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A Silk Fibroin Bio-Transient Solution 
Processable Memristor
Jason Yong  1,2,6, Basem Hassan1,2,6, You Liang1,2,6, Kumaravelu Ganesan3,  
Ranjith Rajasekharan2, Robin Evans2, Gary Egan6,7, Omid Kavehei  4, Jingliang Li5,  
Gursharan Chana1,8,9,10, Babak Nasr1,2,6 & Efstratios Skafidas  1,2,6

Today’s electronic devices are fabricated using highly toxic materials and processes which limits their 
applications in environmental sensing applications and mandates complex encapsulation methods in 
biological and medical applications. This paper proposes a fully resorbable high density bio-compatible 
and environmentally friendly solution processable memristive crossbar arrays using silk fibroin protein 
which demonstrated bipolar resistive switching ratio of 104 and possesses programmable device 
lifetime characteristics before the device gracefully bio-degrades, minimizing impact to environment 
or to the implanted host. Lactate dehydrogenase assays revealed no cytotoxicity on direct exposure to 
the fabricated device and support their environmentally friendly and biocompatible claims. Moreover, 
the correlation between the oxidation state of the cations and their tendency in forming conductive 
filaments with respect to different active electrode materials has been investigated. The experimental 
results and the numerical model based on electro-thermal effect shows a tight correspondence in 
predicting the memristive switching process with various combinations of electrodes which provides 
insight into the morphological changes of conductive filaments in the silk fibroin films.

Bio-resorbable, environmentally friendly, transient integrated circuits represent a new class of electronics which 
pave the way towards new possibilities in the �elds of environmental monitoring, biomedical diagnostics, sensors 
and the emerging �eld of electroceuticals. �ese new class of devices are capable of robust and reliable operation 
even when embedded within living tissue, and without causing deleterious in�ammatory reactions1. Importantly, 
they can dissolve away a�er use, circumventing the need for their retrieval and disposal from the environment 
or in biological applications removal and reducing risk associated with added surgical procedures. Furthermore, 
these electronics can be designed with the desirable device lifetime transience via adaptation of the constituent 
materials, by which they can subsequently resorb through hydrolysis or metabolic action at varying timepoints1. 
Silk �broin, extracted from the Bombyx Mori silkworm cocoon, represents an interesting novel biomaterial 
endowed with outstanding mechanical, electrical and optical properties2–5. Silk �broin has been proposed to be 
an ideal material for producing a variety of high-performance biocompatible and �exible electronics devices, such 
as transistors, memory devices, and optical and optoelectronic components3–6. In addition, its high solubility in 
water, with adjustable dissolution rates7,8 via the use of various encapsulating materials such as polycaprolac-
tone9 or thermally embossed and laminated silk �broin2 represent another distinct advantage for environmentally 
friendly disposable electronics.

To date, there have been many attractive reports of biocompatible and bio-resorbable transient integrated 
electronics where silk �broin has been used as passive component. It has been employed as substrate or conformal 
platform in the building of functional solid-state devices such as transistors, RFIDs and micro electrode arrays 
in �eld of bioresorbable, implantable applications3,4. It is also worth mentioning that there are other biomaterials 
such as egg albumen10, PMMA/PHEMA11, sericin12, and eumelanin13 that have been used to construct memris-
tive devices. Interestingly, silk has been shown to exhibit resistive switching characteristics as well and has been 
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used as an active building block of various biocompatible and �exible memristors fabricated on solid substrates 
such as glass, polythioesters and silicon6,14. However, the full resorbability of such silk based memory resistors, 
which plays an important role in their full biodegradability, remains a challenge with respect to ful�lling the 
demands of environmental friendly and sustainable electronics. In this work, we demonstrate for the �rst time a 
fully bioresorbable high density memristor con�gured as crossbar arrays which is fabricated on solution process-
able substrate, Poly-(vinyl alcohol) (PVA). �is class of memristor provides a completely water soluble and fully 
resorbable component for emerging implantable and/or disposable electronics. �e PVA substrate is used due to 
its superior elasticity (Young modulus of 13.5 GPa)15, tuneable solubility in aqueous solution16 and ease of prepa-
ration. �is substrate can be prepared without additional post-treatment whereas crystallised silk �broin based 
substrate not only requires an extended period to achieve the desirable mechanical strength for the substrate, it 
limits the transient capabilities of the fabricated device due to the insolubility of crystallised silk �broin17,18.

�ere has also been limited attention in understanding the switching mechanism of silk based memristors 
which could o�er more comprehensive information about optimum electrode combinations or the physiochem-
ical alteration of the silk �broin. In recent studies, di�erent bipolar switching mechanisms have been proposed 
for the silk �broin based memristive devices. M.K. Hota et al. describe a mechanism associated with a local-
ised oxidation and reduction of silk �broin protein chains, leading to an increase or decrease in resistance6. In 
contrast, Wang et al. explain the switching mechanism as the typical electrochemical metallisation memory 
(ECM) in which metal ions from the oxidation of the active electrode migrate through a solid electrolyte and 
electro-crystallises to form conductive �laments during the SET cycle18. �e RESET cycle involves localised heat-
ing on these conductive �laments via joule heating leading to its dissolution. However, we believe there has yet to 
be substantial work in exploring the e�ects of various electrode materials on the silk �broin memristor and how 
it relates to the electrical performance. Up to now, several studies have been carried out on silk based memristors 
which are fabricated based on various material combinations with the underlying switching mechanism having 
been interpreted inconsistently as is indicated in Table S1.

In this paper, we report on the development process of the bio-transient memristive device fabricated on a 
solution processable PVA substrate with a focus on the e�ects of electrode materials on the switching mecha-
nism. For comparison and simplicity purposes, we have also fabricated similar electronics on glass substrates. 
�e �ndings on the impact of di�erent combinations of active and inert electrodes with respect to the electrical 
characteristics and performance of the crossbar memristive device strongly support the electrochemical metalli-
sation model. To further elaborate on our experimental observations, we investigated the in�uence of silk �broin 
crystallinity in addition to measuring the electrochemical response over a variety of active electrodes. Moreover, a 
mathematical model of the growth and dissolution of conductive �lament is proposed and simulated to elucidate 
the physical mechanism behind the observed phenomena. Our results provide important, novel insights into the 
development of future robust and non-volatile bio-transient memory devices.

Results
We have developed a crossbar memristive device that consists of silk �broin switching layer stacked between an 
active electrode and an inert electrode supported on a spin-cast substrate of PVA. Figure 1a shows a crossbar 
memristor fabricated with 50 nm gold (Au) and 50 nm platinum (Pt) electrodes to ensure bio-transient capabil-
ities. Practically, a thin Cr layer (~ 10 nm) is introduced in the interface between the PVA substrate and the elec-
trodes to promote adhesion which has demonstrated no increase in cytotoxicity. It has been shown that Cr in its 
pure metallic form does not contribute to any adverse health e�ects19–22. �e device consists of a ten by ten active 
and inert electrode arrays. A shadow mask along with e-beam evaporation was used to pattern and deposit the 
active electrodes arrays on the various substrates primarily glass or PVA and followed by spin coating silk �broin 
�lms. Figure 1b and c display the temporal device fabrication sequence.

�e transient characteristics were evaluated by the immersion of the device in de-ionised (DI) water under 
ambient conditions. Figure 2a shows a time sequence of images illustrating the dissolution process of the crossbar 
patterned memory. �e crossbar device showed rapid disintegration within 2 minutes and complete dissolution 
within 30 minutes. �is dissolution process is due to silk degradation in water. �is characteristic is crucial for 
in vivo applications as the silk fragments subsequently degraded through proteolytic mechanisms and resorbed 
without leaving traces of the fabricated device23. It is important to note that silk �broin, used as the functional 
constituent, is a biocompatible product, approved by the Food and Drug Administration (FDA) for a number of 
di�erent clinical applications24. For this investigation, we chose to assess cytotoxicity, a component of biocom-
patibility, of all the materials and fabrication steps of our fabricated device via the lactate dehydrogenase cyto-
toxicity (LDH) (Promega, US). We have employed the lactate dehydrogenase cytotoxicity (LDH) (Promega, US) 
assay to evaluate any cellular membrane damage associated with the memristor. �is enabled us to evaluate any 
gross cellular damage, related to cytotoxicity as determined by the release of LDH from the cytoplasm into the 
surrounding media following cell death. LDH levels were then detected via colorimetric assay through oxidation 
of a coloured substrate and read in a plate reader at 490 nm25. We also included positive controls where all cells 
were lysed giving a maximal response as well as negative controls containing non-exposed cells and background 
absorbance measured from the culture media. Figure 2b shows the cultured cells in a dish in which a typical 
memristive device was fragmented and dissolved. Figure 2c graphs the levels of apparent cytotoxicity when the 
fabricated memristor was introduced into SH-SY5Y cells cultures as measured using LDH assay. �e results 
indicate that the presence of the fragmented device in the culture medium did not cause any obvious cytotoxicity.

Next, we investigated the electrochemical properties of the silk �broin memristors by performing systematic 
studies. �e working principle of the proposed memristive device involves a redox reaction on the electrodes as 
well as ionic migration within the insulator. On application of the SET voltage, oxidation occurs on the active 
electrode. �e subsequent metallic ions migrate towards inert electrode induced by the applied electric �eld. 
�is leads to electro-crystallisation and the formation of conductive �laments which result in the rapid reduction 
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in bulk resistance. �is transition is termed the SET process. On the other hand, joule heating is raised due to 
enhanced thermal conductivity of the silk and large current density in percolated �lamentary path which causes 
the dissolution or rupturing of these �laments while applying a RESET voltage, resulting in the rapid increase 
in bulk resistance and is termed the RESET processs26,27. In a typical bipolar memristor device, the SET and 
RESET voltage are of the opposing polarity28. To examine the current-voltage (IV) relationship, a triangle voltage 
waveform of amplitude 5 V was swept at a frequency of 1 Hz. Figure 3 shows the IV characteristics of the Au-Silk 
Fibroin-Pt memristive device on two di�erent substrates (namely glass and PVA shown in Fig. 3) in which the 
Au and Pt electrodes serve as the anode and cathode respectively. �e fabricated memristive device exhibited 
non-volatile bipolar switching behaviour where a high resistance state (HRS) and low resistance state (LRS) can 
be observed via the application of voltage which was also shown to be reversible within the life-cycle of the device. 
�e voltage was swept in the sequence of 0 V → 5 V → 0 V → −5 V → 0 V with a current compliance level set at 
1 µA. By subjecting the active Au electrode to an increasing voltage, the memristor (fabricated on a glass sub-
strate) exhibited a notable change in resistance to a LRS of 5 × 104 Ω which was recorded during the SET cycle at 
3 V. Reversing the polarity of the applied voltage, a RESET cycle was realised in which an abrupt change to a HRS 
of 0.2 × 109 Ω occurred at −1.7 V. Remarkably, the fabricated device showed a HRS/LRS ratio of 104 ~ 106 which 
provides a signi�cantly large margin for di�erentiating the on to o� states (“1” or “0”). �e memristor fabricated 
on a PVA substrate showed a transition from the HRS of 2 × 1010 Ω to the LRS of 3 × 106 Ω and vice versa, with 
a HRS/LRS switching ratio of 102 ~ 104. �e SET cycle for the PVA substrate memristor device occurred at a 
higher voltage of 4.4 V whereas the RESET cycle also occurred at −1.7 V. �e di�erences observed in memristive 
switching between the PVA and glass substrates can be attributed to the non-uniformity of the silk �broin �lms as 
shown by AFM measurements in Fig. S2. �ese non-uniformities in silk �broin thickness resulted in the observed 
dissimilar resistive switching characteristics. �e rough surface of �lm PVA originated from the Te�on support 
substrate which impedes the uniform viscous �ow of the silk �broin �lm leading to a larger thickness and hence, 
higher operating voltage of the memristor.

One of the key criteria for assessing the memristor performance is the stability of the two resistance states. It 
has been found that the water annealing process induces crystallinity in the silk �broin material when incubated 
in a high humidity environment. �e introduction of water molecules disrupts intermolecular cohesive forces 
between the protein chains and reduces steric hindrance which increases mobility of non-crystalline domains in 
protein29. �erefore, the memristors were treated through a water vapour annealing process to tailor their water 
solubility and stability; an important step in controlling how fast the devices would dissolve. �e water treated 
and untreated devices were subjected to their respective SET/RESET conditions sequentially and the states were 
read at a voltage of 0.4 V. Devices that had undergone the water annealing treatment exhibited superior endurance 

Figure 1. Device structure and fabrication process of the silk �broin memristor. (a) Photograph of an 
Au-Silk Fibroin-Pt crossbar memristor device fabricated on a PVA �lm. (b) Schematic illustration of the 
fabricated crossbar memristive device. (c) Flowchart illustrating the fabrication process for a bio-resorbable 
and biodegradation crossbar memristive device. �e PVA substrate is drop-casted on a Te�on surface to ease 
substrate li� o� and followed by the spin coating of PMMA to prevent dissolution during silk �broin deposition. 
�e bottom gold electrodes and top platinum electrodes are patterned via shadow mask e-beam evaporation 
whilst the switching layer is a solution processed silk �broin. Cross sectional interfacial structure of the device is 
shown in Fig. S1.
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characteristics with respect to the untreated devices as depicted in Fig. 4a. Fourier transformed infrared (FTIR) 
spectroscopy was performed on both pre- and post-water annealed silk �lms to verify the degree of crystallin-
ity. Fig. S3 illustrates the infra-red adsorption spectra of the �broin �lm. �e absorbance strength ratio of the 
spectrum 1265 cm−1 and 1235 cm−1 (A1265/A1235) is commonly used to determine the crystallinity index30–33. �e 
results show that the water annealed silk �broin �lms obtained a higher crystallinity index of 0.80 whereas the 
untreated �lms had an index of 0.71. When forgoing the water annealing process, the fabricated devices had a 
higher tendency to form pinholes in the silk, creating short circuits, during the metal deposition process. �is 
increase in pinholes was attributed to the poorer mechanical strength of the untreated silk �broin �lm34 and the 
formation of cracks in the �lm as is shown in Fig. S4. �us, the water annealing treatment improves the device 
yield (the number of fabricated devices with no formation of pin holes) from 41.6% to 81.9% when tested on the 
200 fabricated devices.

�e performance of the bio-resorbable memristive device with di�erent combinations of active and inert 
electrodes, namely Au-Pt, Ag-Au and Cu-Au was also investigated. �e fatigue resistance test and retention time 
test were performed to verify the stability and durability. �e results, shown in Fig. 4b, suggest that Au-Pt and the 
Cu-Au combinations experience larger degradation in o� resistance retention a�er the 20th cycle in comparison to 
the Ag-Au combination. Interestingly, the proposed switching mechanism involving the oxidation and reduction 
of the localised protein chain as discussed in the literature6 and would be dependent on the work function of the 
electrodes used. �e work function of copper, gold and silver were 4.7 eV, 5.1 eV and 4.73 eV respectively35. We 
have observed large variations in the memristor performance for the Ag-Au and Cu-Au electrode combinations 
although the copper and silver electrodes have similar work function. �is implies that the redox reactions of 
cations at the interface of silk/electrode plays a critical role in the switching mechanism in addition to the ionic 
mobility of cations. Overall, the endurance characteristics of the memristive device using various combinations 
of active and inert electrodes indicate excellent reversibility/reproducibility and acceptable stability prior to the 
20th read/write cycle. Current compliance plays an important role in overall device lifetime in addition to the on 
and o� state resistance. We measured that the memory margin increased signi�cantly to an on/o� ratio of 108 by 
increasing the current compliance toward a higher level. Fig. 4c illustrates the measured on/o� state resistance for 
an Au-Ag memristor with two current compliance levels of 1 µA and 1 mA. It was observed that the higher current 
compliance (1 mA) results in a reduced lifespan of two write cycles whilst the lower compliance current (1 µA) 
permitted for increased lifespan exceeding 30 write cycles. �is behaviour is attributed to joule heating e�ect 
which deteriorates the silk �broin switching layer through intense localised heating26,27. It is worth noting that, as 

Figure 2. Device bio-resorbability and cytotoxicity characteristics. (a) Time sequence of the dissolution of 
the crossbar memristive device in DI water under ambient conditions. (b) Image of SY5Y neuroblastoma 
cells proliferating in the presence of the bio-resorbing memristors for 168 hrs. 103 cells/well was selected to 
be the standard seed cell number in the cytotoxicity test to study the e�ects of the constituent materials. (c) 
Time dependent curve for cell viability assessment in SH-SY5Y neuroblastoma cells in direct exposure to the 
memristive device. Indicated values are means of 8 experimental sets.
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shown in Fig. S5, the initial device switching characteristics di�er from subsequent switching cycles. �is is due to 
initial electroforming process which is commonly observed in ECM type memristive devices36. It is believed that 
morphological change in the electrolyte occurs upon �rst metallic �lament formation leads to a pre-con�gured 
electroforming path as an easy transport channel for all upcoming switching processes. Subsequently, the reten-
tion performance was evaluated where the fabricated devices memory state was SET and then subjected to the 
read voltage over the course of 96 hrs (Fig. 4d). �e stability of the memory retention demonstrates the potential 
of the proposed device in non-volatile memory applications.

�e physicochemical properties of the switching characteristics for silk �broin memristor play an important 
role in the functional characteristics of the device. Chrono-amperometry and cyclic voltammetry (CV) techniques 
were employed to study the e�ects of the various electrodes on the overall performance and electrical characteris-
tics of the memristive device. Fig. S6, Fig. S7 and Fig. S8 illustrate the chrono-amperometry results in which the 
SET transition time was determined to estimate the Arrhenius parameters. Figure 5a–c shows the Arrhenius plot 
for varying ambient temperatures ranging from 298 K to 433 K with various electric potentials applied to the mem-
ristive device. Based on the chronoamperometry measurements, it was observed that the state transition time 
decreases exponentially with both increasing ambient temperature and with increasing applied voltage. �e extrac-
tion of the e�ective activation energy, Ea, was calculated via the =

−

t eln(1/ )set

E k T/a B  expression, where kB is the 
Boltzmann constant, T is the ambient temperature and tset is the SET transition time and used to calculate the 
zero-potential activation energy and the electric potential induced barrier lowering parameter. Figure 5d shows the 
CV measurements for the silk fibroin memristive device for various electrode materials with an area of 
41µm × 41µm as depicted in Fig. S9. �ese measurements were performed with sweep rate of 50 mV/s whilst the 
potential window was restricted to a lower amplitude range to prevent the onset of the resistive switching process. 
�e observed peak currents in the cyclic-voltammetric curves are attributed to the dissolution of active electrode 
material in silk via the oxidation to cations followed by deposition of reduced (neutralized) cations at the 
silk-counter electrode interface37. It should be mentioned that the geometrical characteristics of the proposed 
memristor device requires the omission of the reference electrode which is typically used in CV measurement to 
ease the identi�cation of the electrochemical reactions. However, by considering the thermodynamic stability of 
the ionic species, it is possible to deduce the corresponding partial electrochemical reaction37. Referring to the CV 
measurement for the Ag-Au electrodes, the peak (A) and (B) can be associated with the direct oxidation of Ag to 
Ag+ and reduction of Ag+ to Ag respectively. Similar assignments of recorded peak currents to their respective 
reactions at the electrode interface have been previously reported37–39. In this con�guration (Ag/Au), the oxidation 
of the Au electrodes has not occurred because of the consistent ability of our device to retain the o� state when 
subjected to the negative polarity (as shown in Fig. S5). For the memristor device with Au-SF-Pt con�guration, 
peaks (C) and (D) are proposed to be associated with the direct oxidation of Au to Au+ and reduction of Au+ to Au 
respectively due to the similarly occurrence of peak current with respect to the Ag electrodes. In the case of the 
Au-SF-Cu memristor, peaks (E) and (F) can be linked to the oxidation of Cu to Cu+ and Cu to Cu2+ respectively. 
�e peak (G) is associated with the reduction reaction Cu+ to Cu and peak (H) is linked to the reduction reaction 
of either Cu2+ to Cu37,40. Other partial reactions of the ionic species such the reduction of Cu+ to Cu and Cu2+ to 
Cu+ could also have occurred40,41. �e current peaks of these partial reactions may be obscured by the lower reso-
lution of the two-electrode cyclic voltammetry method. In addition, these current peaks have been observed to 
�uctuate for di�erent voltage sweep cycles as concentration of these ionic species constantly changes40. �e studies 
with di�erent electrode combinations suggest that the switching characteristics are highly in�uenced by the type of 
electrodes used which would deviate from the �ndings that the reduction or oxidation of localised silk �broin 
protein chains are the primary factors for the resistive alterations6. Furthermore, our studies demonstrate the fea-
sibility of tuning the operating voltage of the memristor device by the selections of electrode material.

Figure 3. Electrical characteristics of the silk �broin memristive device. Measured IV characteristics of the 
crossbar memristive device fabricated on a glass substrate and a PVA substrate (centre). �e Pt electrodes are set 
at 0 V and the Au electrodes are subjected to a ± 5 V, 1 Hz triangle voltage waveform with a current compliance 
of 1 µA at room temperature. Photograph of a Au-Silk Fibroin-Pt crossbar memristive device on a glass substrate 
(le�). Photograph of a free-standing Au-Silk Fibroin-Pt crossbar memristive device on a PVA substrate (right).
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Based on the experimental data, we have observed that the Ag electrodes exhibited the highest likelihood for 
the formation of conductive �lament followed by the Au and Cu electrodes. �ese observations di�er from the 
expected outcome as would be predicted by their standard electrode potential in which the Cu electrode should 
have the highest tendency for ionic migration. �e likely reason for this phenomenon is that the electrolytic 
migration rate of metal ions in a thin insulator is limited and can be determined by the following expression:42,43

=t
Nz x r

2 n V (1)

2

c

where t is time required for the ions to traverse through a thickness of x, N is the cations density, z is the charge of 
the cations, ρ is the resistivity of the insulator, nc is the transport number of the cations and V is the applied voltage. 
From Equation 1, metal elements with higher charge cations will require a longer time to migrate along the insu-
lator, resulting in a longer state transition time. Similarly, the transition time can also be reduced by increasing the 
applied voltage between these electrodes. �us, the Cu electrode will typically exhibit higher state transition voltage 
compared to the Ag and Au electrodes to achieve similar state transition time. �is is presumably due to the higher 
thermodynamically stable oxidation state of +2 for the copper element which has been observed in various thin 
insulators, such as vitreous silica and quartz42. �us, for circumstances in which the electrolytic process is limited 
by the charge transfer kinetics, e.g. an insulator with low ionic conductivity, the stable oxidation state of the metal 
ions of the electrodes seems to be the key factor determining the electrical properties and resistive state stability of 
the memristor device whereas the standard electrode potential of the metal electrodes has less pronounced e�ect.

Figure 4. Endurance characteristics and performance of the silk �broin memristive device. (a) Endurance 
characteristics for the untreated and the water annealed Au/SF/Ag memristive devices. (b) Endurance 
performance of the fabricated memristive device with various combinations of electrode materials, namely, 
Au-Ag, Au-Pt and Au-Cu. (c) Endurance characteristics for the Au/SF/Ag device with current compliance level 
of 1 mA and 1 µA. (d) State retention time for the fabricated memristive device with various Au-Ag, Au-Pt and 
Au-Cu electrode combinations over the course of 96 hrs.
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Based on our �ndings, the electrochemical metallisation model proposed for a silk �broin memristor device 
can be described in several steps, beginning with the electrochemical dissolution of the active electrodes into 
their respective ionic species, followed by ionic migration of the cations towards the inert electrodes under high 
electric �eld and lastly, the electro-crystallisation of cations to form conductive �laments. On the other hand, the 
dissolution of these conductive �laments involves the thermally assisted dissolution of metals via joule heating 
under high electric �eld of the opposing electric potential. �e opposing electric potential ensures the cessation 
of �lamentary growth and promotes the rupturing of these conductive �laments. In addition to silk �broin, it has 
been demonstrated that typical dielectrics or insulators such as silicon dioxide, titanium oxide and nickel oxide 
exhibits electrolytic characteristics provided they are su�ciently thin, usually ranging from tenths to hundredths 
of nanometres38. �e SET process involves the application of su�ciently high positive electric potential on the 
active electrode which leads to an oxidation process on the active electrode-insulator interface as describe by 
reaction 2:44

↔ +
+ −

M M ze (2)z

where M, Mz+ and z denotes the metal atoms, metal ions and the charge of the ionic species respectively. It is sug-
gested that primarily Ag+ and Au+ ions are involved for Ag-Au and the Au-Pt electrode combination respectively 
whereas the Cu+ and Cu2+ ions are involved for the Cu-Au electrode combination. �e cations formed from 

Figure 5. State transition time-temperature characteristics of the memristive device and corresponding 
Arrhenius plot. Arrhenius plot of the measured transition time at di�erent electric potential with various 
combination of active-inert electrode material: (a) Au-Ag with an applied voltage of 0.8 V, 0.9 V and 1.0 V 
(b) Au-Cu with an applied voltage of 3.5 V, 4.0 V and 4.5 V (c) Au-Pt. with an applied voltage of 1.5 V, 2 V and 
2.5 V. �ese measurements were extracted from the chrono-amperometry measurements with varied ambient 
temperature of 25 °C, 80 °C, 120 °C and 160 °C. Indicated values are mean of 10 devices each. See supplementary 
materials for details. (d) Comparisons of the cyclic voltammograms for various electrodes as shown in the 
legends. �e scan speed is 50 mV/s.
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this reaction proceeds to migrate towards the inert electrode due to the high electric �eld. Lastly, these cations 
are gradually reduced and electro-crystallised on the inert electrodes and forms conductive �laments which are 
associated with the SET process. Cyclic voltammetric studies in Fig. 5d have revealed the relevant ionic species 
corresponding to each of the oxidation and reduction process for various electrode combinations.

On the other hand, the RESET process involves the application of a negative electric potential in which these 
conductive �laments undergo thermal dissolution as well as the reduction to their ionic form, indicated by reac-
tion 3, and as suggested by the cyclic voltammetric studies.

+ ↔
+ −

M ze M (3)z

An interesting observation is that metallic ions with higher oxidation states may require the application of a 
higher electric potential to initiate the oxidation process and can be described by Equation 1. To facilitate the 
oxidation process of the active electrode, a complementary reduction process has to occur on the inert electrode–
insulator interface38. In the case of a thin �lm silk �broin layer, we believe that water content within the silk �broin 
�lm, similar to that of silicon dioxide37,40,41 and tantalum oxide45, is involved in the reduction process as shown 
below:

+ ↔ +
− −

2H O 2e 2OH H (4)2 2

+ + ↔
− −

O O2H 4e OH (5)2 2

Typically, silk �broin �lm has an inherent water content of 7.5% under ambient conditions7. Several proposed 
candidates as depicted by reaction 4 and reaction 5 are used to account for these reduction processes with which 
may not be the full representation due to the possibility of various other intermediary reactions44. �ese reactions 
are highly dependent on the chemical properties of the insulator �lm as well as the adsorption properties of the 
electrodes used38. Numerical modelling of these phenomena can provide an insight of the physical changes within 
the silk �broin layer. �e ionic migration velocity in an insulator under applied electric �eld can be expressed as:43

=
ρ

v
n V

N z x (6)

c

where x is insulator thickness, N is the cation density, z is the charge of the cations, ρ is the resistivity of the 
insulator, nc is the transport number of the cations and V is the applied voltage. �e kinetic mechanism of the 
electro-crystallisation process can be described in form of:46

λ=
− − ∆

ZJ(t) W e (7)0
1 G (n )/RTc

where J(t) is the rate of nucleus formation, Z0 is the density of nucleation sites, W is the frequency of nucleus 
attachment, λ−1 is the Zeldovich factor and G∆(nc) is the energy barrier for the conversion of nc number of ions 
into their solid phase. Despite the theoretical accuracy, it is di�cult to correctly ascertain the parameters used 
in equations 6 and 7. Conversely, the Arrhenius equation provides a simple closed form expression with similar 
form for modelling these behaviours and will be �tted to the experimental data.

Here, we introduce a numerical model to further corroborate on the proposed switching behaviour for silk 
�broin based memristive and prove mode insight into understanding of the switching mechanism based on the 
morphological changes of the conductive �lament. To facilitate the �nite element simulation of the dissolution 
and growth of the conductive �lament, a cylindrical conductive �lament is proposed to describe the initial nucle-
ation of the conductive �lament which will be used as basis of the resistive transition. �e simulation model 
assumes that the initial electroforming process has occurred and consists of a silk �broin layer which encapsu-
lates a cylindrical �lament of diameter 2 nm in agreement with surface resistivity observation using a conductive 
atomic force microscopy6. �e top and bottom electrodes were expressed as single dimensional lines and as the 
active electrodes, assumed to be an in�nite source of cations. �is simulated geometry is as shown in Fig. S10a. 
A simulation model based on the numerical solution for joule heating (Equations 8–11) as well as the growth or 
dissolution of the conduction �lament using Equations 12–13 are performed with simulation package (COMSOL 
Multiphysics, MATLAB) to realize the state transition behaviour of the memristive device. �e simulation process 
�ow is depicted in Fig. S10b. �e following expressions are used to explore the joule heating characteristics for 
the conductive �lament:

γ′∇ = −
→
⋅
→

k T J J (8)
2

γ γ′ = n (9)

′ =k n k (10)

γ
ϕ=

′
∇J

1

(11)

where k is the thermal conductivity, γ is the resistivity, T the temperature of the conductive �lament, ϕ the tem-
perature gradient and J is the current density. An additional �tting parameter n is de�ned to account for the 
e�ects due to the development of multiple conductive �laments as well as any non-uniformity, defects and voids 
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in the �laments itself. Based on the Wiedemann-Franz law47, the thermal conductivity is assumed to exhibit a 
similar proportionality to n-parameter. �ese di�erential equations only accounts for the steady state heat trans-
fer mechanism since the migration of ions, the electro-crystallisation process and the �lamentary dissolution pro-
cess are relatively slower than a typical thermal system48. An Arrhenius �tting equation is employed to describe 
the growth and dissolution of the conductive �laments as they provide a simple yet close approximation of the 
mathematical behaviour of the Equation 6 and 7. �e electric �eld-assisted migration of ions in the silk �broin 
layer exhibited a linear dependency with respect to the e�ective activation energy, Ea

49,50, as shown in Fig. 5. Based 
on these Arrhenius plots, the extracted zero-potential activation energy, E0, were 0.25, 0.69 and 0.71 whereas the 
energy barrier lowering parameters, α, are 0.19, 0.13 and 0.08 for the electrode combinations Au-Ag, Au-Pt and 
Au-Cu respectively.

=

α

−

−dr

dt
A e

(12)
set

set

E V

RT
0

=
−

dr

dt
A e

(13)
reset

reset

E

RT
0

where r is the growth or dissolution radius of the conductive �lament, A is pre-exponent �tting parameter, E0 is 
the zero-potential activation energy, R is the Boltzmann constant, T is the temperature, the α is the barrier lower-
ing parameter and V is the applied electric potential. �e material parameters for the silk �broin �lm, described 
in Table 1, were used in the simulation. �e numerical procedure includes two main steps where the coupled 
Equations 8–11 were solved based on a 2D symmetrical model followed by the extraction of the temperature and 
electric potential pro�le along the surface of the conductive �lament. �ese data determine the growth or disso-
lution rate, governed by Equations 12–13, and are used to update the geometry of the �lament as is illustrated in 
the �owchart in Fig. S10B. �e numerical methods correctly replicated the experimental results when the �tting 
parameters described in Table S1 were used.

Figure 6a–c shows the comparison between the simulated and experimental IV characteristics for the fabri-
cated memristive device with various combination of electrode material. �e numerical model predictions show 
good correspondence with the measured IV characteristics which substantiate their validity for these types of 
memristive device. �e morphological changes in the conductive �lament illustrate the device transition from 
a low resistance state to high resistance state and vice versa. Physical geometry of the conductive �lament cor-
responding to their temperature distribution is illustrated in which Fig. S11A–D shows the reset transition with 
increasing negative electric potential whereas Fig. S11E,F shows the set transition with increasing positive elec-
tric potential. �e proposed numerical model predicted a localised region of high temperature at approximately 
~450 K. Several assumptions were made to simplify the simulation process which includes the cessation of �la-
ment growth following the formation of a continuous conduction bridge, non-active electrodes are ideally inert 
and formations of voids in the electro-forming or electrochemical process are ignored. �e e�ects of dissolution 
due to joule heating during the set process are assumed to be negligible as observed from experimental data. It 
is observed that the rate of growth of these conductive �laments is in equilibrium with the rate of dissolution 
and that this translates to the stability of the on-state resistance. �e bulk conductivity of silk �broin has been 
increased to 400 µS/cm to account for the higher conductivity as observed from the experimental results follow-
ing the electroforming process. �is is presumably caused by the higher concentration of cations and residuals 
from ruptured conductive �laments in the silk �broin �lm.

Discussion
We have proposed and demonstrated an environmentally friendly and bio-resorbable memristive device fabri-
cated by interlaying a silk �broin layer, extracted from the Bombyx Mori silkworm cocoon, between an inert (Pt) 
and active (Au) metal electrode. �e fabricated devices exhibit bipolar switching characteristics with an on/o� 
ratio of > 104, a lifecycle of > 30 and a state retention time of > 96 hrs. �is device showed a physical transience 
of about 30 mins in DI water under ambient conditions. �is is a critical step in the development of printable 
and bio-resorbable electronics which o�ers great potential to envisage fabrication of on-demand electronics that 
are used for tailored speci�c implantable devices and bio-sensors. Furthermore, various combinations of elec-
trode materials were used to study their e�ects on the switching characteristics of the fabricated device as well as 
their respective physicochemical properties. Although the standard electrode potential of the metal electrodes 
does provide slight in�uences, it was observed that the oxidation states of the cations strongly a�ects the switch-
ing mechanisms of the fabricated memristive devices for systems with low ion mobility. In general, it can be 

Material Properties Value Ref

�ermal conductivity (W/m K) 0.256 52

Density (kg/m3) 1398 53

Heat Capacity (J/g K) 0.134 + 3.696 × 10−3 T 54

Electrical Conductivity (S/m) 4.4 × 10−13 55

Relative Permittivity 6 56,57

Table 1. Electrical, thermal and mechanical properties for Silk Fibroin. �e following material properties are 
used in the simulation model to replicate the experimental data.
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concluded that cations with high stable oxidation states require higher SET/RESET voltage. �us, the selection of 
electrode combinations to form the memristive device must account for these factors to avoid haphazard switch-
ing characteristics which may lead to erroneous retention of states. A numerical model was proposed, based on 
the Arrhenius equation, to provide an insight on the morphological alterations during the switching process. �is 
model provides an accurate quantitative description of the resistive switching mechanism with respect to the 
performed experimental data in this study.

Methods
Device Fabrication. Extraction of silk �broin protein used for this investigation were carried out as pre-
viously described by Kaplan et al51. Initially, Bombyx Mori cocoon pieces were boiled in 0.02 M Na2CO3 for 
30 minutes and rinsed thoroughly with DI water as a degumming process to remove the Sericin protein binding 
the �broin �bres. �e extracted silk �broin �bres were then dissolved in 9.3 M Lithium Bromide (LiBr) solution 
at 60 °C for 4 h. Subsequently, the obtained solution was dialyzed in DI water using the dialysis membrane with 
a cut-o� molecular weight of 3.5 kDa for 72 h to remove LiBr impurities followed by centrifugation. �e result-
ant puri�ed silk �broin solution is freeze dried and preserved for future usage under −40 °C refrigeration. �e 
freeze-dried pellets were reconstituted to form 5 wt% silk �broin solutions and �ltered with a 0.2 µm syringe �lter. 
�e crossbar memristive device was fabricated on both a �exible biodegradable PVA substrate as well as a glass 
substrate. A layer of 10 nm Cr and 50 nm Au or 50 nm Pt were evaporated on a glass substrate using a �ermionics 
VE180 electron-beam evaporator at a pressure of 10−7 Torr. �e corresponding gold-coated glass substrate was 
cleaned with isopropyl alcohol followed by de-ionised water in an ultrasonic bath for 8 minutes. �e glass sub-
strate was then patterned using laser ablation lithography (SUSS SLP300) to form the bottom electrodes. �e 
reconstituted silk �broin solution was spin-coated onto the patterned substrate at 1000 rpm for 1 min followed by 
water-annealing. �e water annealing process involves the material being exposed to a high humidity environ-
ment. �is was done by storing the device in a water chamber at −25 kPa for a period of 24 hrs. Cross-sectional 
imaging in Fig. S1 has shown that the spin-coated silk �broin layer has a thickness of approximately 250 nm. To 
�nalise the device, a 50 nm top electrode (Au, Cr or Ag) was evaporated onto the �broin layer with the aid of a 
shadow mask. �e bio-resorbable memristive device was initially fabricated by drop-casting PVA on a Te�on 
substrate followed by the spin-coating of PMMA A2 (2% PMMA/98% Anisole) at 1000 rpm for 1 min. Similar 
as mentioned above, a layer of 10 nm Cr and 50 nm Au or 50 nm Pt were evaporated. Next, the reconstituted silk 
�broin solution was spin-coated onto the pattern substrate followed by water-annealing in a water chamber. �e 
50 nm Au top electrode was then e-beam evaporated through a shadow mask. To form the free-standing memris-
tive device, the PVA substrate was li�ed o� the Te�on supporting structure via mechanical agitation.

Cytotoxicity assessment. LDH assay: �e LDH assay was performed using the Promega cytotoxic detec-
tion kit in conjunction with the Molecular Device SpectraMax M3. A 24 well culture plate was seeded with 
SH-SY5Y at a concentration of 103 cells/ml. Test wells were prepared with dissolved sections of the memristor 
together with positive and negative controls as recommended by the LDH assay manufacturer. We tested di�erent 
incubation times of the cells with the dissolved section (1, 24, 168 hrs) to verify the absence of chronic and acute 
toxicity. At di�erent time point, the detection of LDH activity was performed by transferring 50 µl of culture solu-
tion to a 96 well plate together with the 50 µl of reaction solution. A�er 30 minutes, the stop solution was added 
and 490 nm wavelength adsorption was measured.

Electrical Measurement. �e electrical characterisation for the crossbar memristive devices were per-
formed using the Agilent E5270B Precision IV Analyser in conjunction with a Cascade Microtech Summit 

Figure 6. Comparison between numerical simulation and experimental IV characteristics of the set/reset 
process for di�erent combinations of electrode material (a) Cu-Au electrodes (b) Au-Ag electrodes (c) 
Pt-Au electrodes. �e blue dashed curve represents with experimental results; (the black solid line represents 
experiments while the dashed line shows simulation results). Geometrical and physical parameters are listed in 
Fig. S10 and Table S1.
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Semi-Automated Probe Station and an ERS AirCool thermal regulation system. Chrono-amperometry was 
measured on the Cascade Microtech Summit Semi-Automated Probe with the chuck temperature set to 25 °C, 
80 °C, 120 °C and 160 °C with di�erent stimulation voltage supplied via the Agilent IV Analysers. Electrochemical 
measurement of the cyclic voltammograms (CV), were conducted on an electrochemical workstation at room 
temperature. CV measurements were carried out with a triangular voltage signal between −3 V and 3 V for Au-Pt 
and Au-Cu electrodes and between −1 V and 1 V for the Au-Ag electrode at scan rates of 50 mVs−1.

Characterisation. FTIR-ATR spectrum measurements were obtained using the PerkinElmer FT-IR spec-
trometer over the 650 to 4000 cm−1 spectra with a resolution of 1 cm−1. AFM was used for the surface morphol-
ogy and surface roughness analysis of silk �broin �lms. AFM images were obtained with Agilent System (Agilent 
5500 atomic force microscope) by using a commercially available silicon nitride cantilever with a force constant 
of 0.08 N m−1.
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