
A similarity-based approach for test case
prioritization using historical failure data

Tanzeem Bin Noor and Hadi Hemmati
Department of Computer Science

University of Manitoba
Winnipeg, Canada

Email: {tanzeem, hemmati}@cs.umanitoba.ca

Abstract—Test case prioritization is a crucial element in
software quality assurance in practice, specially, in the context
of regression testing. Typically, test cases are prioritized in a way
that they detect the potential faults earlier. The effectiveness of
test cases, in terms of fault detection, is estimated using quality
metrics, such as code coverage, size, and historical fault detection.
Prior studies have shown that previously failing test cases are
highly likely to fail again in the next releases, therefore, they are
highly ranked, while prioritizing. However, in practice, a failing
test case may not be exactly the same as a previously failed test
case, but quite similar, e.g., when the new failing test is a slightly
modified version of an old failing one to catch an undetected
fault. In this paper, we define a class of metrics that estimate
the test cases quality using their similarity to the previously
failing test cases. We have conducted several experiments with
five real world open source software systems, with real faults,
to evaluate the effectiveness of these quality metrics. The results
of our study show that our proposed similarity-based quality
measure is significantly more effective for prioritizing test cases
compared to existing test case quality measures.

Index Terms—Test case prioritization; Test quality metric;
Similarity; Execution trace; Distance function; Historical data;
Code coverage; Test size.

I. INTRODUCTION

Software testing is a crucial task in the software develop-
ment process that ensures software quality. The goal of testing
is to verify the software under development against the client’s
requirements and identify its faults. Generally, numerous test
cases can be designed and executed to verify the software.
Among these huge sets of test cases, only a few effective tests
can detect faults (mismatches between actual and expected
output). Test case prioritization are used to detect the faults
faster by executing a prioritized list of effective test cases.

The ultimate effectiveness measure of a test case is its
actual fault-detection power that indicates how many real faults
the test case can detect. Unfortunately, this measure is not
very practical because usually one needs to know about the
effectiveness of test cases before execution. In addition, when
a test case passes, it can not be simply inferred that there is
no fault in the program because the test may pass due to its
ineffectiveness in catching the fault. Therefore, we need other
test quality metrics to estimate the effectiveness of the tests
cases for test prioritization.

Code coverage is a widely used quality metric that mea-
sures how much of the code (e.g., number of lines, blocks,
conditions etc.) from the program is exercised during the tests
execution. As faulty code needs to be executed to reveal its
fault, covering (executing) more code increases the probability
of covering the faulty code, as well. However, covering the
faulty code may not always result in detecting its faults [1].
Faults are only revealed when the faulty code is executed with
special input values, which actually causes the tests to fail.
Therefore, code coverage does not guarantee detecting faults
and is simply a heuristic that estimates the test case quality.

Detecting previous faults is another important factor used
to estimate the tests case quality. In the context of regression
testing, test cases can be generated and or prioritized, based on
the previous faults (history-based test prioritization) [2]. The
rationale behind it is that if a test detects a fault in the past, it
is probably touching a part of the code that used to be faulty.
On the other hand, defect prediction studies have shown that if
a file/method used to be faulty, it is highly likely to be faulty
again, specially if it is being changed [3], [4]. So the test case
that touches those faulty places might detect new faults, as
well. The type of quality metric that quantifies this concept is
called history-based quality metric, in this study.

The typical history-based quality metric goes through the
history of the software and identifies test cases from the current
release that used to fail in any of the previous releases [3], [4].
Those previously failed test cases will be ranked higher in the
prioritized list of test cases. The problem with this approach is
that in many situations (e.g., when a new test is added or when
an old test is modified) the test case of the current release that
detects a fault is not exactly the same as any of the previously
failing test cases. However, it is quite similar to one (or more)
old failing test case(s), in terms of the sequence of methods
being called (these similar test cases are verifying different
aspects of a risky scenario with minor differences).

In this paper, we define a set of test case quality metrics that
assign historical faultiness values to the test cases, when they
are similar to the failing tests from previous releases. Each
metric defines similarity using a different similarity/distance
function, but they all are applied on the test cases’ execution
traces. We look at an execution trace as a sequence of

@Test
public void testLang747() {

assertEquals(Integer.valueOf(0x8000), NumberUtils.createNumber(”0x8000”));
assertEquals(new BigInteger(”8000000000000000”, 16), NumberUtils.createNumber(”0x8000000000000000”));
....
assertEquals(new BigInteger(”FFFFFFFFFFFFFFFF”, 16), NumberUtils.createNumber(”0xFFFFFFFFFFFFFFFF”));
assertEquals(Long.valueOf(0x80000000000000L), NumberUtils.createNumber(”0x00080000000000000”));
assertEquals(Long.valueOf(0x800000000000000L), NumberUtils.createNumber(”0x0800000000000000”));
...
assertEquals(Long.valueOf(0x7FFFFFFFFFFFFFFFL), NumberUtils.createNumber(”0x07FFFFFFFFFFFFFFF”));
assertEquals(new BigInteger(”8000000000000000”, 16), NumberUtils.createNumber(”0x00008000000000000000”));
assertEquals(new BigInteger(”FFFFFFFFFFFFFFFF”, 16), NumberUtils.createNumber(”0x0FFFFFFFFFFFFFFFF”));

}

Fig. 1. A failing test case in the Commons Lang project’s latest version [5]

@Test
public void testStringCreateNumberEnsureNoPrecisionLoss() {

String shouldBeFloat = ”1.23”;
String shouldBeDouble = ”3.40282354e+38”;
String shouldBeBigDecimal = ”1.797693134862315759e+308”;
...

assertTrue(NumberUtils.createNumber(shouldBeFloat) instanceof Float);
..... . ..
assertTrue(NumberUtils.createNumber(shouldBeDouble) instanceof Double);
assertTrue(NumberUtils.createNumber(shouldBeBigDecimal) instanceof BigDecimal);

}

Fig. 2. A failing test case in the previous versions of the Commons Lang project that is similar to the test case in Fig. 1 [5]

method calls from the program source code, when the test
case is executed. We have conducted a series of empirical
studies (using five open source java software systems) to
compare the effectiveness of these metrics in the context of
test case prioritization. The results of our study shows that
the similarity-based approach is more effective in prioritizing
fault-revealing tests compared to the traditional history-based
approach. Moreover, we have also found that the similarity-
based quality metrics are also better than other test quality
metrics, e.g., coverage and test size in prioritizing tests.

The rest of this paper is organized as follows: section II
mentions our motivation behind this study; some existing
traditional test quality metrics have been presented in section
III. Our proposed similarity-based test prioritization has been
explained in section IV. We have discussed our experiments
and results in section V. Section VI states some of the related
works. Finally, section VII concludes the paper and mentions
our future work.

II. MOTIVATION

Test case quality metrics are used in different applications;
most commonly in evaluating existing test suites, to make
sure enough testing has been done. An automatic test case
generation tool also uses quality metrics to evaluate test case
effectiveness in order to produce high quality tests. In addition,
quality metrics are used in prioritizing test cases, when the
resource (e.g., time, number of software testers) is limited.
Test case prioritization ranks the test cases based on the quality
metrics so that the more effective tests are being executed first
and detect the software faults faster, within the limited testing
budget. Test case prioritization is very important in practice

for software companies, specially when continuous integration
and rapid release demands fast development paces.

In continuous integration development environments, new
or changed code are frequently integrated with the mainline
codebase. Continuous integration processes require extensive
testing to be performed prior to code submission. To make
this process cost-effective, regression testing techniques must
operate effectively within continuous integration development
[6]. Recently, Elbaum et al. has shown that in the continuous
integration process, test selection and prioritization techniques
can be performed, cost-effectively, in the absence of coverage
data by using readily available test suite execution history
[6]. Test execution history provides the information regarding
a test, i.e., whether it passed or failed (detected a fault,
previously). In addition, the historical fault detection measure
is also a guiding factor to detect faults in the current version
[3], [4], [7], [8].

In the traditional history-based quality metrics, a test case
from the current release would be considered as effective if
the exact same test also failed in the previous releases [3],
[4]. Now assume a test case, such as testLang747 (a test case
from the latest version of project Commons Lang, explained
in section V-B) in Fig. 1, that is just added to the current
test suite and actually fails (detects a fault). This test case is
not effective according to the traditional history-based quality
metric, since it did not exist in the previous releases, to fail.
However, there are some test cases in the past that are quite
similar to this test case and they failed, e.g., the test case in
Fig. 2 [5]. Therefore, it would be nice to have a history-based
quality measure for test cases that do not only look at exact
occurrences of the test case in the past, but look at its similar
cases, as well. The key question here is “how do we identify

@Test
public void testCase_a() {
 assertTrue(m1(8));
}

testCase_a: <m1,m2,m3>

(a) testCase_a

@Test
public void testCase_b() {
 assertFalse(m1(12));
}

testCase_b: <m1,m2,m3>

(b) testCase_b

boolean b=false;

public boolean m1(int v){
 return m3(m2(v));
}
public boolean m2(int n){
 if(n<10)
 b=true;

return b;
}
public boolean m3(boolean x){
 return (x || b);
}

(c) Source code

Fig. 3. Example of test cases and their corresponding method calls

such similar test cases?”

Usually, along with the historical fault detection informa-
tion, execution traces can also be collected from the history.
In general, an execution trace of a test case is the sequence of
method calls from the program source. For example, when a
Junit test “testCase a” in Fig. 3a is executed, it calls method
m1 from the program source code in Fig. 3c and its execution
trace would be testCase a< m1,m2,m3 > in terms of
method invocation sequence. Now, assume another Junit test
“testCase b” in Fig. 3b. This test seems different from the test
in Fig. 3a, since both its name and assert statement differ from
“testCase a”. However, the execution trace of “testCase b” is
testCase b< m1,m2,m3 >, which is very similar (in this
scenario same) to the execution trace of “testCase a”, in terms
of the method call sequence.

To quantify the similarity between a new/modified test
case and a failing test case from history, we can represent
them by their sequences of method calls as described in
the previous example (Fig. 3). The sequence of method
calls could be extracted from their execution traces. For
instance, the sequences for the two test cases of Fig. 1
and Fig. 2 are shown in Fig. 4a and Fig. 4b. As it can
be seen, NumberUtils.createNumber(java.lang.String),
StringUtils.isBlank(java.lang.CharSequence) and Num-
berUtils.isAllZeros(java.lang.String) methods are the same in
the two test case traces, which makes the two test cases similar.

This example, and other cases like this, which show the
failing test case trace in the current release is very similar
to the failing test case traces from previous releases, were the
motivations behind this work and our previous work [5], where
we proposed a new quality metric using test case similarity to
historical failing test cases. In this work we expand that short
paper by properly investigating different possibilities for such
a quality metric, we also put the quality metric in the context
of test case prioritization and compare it with other commonly

used metrics in that domain.

III. BACKGROUND

In the applications like test case prioritization and genera-
tion, different test case quality metrics are extensively used.
The main goal of using test case quality metrics is to evaluate
the tests and find the scope of improvement required in the
test cases. The primary quality measure of a test case is its
ability to detect software faults, i.e., whether the test fails on
the program. Sometimes the severity of the revealed faults
might be a crucial factor and therefore the tests that detect
more severe faults be considered as higher quality.

As the ultimate goal of testing is detecting faults, any
measure that directly quantifies the fault detection power is a
perfect metric, in terms of effectiveness. However, the actual
fault detection metric can not be practically used in test
prioritization, since we don’t know the actual number of faults
before executing the test cases. Therefore, several heuristics
are used to define test quality metrics with the hope that they
have high correlations with real fault detection power of the
test cases. A well-known set of such metrics are test adequacy
criteria that is categorized mainly into coverage-based and
fault-based test adequacy criteria [1], [9].

Besides these test adequacy criteria, there are some other
quality metrics that have high correlation to fault detection
ability of the test cases, such as historical fault detection,
coverage, size of the test, complexity, code churn, etc. [3]. In
the rest of this section, we explain some of these test quality
metrics that are being used in this paper.

1) Procedure/Method coverage: Code coverage is a com-
monly used test adequacy criteria that indicates how much of
the program is executed when the test case runs. A test case
reveals a fault when it executes a segment from the program
that causes a failure. Most existing automated test generation

NumberUtilsTest.testLang747()
NumberUtils.createNumber(java.lang.String)
StringUtils.isBlank(java.lang.CharSequence)

NumberUtils.createInteger(java.lang.String)
.
StringUtils.isBlank(java.lang.CharSequence)
NumberUtils.isAllZeros(java.lang.String)

.
StringUtils.isBlank(java.lang.CharSequence)
NumberUtils.createInteger(java.lang.String)

(a) Test case trace of Fig. 1

NumberUtilsTest.testStringCreateNumberEnsureNoPrecisionLoss()
math.NumberUtils.createNumber(java.lang.String)
StringUtils.isBlank(java.lang.CharSequence)
NumberUtils.isAllZeros(java.lang.String)

NumberUtils.createFloat(java.lang.String)
.
.
NumberUtils.createNumber(java.lang.String)
StringUtils.isBlank(java.lang.CharSequence)
NumberUtils.isAllZeros(java.lang.String)
NumberUtils.createFloat(java.lang.String)

(b) Test case trace of Fig. 2

Fig. 4. Example of execution traces for Fig. 1 and Fig. 2 [5]

tools [10], [11] try to generate test cases that cover/execute
100% (or as close as possible to that) of the source code.
Therefore, high coverage has always been an indicator of good
quality for test cases.

Coverage based test adequacy criteria is further grouped
into control-flow coverage and data-flow coverage. One of
the simple control-flow coverage criteria is measuring proce-
dure/method coverage of the tests. The key question here is
“has each function (or method) in the program been called?”
For each test case, the method coverage refers to the number
of methods called from the test case (directly or indirectly)
divided by the total number of methods in the program [9].

2) Code coverage of the changed parts: Since in regres-
sion testing, the source code is modified from the previous
version, metrics that measure the coverage of the changed parts
of the code are very important [3], because even if the total
coverage of the test suite is not high, we still expect a high
coverage in the change part to assure proper regression testing.
This metric prioritizes the test cases that execute any change
part of the code directly or indirectly.

3) Size of tests: The size of the test cases is also a
commonly used test quality metric, where the large size
indicates a more effective test. Generally, size of a test case
refers to the LOC (Line of Codes) in the test method. However,
sometimes the number of assertions in a test case is considered
a better size measure, since it directly measures the amount
of verifications applied by the test cases. This is to mention
that size of test cases is not the same as its coverage [1]. For
example, test t1 can cover a method with one assertion and
test t2 do the same but try it with 5 more assertions. In this
case, test t2 has higher chances to detect faults than t1.

4) Historical fault detection: Historical fault detection
metrics assign higher priority to test cases of the current
release that failed historically, i.e., on any previous release
[3], [4], [7], [8]. The reason is that studies have shown that
the tests with higher historical fault detection rate are more
likely to fail in the current version, as well.

IV. PROPOSED APPROACH

To deal with problems such as those explained in the
motivation (example in section II), we propose to prioritize
test cases using an improved history-based quality metric. In
the rest of this section, we explain our proposed approach.

A. Similarity-based test quality metric

Our proposed similarity-based metric considers a test as
effective, if it is similar to any of the failed test cases from the
previous versions. The similarity between test cases is defined
based on their sequences of method calls, extracted from
execution traces. Therefore, first, execution traces containing
the sequence of method calls need to be retrieved for all of
the previously failed tests. Then, the sequences of method
calls (i.e., execution traces) are also collected for all the
modified or newly added tests in the current version. Finally, a
similarity function is used to determine the similarity between
the execution traces of the modified/new tests in the current
version and the previously failed tests. So, the input of the
similarity function is the execution traces of both the current
releases’ modified/new tests and the previously failed tests.
The similarity function, at the end, returns a value indicating
how similar is a test case to the previously failed test cases.

There are several similarity functions that can be used to
determine similarity among test cases. In this paper, we study
three functions and also try to improve them by combining
the two best candidates.

1) Basic Counting (BC): This measure is a very basic
function, which does not account for the method call orders
nor for their position in the sequence. The function simply
looks at the past failing sequences of unique method calls and
counts the overlap with the unique method calls of the test
case under study. The total similarity value of a test case is
the sum of all these occurrences, which indicates how many
unique method calls from the current test case also appeared
in the previous failing tests traces. However, instead of using
the actual summation value, a normalized value between 0 and
1 is used. The normalization is performed by diving the total
summation value by the total number of unique method calls

7

TCa < . . >
TCb < A(), B(), C()>
TCd < . . >

TCb < . . >
TCz < A(), D(), E()>
TCa < . . >Re

lea
se

-N

.
.

TCx < A(), D(), C()>

TCy < P(), B(), Q()>

Test
Case

Similarity
Value

Rank

TCX M 1

TCy N 2Previous releases

Current release

Similarity

Re
lea

se
-1

Fig. 5. An overview of the proposed similarity-based test case prioritization, using historical failure data.

from the history. The higher normalized value of a test case
means the test has also higher similarity with the previous
failing tests.

2) Hamming Distance (HD): Hamming Distance is a
widely used distance functions used in the literature, which
is a basic edit-distance. The edit-distance between two se-
quences is defined as the minimum number of edit operations
(insertions, deletions, and substitutions) needed to transform
the first sequence into the second [12], [13]. Hamming is only
applicable on identical length inputs and is equal to the number
of substitutions required in one input to become the second
one [12]. If all inputs are originally of identical length, the
function can be used as a sequence-aware measure. However,
in most of the applications, test inputs have different lengths.
Therefore, to force them to have an identical length, a binary
vector is made per input that indicates which elements from the
set of all possible elements of the encoding exist in the input.
As a result, the function does not preserve the original order
of elements in the input anymore and it becomes a sequence
ignorant (or set-based) similarity function [14], [15].

In our case, the total hamming distance of a mod-
ified/new test, e.g., T1 in the current release, is cal-
culated by summing up all hamming distances, be-
tween T1 and each of the failing tests from the pre-
vious releases. For example, assume, two previous failed
test traces are T3 < A(), B(), B(), C(), B(), D() >
and T2 < A(), E(), D(), B(), A() >, and the mod-
ified/new test trace in the current release is T1 <
F (), A(), C(),M(), N(), X(), A() >. Therefore, the total
hamming distance of T1 would be the summation of hamming
distances between T1 and T3 (i.e., Hamm(T1, T3)), and
hamming distances between T1 and T2 (i.e., Hamm(T1, T2)).

To calculate the hamming distance between T1 and T2
(Hamm(T1, T2)), first, all unique method calls from T1
and T2 form a set of all possible elements, i.e., V <
A(), E(), D(), B(), F (), C(),M(), N(), X() >. Now, both
the T1 and T2 are encoded as binary vector of identical
length, where a bit is true only if the encoded test case
contains the corresponding element from V . So, the test T1

is encoded as < 1, 0, 0, 0, 1, 1, 1, 1, 1 > and T2 is encoded as
< 1, 1, 1, 1, 0, 0, 0, 0, 0 >, with respect to the set of all possible
elements V .

Then Hamm(T1, T2) is measured by applying XOR oper-
ation between their binary encoded representations and then
normalized between 0 and 1 by dividing the sum of XOR val-
ues by the length of V . Therefore, the normalized Hamm(T1,
T2) is < 0, 1, 1, 1, 1, 1, 1, 1, 1 >= 8/9. Similarly, the normal-
ized hamming distance between T1 and T3 (Hamm(T1, T3))
is also calculated.

Finally, all of these normalized hamming distances are
summed up and normalized between 0 and 1 again by dividing
the summation value by the total number of failed test cases
from previous versions. The low hamming distance value of a
test case means the test has high similarity with the previous
failing tests. So, we convert this distance to similarity by
subtracting the total normalized hamming distance value from
1.

3) Edit Distance (ED) The general edit distance function
is a sequence-aware function, where the order and position of
method calls in the traces would matter. One of the most well-
known algorithms implementing edit-distance which is not
limited to identical length sequences is Levenshtein [12] where
each mismatch (substitutions) or gap (insertion/deletion) in-
creases the distance by one unit. To change distances into
similarities, we need to reward each match and penalize each
mismatch and gap. The relative scores assigned to matches,
mismatches, and gaps can be different. A basic setting for the
function would be implemented in a way where matches are
rewarded by one point and mismatch and gap are treated the
same by giving no reward [14], [15].

B. Similarity-based test prioritization

In our proposed prioritization approach, the test cases are
sorted based on their descending similarity values, which
are calculated using different approaches mentioned in the
previous sub-section. The overall test prioritization process is
shown in Fig. 5 where the previous failed tests are TCb and

TABLE I
PROJECTS UNDER STUDY

Projects
#Faults

(#Versions)
#Test Cases

Median number of

Test cases per version

JFreeChart 26 2,205 1,751

Closure Compiler 133 7,927 7,066

Commons Math 106 3,602 1,976

Commons Lang 27 2,245 1,757

Joda Time 65 4,130 3,748

TCz , and the modified/added tests in the current release are
TCx and TCy . The higher rank of TCx indicates that it should
be executed earlier than TCy to detect the faults earlier.

V. EMPIRICAL STUDY

A. Research Questions

In this study, we have investigated the following research
questions:

RQ1: Can a similarity-based test quality metric improve the
traditional history-based metric, in the context of test case
prioritization?

RQ2: Which similarity/distance function works best for the
similarity-based test quality metric?

RQ3: Can the best similarity-based test quality metric improve
existing quality metrics, such as code coverage, test size and
change-related metrics?

B. Subjects under study

In our experiment, we have used five different Java projects
from the defects4j database [16]. The database provides 357
faults and 20,109 Junit tests from five different open-source
Java projects as mentioned in Table I. All the faults are real,
reproducible and have been isolated in different versions [17].
There is a faulty version and a fixed version of the program
source code, for each fault. The faulty source code is modified
in the fixed version to remove the fault. The test cases are the
same in both of the faulty and the fixed versions. However,
there is at least one test case (a Junit test method) in each
version that fails on the faulty version but passes on the fixed
version.

C. Experiment design

As our proposed similarity functions require test case traces
containing method call sequences, we need to use a tool for
trace generation. We have used daikon [18] tool to produce
the execution traces from three projects (Commons Lang, Joda
Time and JFreeChart). Daikon is a tool to dynamically detect

likely program invariants and it allows to detect properties in
C, C++, C#, Eiffel, F#, Java, Perl, and Visual Basic programs
[18]. The daikon front end (instrumenters) for Java, named
Chicory, executes the target Java programs and creates the
.dtrace file that contains the program execution flow along
with the variable values in each program point. The method
sequence calls have been extracted from the .dtrace file.

However, for the other two projects (Commons Math and
Closure Compiler), we could not use daikon for trace col-
lection, as the tests from these projects generated very large
.dtrace files. So, instead of using daikon, we have used AspectJ
[19] to produce the trace of method sequence calls directly.
Although the trace extraction process is different, the format of
the extracted method sequence calls is same. We have collected
the method sequences for all modified tests in the current
release and also all the failed tests traces from the previous
releases. Finally, we have ranked the tests in each version by
using different approaches.

To answer RQ1, we compare the prioritization using our
Basic Counting (BC) metric with the traditional history-
based approach. To answer RQ2, we compare BC, Hamming
Distance (HD), and Edit Distance (ED) functions to prioritize
test cases. We also propose an improved basic counting (IBC)
metric. In the improved BC, at first, the normalized BC and
HD values are rounded into two decimal places. This will
help avoiding ranking differences where the similarities are
very close. The second improvement is to combine the BC
and HD. To do that for cases where BC values are lower than
0.5, we first look at HD values if they are higher than 0.5.
We rank them using HD, otherwise using BC. This will help
getting the most out of both BC and HD.

To answer RQ3, we have compared the Size of Testcase
(ST), Method Coverage (MC) and Changed Method Coverage
(CMC) metrics against our similarity-based metric. ST is the
number of uncommented statements in a test method that has
been derived from Java Abstract Syntax Tree (AST) parser
using Eclipse JDT API [20]. MC of a test case is the number
of unique methods called during the test execution. CMC of a
test case is the number of unique method calls that are called
by the test case and have been changed since the last version.
Both the MC and CMC has been derived from the execution
traces.

We have implemented the the similarity functions using Java
and we have used R [21] for our evaluation purposes.

D. Results and Discussion

The defects4j dataset mentions which test case actually fails
in the current version [16]. So, we compare the rank of the first
failing test provided by different approaches in each version
(note that there is only one fault per version, but there might be
more than one test that detect it). In other words, we compare
the percentage of the test cases that need to be executed in

TABLE II
NUMBER OF STUDIED VERSIONS

Projects
#Studied

Versions

#Versions

(TM works)

Commons Lang 60 22

JFreeChart 24 2

Commons Math 43 12

Joda Time 25 0

Closure Compiler 95 0

order to catch the fault in each version, separately. We do
this by dividing the rank of the first failing test by the total
number of modified/new tests in each version. In case of ties
in the similarity values, we have ranked the tied test cases
randomly, by applying the rank function in R with a parameter
ties.method=“random” [22]. To deal with this randomness,
we have calculated the ranks 30 times for each version of the
projects.

Whenever we compare to distributions of the results and
we say one outperforms the other, we have first conducted
a non-parametric statistical significance test (U-test) [23] to
make sure the differences are not due to the randomness of
the algorithms. In addition to that, it is also crucial to assess
the magnitude of the differences [24]. Effect size measures are
used to analyze such a property [24], [25]. In our study, we
have used a non-parametric effect size measure, called Vargha
and Delaneys Â12 statistics [24]–[26]. Given a performance
measure M , the Â12 statistics measures the probability that
running algorithm X yields higher M values than running
another algorithm Y . When the two algorithms are equivalent,
then Â12 is 0.5. Therefore, while comparing algorithm X and
Y , Â12 = 0.7 represents that we would obtain higher results
70% of the time with algorithm X compared to the algorithm
Y [24].

In our context, the given performance measure M is the
percentage of the tests need to be executed in order to catch
the first fault in a version. Therefore, we get a Â12 value for
each version of the project while comparing two prioritization
approaches. So, in our case, Â12 = 0.8 indicates that algorithm
X ranks the first failing test higher than algorithm Y in 80%
of the time. In other words, algorithm X can detect the fault
faster than algorithm Y in 80% of time. We have used this
Â12 measure to evaluate all of our results.

In the rest of this section we answer research questions
mainly by comparing the Â12 measure. We also make sure
that the differences of the results are statistically significant.

1) Experimental results for RQ1: To evaluate RQ1, we
compare the first failing test’s ranks assigned by our proposed
similarity-based approach (in this case, by using Hamming
Distance (HD)) and the traditional history-based approach. The
traditional approach ranks the previous failing tests higher in

JFreeChart Commons Lang Commons Math

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

H
D

−
T

M
(%

)

Fig. 6. The boxplots of the effect size measures for finding the first fault
using HD and TM, when comparing 30 runs of each versions of each project.

the current release. Therefore, the traditional approach works
only when the set of all modified/new tests in the current
release contains at least one test that failed in any of the earlier
versions.

Table II shows the number of versions where the traditional
approach (TM) works. The large number of versions that
the traditional approach is not working at all, is indeed our
main motivation to propose an improved history-based metric.
Since the traditional approach can not rank the tests in many
versions, it is already falling behind our new metric, but to be
fair we also compare the results for only the working versions.

For these versions of the projects, we compare the rank of
the first failing test using the traditional approach against the
similarity-based approach (in this case, by using HD). We have
used Â12 measure to compare these prioritization approaches.
Fig. 6 shows the boxplots of the Â12 measures distribution for
the versions of three projects where the traditional prioritiza-
tion approach works. The higher than 0.5 median lines in the
boxplots represent that in general prioritization using the ham-
ming distance-based similarity function is better than using
traditional history-based prioritization, even for cases where
the traditional approach is working (note that the differences
are also statistically significant with p-values<0.05).

2) Experimental results for RQ2: To answer RQ2, we
compare Basic Counting (BC), Hamming Distance (HD), Edit
Distance (ED) and Improved BC (IBC) similarity functions.
We look at the rank of the failing test provided by the prioriti-
zation approaches using these similarity functions and we also
use the Â12 measure for this evaluation. For this evaluation,
we consider only the versions with at least 4 modified/new
test cases. We assume that in the versions having less than 4
modified/new test cases, executing all test cases is not costly
and hence the prioritization is not actually beneficial.

Fig. 7 shows the boxplots of the Â12 measures distribution
for the versions for each project where there are at least 4 test

JFreeChart
Joda
Time

Commons
Lang

Commons
Math

Closure
Compile

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

H
D

 −
 E

D
 (

%
)

(a) Hamming distance vs. Edit distance

JFreeChart
Joda
Time

Commons
Lang

Commons
Math

Closure
Compile

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

B
C

 −
 E

D
 (

%
)

(b) Basic counting vs. Edit distance

JFreeChart
Joda
Time

Commons
Lang

Commons
Math

Closure
Compile

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

B
C

 −
 H

D
 (

%
)

(c) Basic counting vs. Hamming distance

JFreeChart
Joda
Time

Commons
Lang

Commons
Math

Closure
Compile

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

IB
C

 −
 B

C
 (

%
)

(d) Improved basic counting vs. Basic counting

Fig. 7. The boxplots of the effect size measures for finding the first fault using BC, HD, ED, and IBC, when comparing 30 runs of each versions of each
project.

cases. Fig. 7a compares HD and ED, and Fig. 7b compares
BC and ED. It can be observed that the similarity-based
prioritization using HD provides significantly better result than
the use of ED in Joda Time, Commons Lang and Commons
Math projects, as the median lines for these box plots are
closer to 1.0. However, for the remaining two projects, the
improvements are not that much significant (p-values are still
lower than 0.05 but the median effect size is around 50%). On
the other hand, BC is much better than the ED for all of the
projects. Therefore, the results shown in Fig. 7a and Fig. 7b
suggests that it is better to use the BC as a similarity function
compared to the ED.

Next, we compare the similarity function BC with HD and
the results are shown in Fig. 7c. Here we can see that BC
performs significantly better than the HD in JFreeChart and
Closure Compiler project. However, the performance of BC
and HD is quite similar for the Commons Lang and Commons
Math projects, where neither of these functions outperforms
the another (again p-values are low but the median effect
size is around 50%). On the other hand, HD performs better
than the BC for the Joda Time project. This result actually
motivated us to propose the improved similarity function, IBC

(defined in the section V-C), which uses both the BC and HD
values. However, we give more weight to the BC values than
HD values to calculate the IBC, as the BC ranks are slightly
better than the HD ones in identifying the fault in the current
version.

Fig. 7d shows the comparison between IBC and BC. As
can be seen from the figure, IBC improves BC in the Joda
Time project (p-values<0.05 and the distribution of effect
sizes leaning more toward higher than 50%) and is as good
as BC in the others. Therefore, we consider the IBC as the
best similarity function to be used for the similarity-based test
prioritization.

3) Experimental results for RQ3: In RQ3, we compare
prioritization using the best similarity function (in this case
IBC, based on RQ2 results) with the other traditional mea-
sures, e.g., Method Coverage (MC), Size of Testcase (ST) and
Changed Method Coverage (CMC). These other traditional
metrics have been explained in section III. To evaluate the
results of RQ3, we also use the Â12 measure distribution in a
boxplot to compare two metrics and again we have considered
the versions having at least 4 new/modified test cases for all
projects.

JFreeChart
Joda
Time

Commons
Lang

Commons
Math

Closure
Compile

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IB
C

 −
 C

M
C

 (
%

)

(a) Improved basic counting vs. Changed method coverage

JFreeChart
Joda
Time

Commons
Lang

Commons
Math

Closure
Compile

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IB
C

 −
 S

T
 (

%
)

(b) Improved basic counting vs. Size of tests

JFreeChart
Joda
Time

Commons
Lang

Commons
Math

Closure
Compile

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IB
C

 −
 M

C
 (

%
)

(c) Improved basic counting vs. Method coverage

Fig. 8. The boxplots of the effect size measures for finding the first fault
using IBC, CMC, ST, and MC, when comparing 30 runs of each versions of
each project.

The performance of the best similarity metric (IBC) against
CMC, ST and MC is shown in Fig. 8. In general, IBC ranks the
failing test higher than any of these metrics in more than 80%
of the cases for three projects (JFreeChart, Commons Math
and Closure Compiler). Also in Commons Lang project, IBC is
significantly better than the MC, in 80% of the cases. However,
the differences are not very significant (median effect size
around 55-60% with p-values <0.05) when comparing IBC
with ST or CMC in Commons Lang and Joda Time projects.
Nonetheless, there is only one case that IBC falls behind and
that is in Joda time when comparing IBC and MC, where the
median effect size is around 40%.

The results also show that neither of these traditional metrics
completely outperforms others for all the projects. However,
the proposed IBC is much more consistent in all the projects.

E. Threats to validity

In terms of conclusion validity, we have conducted solid
experiments to ensure that the results are statistically signifi-
cant and the magnitude of differences are significant, as well
(effect size).

In terms of internal validity, we have used existing libraries
and tools as much as possible (e.g., Daikon [18], AspectJ [19]).

In terms of construct validity, we use a pretty well-known
evaluation metric, which is the rank of first test that catches
the fault. The other alternative would be APFD (Average
Percentage of Faults Detected) [27], which is commonly used
for test prioritization evaluation. However, in our study, each
version contains only one fault. So, using APFD would not
make sense.

In terms of external validity, we have conducted our empir-
ical study based on five real-world open source java libraries
from defects4j [16] database with several versions and faults.
However, generalizing the results to different types of systems
may still require further experiments.

VI. RELATED WORK

Test case/suite quality has been studied in different do-
mains such as test case prioritization, test case generation,
bug prediction etc. A number of quality metrics have been
proposed so far in order to evaluate test case quality from these
perspectives. In the rest of this section, we mention some of
the related works.

Nagappan et al. has proposed a set of 9 test quantification
and complexity metrics and Object-Orientation (OO) metrics
to evaluate Junit tests in terms of early estimation of software
defects [28]. Test quantification metrics evaluate the tests
by the amount of the tests (e.g., number of assertions or
LOC) written to check the program thoroughly. We have also
used the size of tests (i.e., LOC) and coverage (i.e., method
coverage) for our comparison.

Shihab et al. studied the impact of change-metrics in terms
of risk management of a software [29]. A change is considered
risky when they might result in some faults in the future. The
authors found the number of bug reports linked to a change and
the faultiness of the files being changed as the best indicators
of change risk. Moser also mentioned the number of bug fixes
as one of the powerful fault-predictor process metrics [30].
He showed that the previous bug-fixing activities are likely
to introduce new faults in the later releases. Similar to this,
Zimmermann et al. [4], also showed that the number of past
bug fixes extracted from the repository is also correlated with
the number of future fixes. Anderson et al. [8] also showed

the most frequent failures from the history is a good predictor
for the future failures, however, the recent failures increase the
predicting ability in their study compared to using the older
failure history.

We consider two main findings from these studies. 1) The
previously faulty source code are likely to have bugs again
in the new release. This is the main motivation behind the
historical fault detection metrics that we have explored in
this study. 2) Changing a source code increases its chance to
fail. So we have used this in terms of the “Changed Method
Coverage (CMC)” metric for our comparison.

The most relevant studies to this work are those that use
historical fault detection as a quality metric, in the context of
regression test case selection, prioritization and minimization.
Kim proposed to prioritize tests based on historical test exe-
cution that also improves the overall regression testing [31].
They considered the number of previous faults exposed by a
test as the key prioritizing factor.

Elbaum et al. proposed a regression testing technique that
use time windows to track from the history how recently
test suites have been executed and revealed failures, to select
and prioritize tests [6]. Park et al. considered the test case
execution costs and the severity of detected faults to prioritize
tests in regression testing [32]. However, they considered the
total history of the test execution assuming that the costs of
the test cases execution and the fault severity of detected faults
can significantly change from one release and therefore, the
complete history can further improve test case prioritization.
Similar to this, we have also considered the complete history
for the historical test execution data.

All these traditional historical fault detection measures
prioritize the test cases that detect faults in previous releases.
However, in our study, instead of looking into the exact
matches with failing tests, we prioritize tests that are similar
to the previous failing tests from the history.

VII. CONCLUSION AND FUTURE WORK

In the applications such as test prioritization, generation,
selection etc., test case quality metrics are extensively used.
Previous failing information of a test case is one of the existing
quality metrics. The metric provides higher ranking to the test
cases that failed in any of the previous releases. Higher ranking
suggests that the test case has higher probability to detect more
faults in the current release, as well. However, in practice, the
fault revealing test in the current release may not be exactly
the same as the previous failed tests, they might be similar
though; specially when new tests are added to the existing test
suite or old tests are modified. Therefore, we have proposed a
similarity-based test quality metric that uses historical failure
data. We have conducted a large empirical study (247 versions
from five real-world java projects with real faults) that shows

the proposed similarity-based metric is more effective in test
prioritization compared to the other traditional metrics.

In the future, we will try to improve the similarity function
by abstracting the method sequence calls into a state model.
We are also interested to build an automatic test generation
tool that can generate high-quality tests, using this new quality
metric.

ACKNOWLEDGMENT

The research of the first author is supported in part by a
University of Manitoba Graduate Fellowship (UMGF), and
the research of the second author is supported in part by the
Natural Sciences and Engineering Research Council of Canada
(NSERC).

REFERENCES

[1] M. Pezzè and M. Young, Software testing and analysis: process,
principles, and techniques. Wiley, 2008.

[2] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge
University Press, 2008.

[3] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” in 7th IEEE Working Conference on Mining
Software Repositories (MSR), 2010. IEEE, 2010, pp. 31–41.

[4] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in International Workshop on Predictor Models in Software
Engineering, PROMISE’07: ICSE Workshops 2007. IEEE, 2007, pp.
9–9.

[5] T. Noor and H. Hemmati, “Test case analytics: Mining test case traces to
improve risk-driven testing,” in Software Analytics (SWAN), 2015 IEEE
1st International Workshop on. IEEE, 2015, pp. 13–16.

[6] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 235–245.

[7] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller, “Predicting
faults from cached history,” in Proceedings of the 29th International
Conference on Software Engineering (ICSE), 2007. IEEE Computer
Society, 2007, pp. 489–498.

[8] J. Anderson, S. Salem, and H. Do, “Improving the effectiveness of test
suite through mining historical data,” in Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM, 2014, pp. 142–
151.

[9] M. P, Foundations of Software Testing. Pearson Education, 2008.
[Online]. Available: https://books.google.ca/books?id=yU-rTcurys8C

[10] G. Fraser and A. Arcuri, “A large-scale evaluation of automated unit test
generation using evosuite,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 24, no. 2, p. 8, 2014.

[11] K. Sen and G. Agha, “Cute and jcute: Concolic unit testing and explicit
path model-checking tools,” in Computer Aided Verification. Springer,
2006, pp. 419–423.

[12] G. Dong and J. Pei, Sequence Data Mining, ser. Advances
in Database Systems. Springer US, 2007. [Online]. Available:
https://books.google.ca/books?id=GESJmZpkePIC

[13] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997.
[Online]. Available: https://books.google.ca/books?id=Ofw5w1yuD8kC

[14] H. Hemmati and L. Briand, “An industrial investigation of similarity
measures for model-based test case selection,” in 21st International
Symposium on Software Reliability Engineering (ISSRE), 2010. IEEE,
2010, pp. 141–150.

[15] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-
based testing through test case diversity,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 22, no. 1, p. 6, 2013.

[16] http://homes.cs.washington.edu/∼rjust/defects4j/, [Online; last accessed
2-June-2015].

[17] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Proceed-
ings of the International Symposium on Software Testing and Analysis
(ISSTA), 2014. ACM, 2014, pp. 437–440.

[18] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1, pp.
35–45, 2007.

[19] “The AspectJ Project,” https://eclipse.org/aspectj/, [Online; last accessed
02-June-2015].

[20] “Eclipse java Development Tool (JDT),” https://eclipse.org/jdt//, [Online;
last accessed 02-June-2015].

[21] “The R Project for Statistical Computing,” http://www.r-project.org/,
[Online; last accessed 02-June-2015].

[22] “R:Sample Ranks,” https://stat.ethz.ch/R-manual/R-devel/library/base/
html/rank.html, [Online; last accessed 02-June-2015].

[23] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[24] A. Arcuri and L. Briand, “A practical guide for using statistical tests
to assess randomized algorithms in software engineering,” in Software
Engineering (ICSE), 2011 33rd International Conference on. IEEE,
2011, pp. 1–10.

[25] K. J. Goulden, “Effect sizes for research: A broad practical approach,”
2006.

[26] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal

of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[27] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case priori-
tization: An empirical study,” in Software Maintenance, 1999.(ICSM’99)
Proceedings. IEEE International Conference on. IEEE, 1999, pp. 179–
188.

[28] N. Nagappan, L. Williams, M. Vouk, and J. Osborne, “Using in-
process testing metrics to estimate post-release field quality,” in 18th
International Symposium on Software Reliability (ISSRE), 2007. IEEE,
2007, pp. 209–214.

[29] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An industrial
study on the risk of software changes,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 2012, p. 62.

[30] R. Moser, W. Pedrycz, and G. Succi, “Analysis of the reliability of
a subset of change metrics for defect prediction,” in Proceedings of
the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2008, pp. 309–311.

[31] J.-M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” in Pro-
ceedings of the 24rd International Conference on Software Engineering
(ICSE), 2002. IEEE, 2002, pp. 119–129.

[32] H. Park, H. Ryu, and J. Baik, “Historical value-based approach for
cost-cognizant test case prioritization to improve the effectiveness of
regression testing,” in Second International Conference on Secure System
Integration and Reliability Improvement (SSIRI), 2008. IEEE, 2008,
pp. 39–46.

