth communication [5], [6], but can 
also be used for low-latency and energy-efficient computations, 
e.g., matrix-vector multiplication in the photonic domain [7], 
which has a computation complexity of only O(1). However, there 
are various challenges when designing an energy-efficient silicon 
photonic CNN accelerator, including high laser power, high power 
dissipation at electro-photonic interfaces, and high latencies 
associated with inevitable photonic device tuning. Moreover, none 
of the photonic CNN accelerators proposed to date support the 
execution of heterogeneously quantized CNN models.  

In this work, we propose HQNNA which is a silicon photonic 
CNN accelerator designed for optimizing both homogeneous and 
heterogeneous quantization in CNN models for energy- and 
throughput-efficient inference acceleration with high accuracy. 
Our novel contributions in this work include: 

A 

 The design of a novel non-coherent silicon photonic accelerator 
which utilizes wavelength-division multiplexing (WDM) along 
with time-division multiplexing (TDM) for bit-slicing-based 
operation for heterogeneously quantized CNN acceleration; 

 The design of energy- and throughput-energy efficient modular 
vector-granularity-aware matrix-vector multiplication; 

 A comprehensive comparison with state-of-the-art silicon-
photonic-based CNN accelerators.  
A 

The rest of this paper is organized as follows: Section 2 
discusses related work and our motivation for this work. Section 3 
discusses our HQNNA architecture. Section 4 describes the 
experiments and results. Lastly, Section 5 concludes the work. 

 
2. BACKGROUND AND MOTIVATION 

Silicon-photonic-based ML accelerator architectures represent 
an emerging paradigm and can be broadly divided into two major 
categories: coherent and non-coherent. Due to the superior 
scalability and performance of non-coherent architectures over 
coherent architectures [8], the architecture we consider in this 
work is a non-coherent architecture. Non-coherent architectures 
use multiple wavelengths, and parameters are imprinted onto the 
wavelength amplitude by using wavelength-selective devices (e.g., 
microring resonators (MRs)). Several prior works have discussed 
CNN acceleration using non-coherent photonic principles. In [11], 
an MR-based CNN accelerator architecture was proposed which 
utilizes modular vector-dot-product units with optimized MR 
designs and tuning circuit optimization, for energy and throughput 
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efficiency. The work in [12] utilized microdisks instead of MRs for 
lower area and power consumption. Another microdisk-based 
photonic accelerator was proposed in [13] for fully binarized CNNs 
(single-bit weight and activation parameters). The work in [14] 
proposed an MR-based partially binarized CNN accelerator. The 
partially binarized CNNs allowed for increased inference accuracy 
over fully binarized CNNs.  

For achieving improved memory and computational efficiency, 
conventional quantization approaches use the same bit-width for 
all the weight and activation parameters across layers 
(homogeneous quantization). Heterogeneous or mixed precision 
quantization allows different layers to have different levels of 
quantization to achieve lower memory and computational 
complexity for similar model accuracy. Several efforts have 
proposed intelligent neural network architecture search strategies 
for optimizing the quantization levels across layers in a CNN. A 
differentiable neural architecture search (DNAS) framework was 
proposed in [2] to explore the search space with gradient-based 
optimization. The technique presented in [3] is similar to the one 
in [2], with an optimized loss function, which penalizes a higher 
weighted average of the bitwidths of the weights across layers.  

Given the prominence of quantized models to achieve efficient 
CNN deployment on resource-limited embedded and IoT 
platforms, the ability to accelerate heterogeneously quantized 
models is essential for modern CNN accelerator architectures. The 
photonic architectures discussed, support fixed parameter 
resolution and hence are unable to accelerate heterogeneously 
quantized models altogether or effectively accelerating 
heterogeneously quantized models. To fully exploit quantization 
for latency and energy benefits, we propose the HQNNA 
accelerator, which utilizes WDM and TDM, along with bit-slicing 
to achieve efficient inference performance. 

 
3. HQNNA HARDWARE ACCELERATOR 
3.1. TDM-based Operation and Energy Benefits 

Due to large power consumption required for high resolution 
DACs and the presence of heterodyne signal crosstalk noise [15], 
most non-coherent photonic architectures opt to support low-
resolution parameters in CNNs. For example, the photonic 
accelerator discussed in [12] is designed for a 4-bit resolution, 
while those in [13] and [14] target 1-bit resolution. However, 
without sufficient optimization of the CNN model, the quantized 
CNN may exhibit poor inference accuracy at low resolutions, as 
observed in [12]-[14]. The photonic accelerator in [11] proposed 
various optimizations in terms of tuning and WDM management 
to achieve a high resolution of 16-bits, which ensures better 
inference accuracy than [12]-[14]. However, such an architecture 
is at a disadvantage in terms of energy efficiency when accelerating 
a heterogeneously quantized model.  

To support heterogeneous quantization and obtain the energy 
and power benefits it offers, we propose a novel bit-slicing and 
TDM-based approach in HQNNA. Moreover, HQNNA makes use of 
WDM-based operations along with TDM and bit-slicing to 
aggressively reduce power and energy consumption. Our approach 
distributes bit-slices across time steps onto the matrix-vector 
multiplication unit (MVU) to perform the multiplication and 

accumulation operations photonically, and then makes use of 
digital shift and adder circuits to obtain the correct output from the 
MVU operation. The number of time slices required to complete an 
operation depends on the bit-slice size (b) and the parameter size 
(p). An overview of our operation, making use of a simple example, 
is shown in Fig. 1, involving multiplication of two 2-element (p = 
8-bit) vectors: A = [0×31, 0×0D] and B = [0×34, 0×14].  

 

 
                                                          (a) 

 
                                                    (b) 
Figure 1: (a) TDM-based operation for a vector-dot-product 
operation between two 2-element vectors in our proposed HQNNA 
architecture; (b) the same vector-dot-product operation performed 
with accelerator in [11]. 

 
Considering b = 4-bit, HQNNA requires four time steps to finish 

this operation. At T1, the least significant nibbles of the elements 
in A and B are introduced into the multiplication unit. Elements, 
which must interact with each other during the dot-product 
operation, are assigned the same wavelength (λ). The interaction 
between the nibbles generates intermediate products at each time 
step, indicated by the colored circles and corresponding callout 
tables. The intermediate sums (generated using photodetectors) are 
converted to digital signals using an analog-to-digital converter 
(ADC), shifted appropriately, and are stored in a local buffer. At T2, 
the second set of nibbles from the B-elements are imprinted, while 
A data remains unchanged. After T2, all the data from B have been 
introduced to the least significant nibbles of A and corresponding 
sums are obtained. Thus, at T3, the second nibble of A-elements can 
be introduced, and B needs to be fed again in T3 and T4. [11] will 
accomplish the same operation in a single time-step (Fig. 1(b)).  

The energy consumption for HQNNA (Fig. 1(a)) is ~6 mJ while 
the architecture in [11] (Fig. 1(b)) consumes ~240 mJ for this 
operation. These energy calculations use the parameters in Table 
2, which is discussed later. Even for p of 16-bit (not shown), 
HQNNA, at b of 4-bit, will only have an approximate energy 
consumption of 24 mJ over 16 time steps, while [11] will still 
consume 240 mJ (detailed results in Section 4 ). 
 
3.2. Tuning Circuits 

The thermo-optic (TO) tuning approach is widely used for FPV 
correction in MR-based systems, and non-coherent photonic 
accelerator architectures use them for imprinting CNN parameters. 



  
 

 

However, the operation of TO tuning circuits can affect the fidelity 
of operation of neighboring MRs in the form of thermal crosstalk 
[16]. Therefore, solely relying on microheater-based TO tuning can 
impair the operation of the non-coherent CNN accelerator. As an 
alternative, the electro-optic (EO) tuning mechanism operates 
through carrier injection into the MR body with a PN-junction 
across the MR. However, the lower tuning range means EO tuning 
alone is inadequate to address the large variations induced by FPV 
in MRs but is sufficient for CNN parameter imprinting onto the 
resonant wavelength. To overcome FPVs and for accurate 
parameter imprinting required for photonic multiplication, 
HQNNA make use of a hybrid tuning circuit which combines EO 
and TO tuning. The hybrid tuning approach considers the 
advantages each tuning mechanism offers while covering for their 
disadvantages. To address the thermal noise generation from TO 
tuning, we adapt a method called thermal Eigenmode 
decomposition (TED), which was first proposed in [16]. TED also 
comes with the added advantage of significantly reducing TO 
power consumption and frequency of TO operation. 

 
 

3.3. MVU design 
To accelerate ANNs in general, the most time-consuming 

operation, matrix-vector multiplication, must be accelerated. 
Inference acceleration in particular deals with fixed weight 
matrices and input-dependent activations. For CNNs, two main 
types of layers have to be considered: convolution (CONV) layers 
and fully connected (FC) layers. CONV layers perform convolution 
operations between smaller weight matrices or kernels and input 
feature maps (activations), to generate output feature maps for the 
next layer. On the other hand, FC layers perform matrix-vector 
multiplication operations between significantly larger weight 
matrices and activation vectors. The basic compute unit in our 
architecture, to support both CONV and FC layer operations, is an 
MVU. The MVU accepts a WDM signal through an input 
waveguide, which is imprinted with the vector parameters using 
an MR bank. For imprinting the parameters, we make use of DAC-
based EO tuning in the hybrid tuning circuit. The tuned signal from 
the MR bank is distributed across the matrix rows, again 
distributed across waveguides, using a splitter-based photonic 
multiplexer.  

For FC layers, the matrix is comprised of bit-slices of individual 
weight values, which need to change with time steps so that the 
vector-matrix multiplication operation can happen in its entirety. 
For CONV layers, the architecture performs a vector-dot-product 
operation [11], so the MVU can be used to represent all the bit-
slices of one of the vectors simultaneously, across waveguides, to 
reduce the number of time slices needed for vector-dot-product 
operations. In both cases, the results per time slice need to be 
shifted and added. For FC layer operation, this can be done after 
the summation operation as each waveguide generates partial 
sums for separate elements. For the CONV layer, the entire MVU 
generates a single convolution output. In FC layers, the shift and 
accumulate operation is done electronically, but for CONV layers, 
it can be done photonically. For photonic shifting, we make use of 
gain-tuning signal (σ) fed Semiconductor Optical Amplifiers 
(SOAs) along with addition via Kirchhoff’s Current Law (KCL) 

from the photodiode outputs.  
 

 
 

Figure 2: Architectural overview of HQNNA with the internal 
architecture of CONV-MVU and FC-MVU highlighted. 

 
3.4. HQNNA Architecture 

HQNNA architecture, as shown in Fig. 2, is composed of an 
array of MVUs, with input data routed through an electronic 
control unit. The MVU array is reused for CONV and FC layer 
activation. The vectors and matrices are mapped across the MVU 
array and the resulting partial sum vectors are summed digitally to 
obtain the sum vectors. For FC layers, each MVU considers an  
activation vector of size v and a v×v weight matrix simultaneously. 
Larger vectors and matrices with different dimensions are split up 
across different FC-MVUs to obtain the vector to be passed to the 
next FC layer. The weight parameters must be fed across ceil(p/b) 
time-steps and a single activation vector slice has to operate on all 
the weight slices. This process needs to be repeated ceil(p/b) times 
to obtain the final output vector. Thus, an output vector of v size is 
generated every (ceil(p/b))2 time-steps. For CONV layer 
acceleration, the kernel, unfurled to a vector of size k, and its 
different bit-slices can be presented simultaneously to a k-element, 
activation vector slice. The activation vector slices, in turn, must 
be presented to the kernel across ceil(p/b) time-steps to obtain a 
single output vector element. The value of k is decided by the 



  
 

 

 

kernel sizes present in the CNN models and may be further 
decomposed across MVUs as dictated by laser power consumption 
constraints. As the value of k increases, the MR count, the 
waveguide length, and hence the laser power needs to be increased, 
the relation among which can be modeled using: 

a 

푃 − 푆 ≥ 푃 + 10 × log 푁 . (1) 
a 

Here, Plaser is the laser power in dBm, Sdetector is the PD sensitivity 
in dBm, Nλ is the number of wavelengths, and Pphotoloss is the total 
optical loss experienced by the signal. We considered optical signal 
losses due to various factors: waveguide propagation loss (1 dB/cm 
[11]), splitter loss (0.05 dB [25]), MR through loss (0.02 dB [11]), MR 
modulation loss (0.72 dB [11]), EO tuning loss (6 dB/cm [9]), and 
TO tuning power (27.5 mW/FSR [10]). The value of v is more open-
ended and needs to be optimized depending on the throughput 
analysis for FC layers across models. The DAC resolution, and the 
corresponding power and latency, will be dependent on the b value 
being used. For CONV layer operations, we consider K Conv-MVUs 
and for FC layer operation, V FC-MVUs are considered. We analyze 
the values of these parameters in Section 4. 
 
4. EXPERIMENTS AND RESULTS  

To evaluate the effectiveness of HQNNA, we conducted several 
simulation-based analyses. For the CNN models, we consider the 
well-known models AlexNet and ResNet20 for CIFAR 10 dataset 
classification, along with a custom model for SVHN dataset 
classification. For power, energy, and latency analysis of silicon 
photonic CNN accelerators, we developed a Python-based in-house 
simulator. For analyzing the model accuracy, we used Tensorflow 
v2.8 along with QKeras [17]. We compare the performance of our 
architecture in terms of energy-efficiency (energy-per-bit, or EPB), 
and throughput-energy efficiency (GOPS/EPB) against state-of-
the-art photonic CNN accelerators: CrossLight [11], HolyLight [12], 
LightBulb [13], and ROBIN [14]. For obtaining optimal 
heterogeneous quantization for these models, we explored 
different algorithms. The best configuration found using [2] was 
used for AlexNet and ResNet20, and for the SVHN CNN model, an 

exhaustive quantization search using AutoQKeras was performed 
(results in Table 1). This quantization exploration among the 
models, for HQNNA, is essentially a search for optimal p value in 
terms of accuracy and memory footprint. We also simulate the 
various quantization techniques adapted in the works [11]-[14] 
that we compare HQNNA against (see Table 1). Note how the 
heterogeneously quantized models (HQNNA) have significantly 
lower memory footprint than the 16-bit quantized models ([11]) 
while maintaining competitive model accuracy. 

 

Table 2: Parameters considered for architecture analysis 
Devices Latency Power 
EO tuning [9] 20 ns 4 μW/nm 
TO tuning [10] 4 μs 27.5 mW/FSR 
VCSEL [18] 0.07 ns 1.3 mW 
Photodetector [19] 5.8 ps 2.8 mW 
SOA [20] 0.3 ns 2.2 mW 
DAC (16-bit) [21] 0.33 ns 40 mW 
ADC (16-bit) [22] 14 ns 62 mW 
DAC (8-bit) [23] 0.29 ns 3 mW 
ADC (8-bit) [24] 0.82 ns 3.1 mW 

The power and latency parameters used to model the 
architectures are shown in Table 2. DACs with lower resolutions 
(1-bit, 2-bit, 4-bit) are not widely researched, possibly due to niche 
application spaces. For them, we have assumed the same latency as 
the design from [24]. We have also scaled DAC power for these 
lower resolution devices, with respect to resolution (푁) using the 
following proportionality [26]: 
a

푃 ∝ + 1 . (2) 
a 

In our first experiment, we optimize the HQNNA architecture, 
in terms of (v, k, b, V, K) (see Section 3.4). The best configuration 
was found in terms of throughput-energy efficiency in terms of 
GOPS/EPB. The best (v, k, b, V, K) was found to be (50, 20, 4, 200, 
100) for the CNN models considered. This configuration of HQNNA 
exhibits low maximum-power consumption (57.5 W) due to the 
lower tuning and DAC power consumption.  

Fig. 3 shows the EPB comparison across different architectures. 

Table 1: The best models found through heterogeneous quantization techniques considered, compared to the quantized versions from 
other photonic accelerator works, in terms of inference accuracy and memory footprint 

Model Number 
of layers 

Parameter 
count 

Quantization 
type 

Weight bitwidths 
across layers 

Activation bitwidths 
across layers 

Inference 
accuracy 

Memory 
footprint 

AlexNet 

 
 
7 
 
 

38,413,156 

HQNNA [6, 6, 4, 4, 4, 4, 4] [6, 6, 4, 4, 4, 4, 4] 76.4% 169 MB 
CrossLight [11] 16 16 79.3% 650 MB 
HolyLight [12] 4 4 76.1% 162 MB 
LightBulb [13] 1 1 56.1% 41 MB 

ROBIN [14] 1 4 62.5% 48 MB 

ResNet20 

 
 

20 
 
 

271,786 

HQNNA [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 4, 2, 2, 2, 2, 4] 

[4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, 
6, 8, 10, 10, 10, 10, 10, 8] 79.7% 8.75 MB 

CrossLight [11] 16 16 81.9% 70 MB 
HolyLight [12] 4 4 77.6% 17.5 MB 
LightBulb [13] 1 1 56.1% 4.4 MB 

ROBIN [14] 1 4 64.2% 5.8 MB 

CNN (SVHN) 

 
 
7 
 
 

552,362 

HQNNA [8,8, 4, 4, 4, 4, 4] [8, 8, 4, 4, 4, 8, 4] 87.9% 34.4 MB 
CrossLight [11] 16 16 86.2% 134 MB 
HolyLight [12] 4 4 82.1% 32.4 MB 
LightBulb [13] 1 1 29.4% 8.4 MB 

ROBIN [14] 1 4 49.4% 9.8 MB 
 



  
 

 

The lower power consumption of HQNNA along with lower 
latencies of the lower resolution DACs being used enable this 
architecture to obtain lower EPB values as well. On average, 
HQNNA achieves 73.8×, 52.2×, 12.2×, and 3.59× lower EPBs than 
HolyLight, LightBulb, CrossLight, and ROBIN, respectively, as 
shown in Fig. 3. 
 

 
Figure 3: EPB for CNN models, across photonic accelerators. 

 

Despite having lower throughput than CrossLight and ROBIN, 
due to the significantly lower EPB, HQNNA exhibits significantly 
higher GOPS/EPB. As shown in Fig. 4, our HQNNA architecture 
achieves 159.5×, 103.1×, 28.6×, and 3.37× better GOPS/EPB than 
HolyLight, LightBulb, CrossLight, and ROBIN respectively. These 
results highlight the energy- and throughput-energy efficient 
quantized CNN acceleration capabilities of the HQNNA accelerator. 
 

 
Figure 4: GOPS/EPB for CNN models, across photonic accelerators. 

 
5. CONCLUSION 
In this paper, we presented a novel non-coherent photonic CNN 
accelerator called HQNNA, which uses WDM and TDM 
simultaneously to efficiently accelerate heterogeneously quantized 
CNN models. rough identifying optimal quantization profiles for 
the CNNs and corresponding optimizations for hardware, HQNNA 
succeeded to achieve beer performance in terms of energy- and 
throughput-efficiency: up to 73.8× beer energy-per-bit and 159.5× 
beer throughput-energy efficiency than conventional photonic 
CNN accelerators. us, HQNNA represents a promising new 
substrate for energy-efficient quantized CNN model acceleration. 
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