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A Silicon Photonics Computational 
Lensless Active-Flat-Optics Imaging 
System
Alexander White*, Parham Khial, Fariborz Salehi, Babak Hassibi & Ali Hajimiri

The need for lightweight, miniature imaging systems is becoming increasingly prevalent in light of 

the development of wearable electronics, IoT devices, and drones. Computational imaging enables 

new types of imaging systems that replace standard optical components like lenses with cleverly 

designed computational processes. Traditionally, many of these types of systems use conventional 

complementary metal oxide semiconductor (CMOS) or charge coupled device (CCD) sensors for data 

collection. While this allows for rapid development of large-scale systems, the lack of system-sensor co-

design limits the compactness and performance. Here we propose integrated photonics as a candidate 

platform for the implementation of such co-integrated systems. Using grating couplers and co-designed 

computational processing in lieu of a lens, we demonstrate the use of silicon photonics as a viable 

platform for computational imaging with a prototype lensless imaging device. The proof-of-concept 

device has 20 sensors and a 45-degree field of view, and its optics and sensors are contained within a 
2,000 µm × 200 µm × 20 µm volume.

Lightweight miniature imaging systems are becoming essential to the development of wearable electronics, IoT 
devices, and drones1–3. Computation can be used to estimate information that is not captured by the imager, as in 
phase-retrieval imaging4, three dimensional imaging5, and encoded/coded aperture imaging6. Cleverly designed 
computational processes can also be used in imaging systems to replace standard optical components like lenses7. 
Traditionally, many of these types of systems use conventional CMOS or CCD sensors for data collection4,6,8. 
While the use of these prepackaged sensors allows for rapid development of large-scale systems, it fails to realize 
the full potential of a co-designed system-sensor in terms of versatility, performance, size, and mass5,9.

In this paper, we present an imaging system based on a custom-designed array of unique diffraction grat-
ings (acting as optical receivers) co-designed with an adaptive reconstruction algorithm and implemented on an 
integrated photonics platform. This approach enables imaging within a very small volume, without the need for 
the depth typically required for most imaging systems. Integrated photonics allows for the capturing, manipu-
lation, and sensing of light within an active layer only a few microns thick on a chip using dielectric waveguides 
manufactured with standard CMOS-type processing10. Furthermore, the built-in directionality of the custom 
integrated photonics microgratings can serve as a means of enhancing the computational image-recovery perfor-
mance. These diffraction gratings can be engineered to have sensitivity in nearly arbitrary patterns and to admit 
a large span of wavelengths11,12, and as we show, can respond to incoherent light as well as coherent light. Using 
micrograting couplers co-designed with computational processing, we demonstrate that silicon photonics is a 
viable platform for computational imaging using a prototype lensless imaging device.

Results
Sensor design and implementation. Images are representations of light field patterns where each point 
represents the intensity (and possibly other properties, such as color) of light impinging on the imager from a 
different bearing. When an image is displayed, these points replicate the original light, and the eye can process 
the image similarly to the original scene, using a lens to direct light from each angle to a different photoreceptor 
cell on the retina. Conventional cameras work in the same way, using a lens to redirect light impinging at different 
angles onto different pixels. However, this is not the only way to capture an image. As long as enough independent 
information is captured from a light field pattern, an image can be formed. For instance, this can be achieved, as 
in the retinal cells in the compound eye of an insect, with sensors/pixels individually sensitive to light impinging 
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from different directions13,14, or even in a different domain, such as Fourier space15. While the data itself is not 
in the form of an image, various computation algorithms can be used to generate a recognizable image from the 
captured information7.

Here, we use an array of individually designed silicon-on-insulator (SOI) diffraction gratings to capture spa-
cial intensity information from incoherent light with a wavelength centered at 1550 nm. By using an array of cus-
tom micrograting couplers, each with a different sensitivity profile vs. angle of incidence, we can capture enough 
independent information to linearly map our data into spatial pixels.

Micrograting couplers are versatile devices used to couple light from free space to guided modes in integrated 
photonics waveguides. Basic grating couplers consist of a periodic structure that diffracts incoming light such 
that it interferes coherently into the plane of the grating and a taper or other mode matching structure that guides 
the light into a waveguide mode, Fig. 1a. The periodicity and effective indexes of its internal components serve as 
design parameters that can be used to achieve the desired angular sensitivity profile of a coupler. For instance, in 
the case of uniformly spaced grating elements, the angle of maximum sensitivity is given by: 
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 where neff is the effective index of the grating structure, λ0 is the free space wavelength, d is the distance between 
gratings, and k is any integer.

The one-dimensional radiation pattern of a uniform coupler in the direction parallel to its main axis can be 
approximated by assuming an exponential optical loss along the coupler in conjunction with the propagation 
phase shift: 
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 where α is the loss per grating tooth and λeff is the effective wavelength inside the grating structure. Given such a 
pattern h(θ), the power received at time, t, due to an arbitrary farfield illumination I(θ, t) can be given as 

Figure 1. (a) Operation of a silicon photonics grating coupler. Light guided in a silicon waveguide clad by 
silicon dioxide is scattered by regularly spaced etched gratings. These scattered waves interfere coherently in 
a direction θ dependent on the period of gratings D. (b) The measured coherent and incoherent patterns of a 
grating coupler. The incoherent pattern is measured with the source spectrum shown. The simulated data is the 
theoretical pattern given the coherent pattern, the source pattern, and equation (5). (c) Visual representation of 
the fabricated device containing 20 uniquely spaced grating couplers. Three example couplers are shown with 
their simulated angular reception patterns. (d) Hemispherical projection of angular reception patterns of the 
corresponding grating couplers in c. (e) Simulated angular reception patterns of the full 20 grating couplers, in 
the direction of the gratings.
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Under spatially incoherent illumination, I(θ) and I *( )θ′  are uncorrelated except when θ θ= ′. If the illumina-
tion is also temporally incoherent, we can represent the total power as 

∫ ∫ θ ω θ ω ω θ=
θ ω

P h I d d( , ) ( , )
(4)

2 2

 with a single illumination source, we can separate the angular and frequency dependence of I, and define a mod-
ified sensitivity pattern h ( )θ′ , 

h h S d( ) ( , ) ( )
(5)

2 2

∫θ θ ω ω ω′ ≡
ω

 where S(ω) is the frequency spectrum of the scene illumination. Under narrow-band illumination, the pattern 
of a uniform coupler can be approximated as the convolution of the coherent pattern and the optical power spec-
trum, Fig. 1b.

For non-uniform couplers or extremely broadband illumination, the sensitivity pattern can be calculated by 
explicit simulation and weighted averaging of the patterns and the wavelength component of the optical power 
spectrum. As incoherent illumination leads to power addition and not electric field addition (as it would under 
coherent illumination), the power received by an arbitrary far-field distribution is given by the inner product 
of the sensitivity pattern and the far-field pattern. We can discretize this inner product to have the following 
approximation, 

P h I( ) ( ) ,
(6)

2 2

∑ θ θ θ≈ ′ ∆
θ

where the number of discretization points determines the accuracy of our estimation. Consequently, we can 
rewrite (6) as the following, 

=P h x, (7)T

where h is an n dimensional positive pattern vector ( ∈ +h n ), and x is the intensity vector, where n is given by the 
number of the distinct values of θ we have used in the approximation (6). If we combine the results from multiple 
sensors, we can get the following linear system of equations, 

= +y Hx z, (8)

 where the m-dimensional positive vector y is the measured power, m is the number of sensors, the m-dimensional 

vector z is the unknown noise vector, and =
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 is the matrix whose rows correspond to the pattern of each 

sensor. As we construct H through the design of our grating couplers, we can reconstruct the image x by inverting 
the linear system.

To form an imager, we can modulate the grating pitch across a number of couplers, effectively generating a set 
which is sensitive to different illumination angles. In this way, the sensors mimic the effect of a lens on traditional 
pixels. As each grating coupler is designed to be most sensitive to a different angle, the approximated transfer 
matrix H (between discrete angles and sensor power) can be inverted effectively. Heuristically, overlapping sensor 
patterns allow for the data capture and localization of the full imaging area, and single angle reception allows for 
more independent measurements, improving the resolution or minimum resolvable angle. Thus it is favorable to 
strike a balance between overlapping and narrow sensor patterns.

As a proof of concept, we designed and fabricated a device with 20 of these sensors on a silicon photonics 
SOI platform, Fig. 1c. Each sensor consists of a uniform grating coupler and a germanium photodiode, sensitive 
to light with a wavelength around 1,550 nm. The grating couplers guide impinging light into 500 nm by 220 nm 
transverse-electric single mode silicon waveguides, which are then fed to the germanium photodiodes. The pho-
todiodes convert the optical power received to an electric current, which can be amplified and measured. These 
sensors have a far-field coherent full-width half-maximum sensitivity of approximately 5 degrees in the grating 
direction and 30 degrees in the transverse direction, Fig. 1d, and an average peak efficiency of 21.5%. Due to 
reflections from the silicon substrate, the peak efficiency varies over the couplers, Supplemental Fig. 1. To mini-
mize the effect of stray light and reflections, the photodiodes and area surrounding the grating couplers is covered 
by metal and an absorptive germanium layer. By sweeping the grating pitch, the maximum reception angle is 
swept from −10 to 30 degrees (to normal) in 2 degree increments, Fig. 1e.

The fabricated device is shown in Fig. 2a. The reception patterns of 17 functional gratings were measured with 
a super luminescent diode (SLD) with a 50nm bandwidth, and are shown in Fig. 2b. To verify the functionality 
and linearity of the sensor, we imaged light impinging on a double slit and each of its constituents, Fig. 2c,d. By 
imaging two slits and their combination, we can test the approximation in Eq. 6, as the image formed by the 
combination should be the sum of the constituents. To do this, light from the SLD is first projected from a cleaved 
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optical fiber onto a diffuser to perturb the spacial coherent of the beam. The diffuse light then travels through a 
copper complementary image (negative) of a target image and impinges on the chip. The target and chip are posi-
tioned on a rotary stage so that the illumination from the diffuser can be integrated over the entire angular sensi-
tivity range (45 degrees). The final images can then be reconstructed by inverting the measurement in Fig. 1b, our 
new H, and multiplying by the data collected.

Robust reconstruction algorithm. To capture images with this sensor, we must reconstruct the unknown 
intensity vector x, from the (noisy) linear system (8). This reconstruction problem faces two main challenges. 
First, because we need the discrete approximation in (6) to be accurate, the number of measurements m = 17 is 
much smaller than the underlying dimension n = 120. Second, our algorithm must be tuned properly to adjust 
for the impact of the noise in the linear system.

To address both of these challenges, we employ regularized least squares16,17, which provides us with the fol-
lowing estimate, 

λ Γ= − + .argx y Hx xmin
(9)x

2 2
∣∣ ∣∣ ∣∣ ∣∣

 where Γ is an n × n matrix that is chosen based on the structure of the underlying dataset and λ is the regulari-
zation parameter that must be tuned properly. Note that the objective function in (9) consists of two terms. The 
first term in the objective function, the least-squares term, essentially captures the power of the noise vector z. 
The second term in the optimization, the regularization term, enforces a structure dictated by Γ on the unknown 
vector x.

For any set of parameters, we can represent the solution to the optimization (9) in the following closed-form, 

x H H H y( ) (10)
T T T1 λΓ Γ= + .−

 which leads to very computationally efficient solutions.
To generate an optimal reconstruction, we must choose an optimal regularization strength λ and regulariza-

tion matrix Γ. The choice of these parameters is critical, as can be seen in Fig. 3a.

Figure 2. (a) Diagram of silicon on insulator platform with germanium photodiodes (top left). Scale isometric 
rendering of fabricated device from angle, sides, and top. Silicon shown in purple, germanium in green, and 
metal connections, pads, and vias in grey. (b) Measured angular reception patterns of the 17 functional sensors. 
Three sensors were not functioning due to photodiode connections. (c) Representation of test setup. The chip 
is illuminated through a cleaved optical fiber, diffuser, and target. The copper target blocks light from some the 
angles it is present, forming a negative of the barcode image seen by the chip. The target and chip are mounted 
to a rotary stage so that the light spread from the diffuser can be averaged to effectively provide an even 
illumination across all visible angles. (d) Data collected (top row) and reconstruction (bottom row) of three 
targets: two with slits in different positions (left column) and one with both slits (right column). (Graphics made 
by authors).
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The regularization matrix, Γ, should be chosen based on the structure of the underlying data18. As images do 
not follow any inherent rigid structure, there is no strictly optimal Γ, but we can use general properties of images 
to chose better matrices. Here, we utilize four matrices for Γ which have desirable properties for image recon-
struction (detailed in Methods: Gamma Matrices): The identity or L2 norm (L2), DC removed (DC), Fourier 
Weighted (FW), and Total Variation (TV). Figure 3b shows a comparison of the reconstruction algorithms for 
the above choices of the matrix Γ.

After choosing a favorable regularization matrix, Γ, we must tune λ to its optimal value, λopt. In the optimiza-
tion program (9), it can be observed that the first term, ∥y − Hx∥2, measures the power of the noise vector, and 
the second term, i.e., ∥Γx∥2, measures the power of the signal. Hence, we expect the optimal value of the λ to be 
inversely proportional to the signal-to-noise ratio (SNR), i.e., λ ∝

SNRopt
1 . Extensive numerical simulation (see 

Supplemental Info) validates this fact. Thus to compute λopt, we need to evaluate the SNR.
While the noise level could be calibrated, chip-to-chip variation, temperature fluctuation, varying levels of 

electrical interference, and numerous additional environmental factors can affect the noise present in a measure-
ment. As optimal reconstruction is highly sensitive to SNR, to create a more robust system, we devise two algo-
rithms to estimate the noise variance in a given measurement. Note that the noise in the system of equations (8) 
is caused by two different sources: 1) The measurement noise stemming from the device. Note that this noise can 
have impact of both H and the measurement vector y. 2) The approximation error caused by discretizing the 
model in (6). Note that in order to have a better approximation in the discrete model, one needs to increase the 
signal dimension n; however, this would have a negative impact on the reconstruction as m

n
 decreases. For our 

analysis purposes, we assume that the additive noise, z, has independently and identically distributed Gaussian 
entries with mean zero and variance equal to σ2. In order to find an estimate for SNR we employ two different 
algorithms. Our first proposed algorithm relies on the assumption that the underlying signal x is smooth. This 
assumption is commonly used in imaging applications18. Consider the singular value decomposition of the meas-
urement matrix H as follows, 

H U V , (11)T
Σ=

 where U is an m × m orthogonal matrix whose ith column is represented by ui, Σ = diag(s1, s2, …, sm), and V is 
an m × n matrix with orthonormal columns, where vi denotes its ith column. We then consider the impact of the 
reconstruction algorithm on the noise vector. We have, 

† † sz H z u z v( ) , (12)i

m

i i
T
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1∑= =
=
−

 where H† is the pseudo-inverse of H. If we filter out the low frequency components of this reconstruction (assum-
ing that the underlying signal is smooth), we are left with an approximation of the reconstruction contribution of 
noise, and σ2 can be approximated as, 

Figure 3. (a) Comparison of simulated reconstruction error across λ for data with different SNRs. Images 
shown for λopt of each SNR as well as in the low lambda and high lambda regimes. As this is a 1D imager, 
an image consists of a single slice of 1 × 120 pixels. The 2D images are representations of the concatenated 
1D slices. (b) Comparison of reconstruction error with different Γ matrices at λopt. (c) Comparison of SNR 
estimators: CNN, SVD with a heuristic filter (SVDsym), and SVD with an optimized filter (SVDopt). (Public 
domain images made available by the University of Granada Computer Vision Group).
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The second proposed algorithm is to train a convolutional neural network19,20. This approach is particu-
larly useful when we have enough samples from the dataset. Unlike the first approach, here we do not need 
any assumption on the structure of the underlying signal. In our implementation, we trained a 4-layer network 
with two convolution layers and two fully-connected layers. The details of the training is deferred to Methods. 
Figure 3c compares the result of the above-mentioned algorithms in estimating the SNR. As expected, the CNN 
approach often provides a better estimate.

To form an image, the data collected from the sensor is fed through the SNR estimator, the SNR is mapped to 
λopt, and the data is finally processed with the reconstruction (9), Fig. 4a.

Measurement. To test the full system, we measure 6 barcode patterns, Fig. 4c (Target), that spell the letters 
C, I, T when concatenated. The collected sensor data is then multiplied by a reconstruction matrix H and fed 
through the trained CNN or SVD algorithm to estimate the noise variance. This noise variance is then used to 
map to an optimal lambda estimate through SNR. Finally, a new Hopt is calculated using this optimal lambda and 
the image is reconstructed, Fig. 4a. Figure 4c–e show the resulting images reconstructed using each of the four Γ 
matrices, SVD and CNN algorithms, and two SNR to λ mappings. We achieved a minimum mean squared error 
of 11.7%, equivalent to a peak SNR of 9.3 dB.

Figure 4. (a) Block diagram of reconstruction algorithm. (b) Measurement setup. (c) Reconstruction example 
with measured CIT barcode patterns. ’Target’ shows the barcodes used, displayed horizontally and concatenated 
vertically. ’Data’ shows the data collected from each of the 17 sensors. ’Recon.’ shows the image reconstructed 
using L2 regularization, CNN noise estimation, and an SNR-λ mapping for sharp images. ’Filtered’ shows the 
reconstruction after passing through a sigmoidal amplitude filter. (d) Reconstructed images using different 
Γ matrices, SNR estimators, and SNR to λopt mappings. ’Natural’ is using the SNR to λopt mapping optimized 
for natural images, and ’Sharp’ is using the SNR to λopt mapping optimized for random binary images. (e) 
Quantified reconstruction error for plots in d. Each bar represents the average of the 6 barcode patterns. 
(Graphics made by authors).
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Discussion
Here we develop an imaging technique that utilizes an engineered set of grating couplers in integrated photonics 
to capture images without the need for a lens or active beam-steering. We demonstrate this technique with a 
1-dimensional imager that occupies only 2000 × 200 × 20 µm3 and can capture 20 data points a 45-degree field 
of view. This type of miniature image sensor could enable imaging in systems that require extremely light-weight 
and compact sensors, such as wearable electronics, drones, and health monitors. In addition, the demonstrated 
algorithms can be used in other computational imaging systems, and in many cases can easily coordinate with 
existing infrastructure using linear regularizers to improve robustness to noise.

Because it is implemented in an integrated photonics process, this type of sensor can be augmented by pho-
tonic processing techniques such as filtering and passive beam-forming21–23, and can be generalized to 2D and 3D 
imaging. By optimizing gratings for transverse as well as longitudinal angles, the same type of imaging can applied 
to a 2D field of view, and by using parallax or optimization of near field reception patterns, this type of imager 
could also capture 3D data. For high resolution in the extra dimensions, the imager system requires many more 
gratings, and thus larger sensors for a similar effective aperture. To get around this problem, it may be necessary 
to use grating couplers optimized for multiple gratings to increase the camera’s effective aperture. To reconstruct 
these 2D and 3D images, we can take the same algorithmic approach as an the 1D case by adding the extra dimen-
sions in the transfer matrix H (replacing it with a tensor or flattened tensor). While the reconstruction will be 
more computationally intensive, the longer computational time can be shortened using pre-calculated matrix 
inverses. In addition, photonics information processing techniques could be used in as a prepossessing step or in 
conjunction with the reconstruction algorithm24,25.

Methods
Sensor characterization. The angular sensitivity of each grating coupler-photodiode pair was measured by 
recording the photodiode output current in each of 120 angles as set by a rotating table the chip was mounted to. 
The light source (laser or SLD) was projected from a cleaved fiber approximately 20cm from the chip surface. To 
improve SNR, the laser/SLD was modulated with a continuous wave and the amplified output current was read 
by a spectrum analyzer.

Imaging targets. Targets were imaged as shown in Fig. 4b. Amplified and polarized SLD light was projected 
onto a ground glass and copper diffusive target with an optical power density of 0.51 mW∕cm2, illuminating the 
chip. The polarization of the projected light was aligned with the grating couplers to allow for maximum recep-
tion efficiency. Output power was measured for each of the 17 functional grating coupler-photodiode pairs in 
each of 40 angles spanning 50 degrees. These measurements were then averaged, effectively modeling a uniform 
illumination over the 45 degree field of view.

Simulation data. To test the reconstruction algorithms, 18432 training and 6144 test images were used, 
formed by slicing 48 512 × 512 pixel images (graciously collected and made public by the Computer Vision 
Group at the University of Granada) into 1 × 120 pixel 1D images. To simulate data from the sensor, these images 
were multiplied by the measured H matrix and i.i.d. Gaussian noise was added to achieve the desired SNR.

Gamma matrices. Here, we utilize the following matrices for Γ:

 1. Γ = In : This correspond to least-squares with ℓ2 regularization. It has been observed that this regulariza-
tion is useful as for stabilizing the solution of the least-squares.

 2. Γ = FTDF: Here F is the n × n discrete Fourier transform and D = diag(d1, d2, …, dn) is a diagonal matrix. 
This choice of regularization matrix is particularly useful when we have some prior information about 
the frequency structure of the underlying signal. In our experiments we have exploited the following two 
choices of the matrix D:
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weight on different frequency components of the underlying signal such that the high-frequency 
components (indices close to n

2
) have higher weights.

 3. Γ = ΓTV:  This regularization is commonly used to enforce smoothness in imaging applications. The matrix 
for total variation regularization is defined as follows: 
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Finding the optimal λ. The optimal lambda for a given SNR and Γ was determined by numerically 
minimizing the mean squared error of a the 6144 test images using the Broyden-Flecher-Goldfarb-Shanno26 
algorithm.

SVD algorithm. In order to achieve the optimal filter weights for the SVD algorithm (described in Section 

3.2), we numerically minimized the loss function σ

σ

( )( )mean log
10

, where σ denotes the power of the noise, and 

σ is its estimate. We trained the Broyden-Flecher-Goldfarb-Shanno algorithm across the 18432 training images 
with logarithmically distributed σ such that the SNR varies from 0 dB to 60 dB. After doing the training algo-
rithm, we found an optimal filter of size 5 and weights equal to [−3.365, 6.881, −0.506, −3.417, 1.402]. As 
depicted in Fig. 3c, exploiting the optimal filter for SVD improves the performance significantly compare to the 

symmetric filter ( ), ,
1

3

2

3

1

3



− − 


.

CNN algorithm training. We trained a Convolutional neural network with the following architecture: 

•	 Layer 1: 1D Convolution; 30 filters of size 51, activation: sigmoid, padding: same size. 1D Max Pooling; Pool 
size = 4

•	 Layer 2: 1D Convolution; 5 filters of size 15, activation: sigmoid, padding: same size
•	 Layer 3: Fully Connected layer; 25 neurons, activation: sigmoid
•	 Layer 4: Fully Connected layer; 15 neurons, activation: sigmoid. Fully Connected neuron; 1 neurons, activa-

tion: exponential

The CNN was trained using the Adam optimizer to minimize ( )( )mean log
10

σ

σ

  with logarithmically distrib-

uted σ across the 18432 training images.
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